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1 Introduction

The concept of voting games is of crucial importance for social choice
theory as well as game theory. A voting game is characterized by a
set of individuals and by the set of all winning coalitions, that is,
groups of individuals which can enforce a decision. Then, knowing
the preferences of the voters, an alternative belongs to the core of
a voting game if the members of any winning coalition never prefer
unanimously another proposition.
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Unfortunately, it is easy to prove that the core of a voting game
may be empty, just by taking this simple example due to Condorcet
[1].

Example 1. Consider three voters, 1, 2, and 3 who have to choose
among three alternatives, x, y and z. A coalition is winning if it
contains at least two voters. The notation x ≻i y ≻i z will mean
that voter i prefers x to y, and y to z; The fact that two alternatives
x and y are considered as equivalent by voter i will be denoted by
x ∼i y. Let assume that the preferences of the voters are the following
ones:

x ≻1 y ≻1 z, z ≻2 x ≻2 y, y ≻3 z ≻3 x

In this case, voters 1 and 2 prefer x to y, voters 2 and 3 prefer z to
x, and voters 1 and 3, y to z: The core of this game is empty.

A way out of this “paradox of voting” has been suggested by Ru-
binstein [13]. His objective is to circumvent the possible cyclicity of
the dominance relation obtained from head to head comparisons by
assuming that voters may be, in some sense, prudent. The behavior
he intends to model is the following one:

“True, I prefer b to a, but if b is adopted, then a situation
arises where the majority prefers c. Since c is worse than a
from my point of view, I will not take any chances and will
not vote for b in place of a.”

Assuming this prudent behavior in the Condorcet example leads to
the conclusion that no winning coalition would form, and any al-
ternative is a stable status quo. Rubinstein [13] shows that this is
a generic result. As long as voters preferences are strict (without
indifference), there always exists a non-empty subset of stable alter-
natives under this behavior: It is called the stability set.

Unfortunately, as soon as indifference among candidates is al-
lowed in the individual preferences, Le Breton and Salles have shown
that this possibility result collapses [6].



Example 2. Consider 5 voters, with the following preferences over 5
alternatives:

a ≻1 b ∼1 e ≻1 c ≻1 d
e ≻2 a ∼2 d ≻2 b ≻2 c
d ≻3 e ∼3 c ≻3 a ≻3 b
c ≻4 d ∼4 b ≻4 e ≻4 a
b ≻5 c ∼5 a ≻5 d ≻5 e

Considering the majority game, a beats b via the coalition C1 =
{1, 2, 3}, and e beats a via C2 = {2, 3, 4}. The alternative b will
belong to the stability set if one voter in C1 prefers b to e. As players
2 and 3 prefer e to b and player 1 is indifferent between b and e,
there is no cost for forming coalition C1. Thus b is dominated, and
a similar reasoning holds for any other alternative; The stability set
is empty.

Le Breton [5], Le Breton and Salles [6], Li [7] and Martin [8] have
tried to find a necessary and sufficient condition that guarantees the
non emptiness of the stability set. Their investigations seek a result
similar to Nakamura’s theorem [11] which states that the core is
non empty for any preference profile if and only if the number of
alternatives is strictly lower than the Nakamura number, ν, that
can be computed for any voting game. Le Breton and Salles and Li
already obtained preliminary results for the stability set by using
bounds related to the Nakamura number. We prove here that if a
“Nakamura like theorem” exists for the stability set, it should depend
on a new number, θ. Our main result shows that θ is an upper bound
on the number of alternatives which guarantees the non emptiness of
this solution concept. Moreover, this bound is greater than or equal
to the one given by Le Breton and Salles [6] for any voting games.

The paper is organized as follows. Section 2 is devoted to the
notation and definitions. In Section 3, we review the main results
on the existence of the core and stability set. The new number is
defined in Section 4. We show with examples that it is different
from the one proposed by Le Breton and Salles, and prove some new
results. Section 5 is devoted to concluding comments and raises some
open issues.



2 Basic notation and definitions

Let N = {1, 2, ..., n} be a finite set of n individuals and X =
{x1, x2, ..., xk} be a finite set of k alternatives. For each i ∈ N , the
preference of person i is a binary relation %i on X which is reflexive,
connected and transitive. ≻i (resp.∼i) represents the asymmetric
(resp. symmetric) component of %i. Such a binary relation is called
a complete preorder.

Rn is the n-fold Cartesian product of the set of individual pref-
erences. An element of Rn, (%) = (%1,%2, ..., %n) is called a profile.
Given a set Y , |Y | is the number of elements in Y .

This paper deals with voting games, that is some pairs G =
(N, W ) where W is the set of winning coalitions of G (non empty
subsets of N) satisfying a monotonicity condition: S ∈ W and S ⊂ T
implies T ∈ W . A winning coalition S is called a minimal winning
coalition if and only if, S − {i} 6∈ W , ∀i ∈ S. In this paper, we
only deal with proper voting games, that is games such that there
do not exist two disjoint winning coalitions. In the literature, a class
of voting games is particularly studied, the quota games. A quota
game, denoted by G(n, q) (q for quota), is a voting game such that
C ∈ W if and only if |C| ≥ q. A weighted game G(w1, . . . , wn; q)
assigns wi votes to player i; A coalition is winning if and only if its
members gather more than q votes.

The following definition, due to Nakamura, is of crucial impor-
tance in the study of voting games.

Definition 1. The Nakamura number of a voting game G = (N,W )
is the integer ν(G) defined as follows:

(i) If
⋂

C∈W C 6= ∅, ν(G) = ∞,

(ii) If
⋂

C∈W C = ∅, ν(G) = min{|σ| : σ ⊆ W et
⋂

C∈σ C = ∅}

In words, the Nakamura number is the minimal number of winning
coalitions such that their intersection is empty. In the case where an
individual belongs to all these coalitions (this individual is called a
vetoer), we assume that the Nakamura number tends to infinity.

To complete the description of the social decision problem, we
can define two collective dominance relations, ≻ and ≻≻, and two
associated solution concepts, the core and the stability set.



Definition 2. The alternative y ∈ X dominates the alternative x ∈
X via the coalition C given (%) ∈ Rn, if C ∈ W and y ≻i x ∀i ∈ C.
This will be denoted y ≻C x. y dominates x if there exists C ∈ W
such that y ≻C x; this will be denoted by y ≻ x.

Definition 3. The core of a voting game G(N,W ), given the profile
(%) ∈ Rn, is the set of alternatives which are not dominated by
another alternative,i.e.,

Cor(G, (%)) = {x ∈ X :6 ∃y ∈ X such that y ≻ x}

The other dominance relation and its associated concept of solution
are due to Rubinstein [13]. This relation is close to the covering
relations introduced by Miller [9] or Gillies [3].

Definition 4. The alternative y ∈ X dominates alternative x ∈ X
in order one, via the coalition C, denoted by y ≻≻C x, if

(i) C ∈ W
(ii) y ≻C x
(iii) z %i x for all i ∈ C and all z ∈ X for which z ≻ y.
y dominates x in order one, denoted by y ≻≻ x, if there is a

coalition C ∈ W for which y ≻≻C x.

Definition 5. The stability set of the game G(N, W ) for the profile
(%) ∈ Rn is the set of alternatives which are not dominated in order
1 by another alternative, i.e,

S(G, (%)) = {x ∈ X :6 ∃y ∈ X such that y ≻≻ x}

Clearly, if an alternative belongs to the core, then it belongs to the
stability set (obviously, the converse is not true). Therefore, for a
given profile, the core is a subset of the stability set.

Remark 1. If a binary relation over a finite set is acyclic, then the
set of maximal elements for this relation is non-empty. Conversely,
if the set of maximal elements is empty, then there is a cycle.

3 Preliminary results

The main result on the existence of the core is the following one:



Theorem 1 (Nakamura, [11]). Let G(N, W ) be a voting game.

Cor(G, (%)) 6= ∅ ∀(%) ∈ Rn ⇐⇒ k < ν(G)

The Nakamura number is the upper bound on the number of al-
ternatives which guarantees the non emptiness of the core. If the
number of alternatives is greater than the Nakamura number, then
there exists at least one profile such that the core is empty. In the
particular case of quota games, this bound is equal to ⌈ n

n−q
⌉ 1 (this

result is due to Ferejohn and Grether [2], Peleg [12] and Greenberg
[4]). A simple proof of the equivalence between the number ⌈ n

n−q
⌉

and the Nakamura number for quota games is given by Moulin [10].
The second result is due to Rubinstein [13] and, in contrast to

the Nakamura’s result, is very optimistic.

Theorem 2 (Rubinstein, [13]). The stability set is always non-
empty when the individual preferences are linear orders, that is, when
indifference is not allowed.

This result solves the well-known paradox of voting by introducing
a notion of farsightedness (see the introduction for Rubinstein’s mo-
tivations) in the individual preferences. Unfortunately, Rubinstein
result holds only if we consider the restrictive case of linear orders.
Indeed, Le Breton and Salles [6] have shown that the stability set
can be empty if the individual preferences are complete preorders.

Theorem 3 (Le Breton and Salles [6]).
(i) For any integer s with k ≤ 2s − 3, the stability set is non-empty
for any game for which ν(G) = s and any profile (%) ∈ Rn.

(ii) For any integer s with k ≥ 2s − 1, there exists a number of
individuals n, a voting game G = (N, W ) for which ν(G) = s and a
profile (%) ∈ Rn such that the stability set of order one is empty.

(iii) Let G(n, q) be a quota game for which ν(G) = k+2
2

. Then the
stability set is non-empty for any profile (%) ∈ Rn.

Le Breton and Salles have shown in a counterexample that (iii) does
not hold in general for an arbitrary voting game.

Actually, Le Breton and Salles propose an upper bound on the
number of alternatives which guarantees the non emptiness of the

1 We denote by ⌈Y ⌉ the smallest integer greater than or equal to Y .



stability set. However, they do not state that there exists a profile
such that the stability set is empty if the number of alternatives is
greater than their bound. This result is partially resolved by Martin
[8] for the particular case of quota games, who proposes a necessary
and sufficient condition and a bound equal to ⌈ 2n

n−q
⌉. Unfortunately,

we are not able to present a similar necessary and sufficient condition
for every proper voting game. We propose a sufficient condition and
we show that the bound, θ, is always greater than or equal to the one
given by Le Breton and Salles. In contrast to Le Breton and Salles,
in the construction of θ, we do not use the Nakamura number.

4 A new number for possibility theorems

In this section, we introduce a new number, which characterizes the
game, and leads to a sufficient condition for the non emptiness of
the stability set. To compute it, we need a more precise definition of
σ, a subset of W . First, we remove from N all the dummy players,
that is players i such that:

∀S ∋ i, S ∈ W ⇒ S \ {i} ∈ W

This modifies the game G(N, W ) into a game G(N ′,W ′), where each
player is pivotal at least once.

In the computation of the Nakamura number, σ, a subset of coali-
tions, need not be ordered. We denote by γ an ordered non empty
subset of W ′; γ = (Cγ(1), Cγ(2), . . . , Cγ(tγ)), tγ = |γ|.

Definition 6. Let Γ be the set of γ’s that satisfy the following two
conditions:

– a) For any player i ∈ N , there exist two successive coalitions,
Cγ(ℓ) and Cγ(ℓ+1), in γ such that i 6∈ Cγ(ℓ) ∪ Cγ(ℓ+1)

2

– b) If condition a) does not hold for some player i, this player
belongs to exactly half of the coalitions in γ.

We define the new characteristic number for the game G(N, W ) by
θ(G):

θ(G) = Minγ∈Γ{|γ|}

If Γ is empty, by convention, we will assume that θ = ∞.

2 For ℓ = tγ , we will define Cγ(ℓ+1) by Cγ(1).



Thus, θ, when it is finite, is the minimal number of coalitions we can
order in such a way that each player either does not belong to two
successive coalitions or belongs to one over two coalitions.

Example 3. The ordering of the coalitions in γ is of crucial impor-
tance for the computation of θ. Consider for example the following
minimal winning coalitions (N = 5): C1 = {1, 2, 3}, C2 = {2, 3, 4},
C3 = {1, 4, 5}, C4 = {3, 4, 5}, and C5 = {1, 2, 5}. Condition a) is not
met for players 1 and 3 in the ordering γ = (C1, C2, C3, C4, C5).
Nevertheless, we can prove that θ = 5 with the sequence γ’ =
(C1, C2, C4, C3, C5).

Example 4. Removing first dummy players is also important. Con-
sider the weighted game G(4, 4, 4, 1; 7). γ = ({1, 2}, {1, 2, 4}, {1, 3}
,{1, 3, 4}, {2, 3}, {2, 3, 4}) could lead to θ = 6. This is misleading, as
the preferences of player 4 never count in this weighted game. In
fact, θ = ∞.

Theorem 4. Let G(N,W ) be a voting game. If k < θ, it is impos-
sible to build a cycle with the domination of order one; Hence the
stability set is non-empty for any preference profile in Rn.

Proof. Suppose that S(G, (%)) = ∅ and k < θ. Thus, there exists at
least one cycle of length k⋆ ≤ k for the profile (%):

x1 ≻≻C1 x2, x2 ≻≻C2 x3, . . . , xk⋆−1 ≻≻Ck⋆
−1

xk⋆ , xk⋆ ≻≻Ck⋆ x1.

Denote by γ the sequence (C1, C2, . . . , Ck⋆). We first show that there
exists an individual i ∈ N such that:

– (A) i 6∈ Cℓ implies i ∈ Cℓ−1 ∩ Cℓ+1.

– (B) There exist two successive coalitions in γ such that i ∈ Cℓ ∩
Cℓ+1.

Assume the contrary: For all i ∈ N , either A) or B) is false, and at
least one the two following statement is true:

– ¬(A): i 6∈ Cℓ ∪ Cℓ+1 for some ℓ.

– ¬(B): i ∈ Cℓ implies i 6∈ Cℓ ∩ Cℓ+1 for all Cℓ ∈ γ.



If ¬(A) is met for player i, condition (a) for the definition of θ is
satisfied. Similarly, if ¬(B) and A are both true for some i, this
player belongs to exactly half of the coalitions in gamma and the
condition (b) of the definition of θ is met. Thus, the sequence γ
defines an eligible θ′ < θ, a contradiction.

Thus, there exists i ∈ N who belongs to two successive coalitions
in γ, and belongs to Cℓ−1 and Cℓ+1 whenever he does not belongs to
Cℓ. Assume, without loss of generality, that i ∈ Ck⋆−1 ∩ Ck⋆ . Then,

xk⋆ ≻i x1

xk⋆−1 ≻i xk⋆

}

and, by transitivity, xk⋆−1 ≻i x1.

Then, two cases are possible: Either i ∈ Ck⋆−2 or i 6∈ Ck⋆−2. If i ∈
Ck⋆−2, by transitivity, xk⋆−2 ≻i x1. If i 6∈ Ck⋆−2, as i ∈ Ck⋆−1, we get,
by the definition of ≻≻, that xk⋆−2 º xk⋆ , and, by the transitivity
of ≻i, xk⋆−2 ≻ x1.

Consider now Ck⋆−3. If i ∈ Ck⋆−3, then xk⋆−3 ≻i xk⋆−2, and, by
transitivity, xk⋆−3 ≻i x1. If i 6∈ Ck⋆−3, it cannot be that i 6∈ Ck⋆−2

by (A). Thus, as xk⋆−2 dominates xk⋆−1, we get xk⋆−3 ºi xk⋆−1,
xk⋆−1 ≻i x1, and, at last, xk⋆−3 ≻i x1.

The fact that (A) holds for voter i enables us to prove that any
alternative x2, x3, . . . , xk⋆ dominates x1, which is impossible as the
preference of voter i is supposed to be transitive. Thus, it is not
possible to build that cycle, and the stability set is non empty. ⊓⊔.

Theorem 5. The greatest upper bound on the number of alterna-
tives which guarantees the non-emptiness of the stability set proposed
by Le Breton and Salles, 2ν − 2, is always less than or equal to θ for
any voting game.

Proof. Assume on the contrary: There exists a game and an associ-
ated Nakamura number such that 2ν − 2 > θ. That is, ν > θ

2
+ 1.

Suppose now that θ is even. The minimal value of the Nakamura
number is θ

2
+ 2. Consider now the collection of winning coalitions

γ = (C1, C2, ..., Cθ) which implies the construction of θ. If we select
any ν − 1 winning coalitions in this collection, that is at least θ

2
+ 1,

there exists an individual belonging to all these coalitions by the def-
inition of the Nakamura number. Therefore, an individual i belongs
to the coalitions C1, C3,C5,...,Cθ−1, Cθ. In this case, there are no two



successive winning coalitions Cℓ, Cℓ+1 such that i 6∈ Cℓ

⋃

Cℓ+1 and
the condition b) is not met too, a contradiction of the definition of
θ.

If θ is odd, the minimal value for ν is θ+3
2

. Thus, ν−1 = θ+1
2

> θ
2
.

There is always an individual belonging to any selection of ν − 1
coalitions in γ; Condition a) and b) cannot be met. ⊓⊔

The following result seems to be important for the research of a
necessary condition. It shows a correspondence between the bound
for an arbitrary voting game and the one given by Martin [8] for the
quota games. Therefore, we can think that θ is close to the highest
bound implying the non-emptiness of the stability set.

Theorem 6. If a voting game with an associated θ is a quota game,
then θ = ⌈ 2n

n−q
⌉.

Proof. First assume that θ < 2n
n−q

, that is, (n− q)θ < 2n. Each voter
does not belong to at least two coalitions in a sequence γ that defines
θ, so 2n is the minimal number for

∑

Cj∈γ |N − Cj|. On the other

hand
∑

Cj∈γ |N − Cj| must be lower to or equal than (n − q)θ, a
contradiction.

Secondly, let us construct a sequence of θ different coalitions such
that conditions a) and b) are met.

– Case 1: θ = 2n
n−q

, with n − q even. Thus, (n − q)θ = 2n. The

problem is equivalent to building θ coalitions C̄j of size n − q
(C̄j = N −Cj) such that, for all i ∈ N , there exists C̄ℓ for which
i ∈ C̄ℓ ∪ C̄ℓ+1. As (n − q) is even, we can assign first (n − q)/2
players to each coalitions such as:

{1, . . . , n−q

2
} ∈ C̄1

{n−q

2
+ 1, . . . , 2n−q

2
} ∈ C̄2

...
{(θ − 1)n−q

2
+ 1, . . . , θn−q

2
} ∈ C̄θ

To fill the remaining (n − q)/2 position left in C̄j, add the play-
ers that belong to C̄j−1. Thus, all players appears twice in two
successive coalitions.



– Case 2: θ = 2n
n−q

, with n−q odd. As θ(n−q) = 2n, θ is even. First

put player 1 in C̄1 ∪ C̄2, player 2 in C̄3 ∪ C̄4, ... till player θ/2 in
C̄θ−1 ∪ C̄θ. Thus, conditions a) is already fulfilled for players 1 to
θ/2. n−θ/2 players are left, and (n−q−1) possibilities remain in
the coalitions. As (n−q−1) is even, we can use the same process
as in Case 1. This is possible as (n − q − 1)θ = (n − q)θ − θ =
2(n − θ/2).

– Case 3: θ = ⌈ 2n
n−q

⌉ > 2n
n−q

. If (n − q) or θ is even, where are back

to Cases 1 and 2. In fact, θ(n − q) = 2x > 2n and there are
always enough rooms left. The case (n − q) and θ odd remains (
e.g. n − q = 3, n = 10 and θ = 7). A solution is to first assign
players 1 to (θ − 1)/2 to coalitions 1 to θ − 1, as in the first
step of Case 2. Next, n − (θ − 1)/2 players must be assigned in
two successive coalitions. There are (n − q − 1)θ rooms left, but
(n−q−1)θ = (n−q)θ−θ > 2n−θ ≥ 2n−θ−1 = 2(n−(θ−1)/2).
We can use the same process as in Case 1.

⊓⊔

It remains to show that θ can be significatively different from
2ν − 3, the bound given by Le Breton and Salles.

Example 5. Consider the weighted game G(11, 3, 3, 3, 3; 12). ν(G) =
3, and 2ν − 3 = 3. As there is just one winning coalition without
player 1, C = {2, 3, 4, 5}, θ = ∞.

Example 6. Consider a game with 6 players and the following min-
imal winning coalitions: C1 = {2, 3, 6}, C2 = {1, 3, 4, 6}, C3 =
{1, 5, 6}, C4 = {1, 2, 4, 5}, C5 = {2, 3, 4, 5}, C6 = {1, 3, 5}. One can
check that ν(G) = 3 with σ = {C1, C3, C6}, and 2ν−3 = 3. One can
also check that it is impossible to built a sequence γ that satisfies
condition a) and b) with five coalitions (hint: player 1 belongs to all
the coalitions except C1 and C5, player 3 belongs to all the coalitions
except C3 and C4, player 5 belongs to all the coalition except C1 and
C2). Thus, θ = 6 with γ = (C2, C1, C5, C6, C3, C4). Thus, we know
that the stability set of this game will be non empty for k = 5; This
was impossible to guess with Le Breton and Salles’ bound.

Example 7 proves that k < θ is not a necessary condition for the
non-emptiness of the stability set.



Example 7. Consider a game with 5 players and the following mini-
mal winning coalitions: C1 = {1, 2, 3}, C2 = {2, 3, 4}, C3 = {3, 4, 5},
C4 = {1, 4, 5}. If we only consider these coalitions, we cannot built
a sequence γ which satisfies the conditions a) and b). Nevertheless,
neither the definition we gave nor the proof of Theorem 1 involve the
fact that we should only use minimal winning coalitions. Thus we
can prove that θ = 6 with the sequence γ = (C6 = {1, 2, 3, 5}, C1 =
{1, 2, 3}, C2 = {2, 3, 4}, C3 = {3, 4, 5}, C4 = {1, 4, 5}, C5 = {1, 2, 4, 5}.
4 6∈ C6

⋂

C1, 5 6∈ C1

⋂

C2, 1 6∈ C2

⋂

C3, 2 6∈ C3

⋂

C4 and 3 6∈
C4

⋂

C5. There is no other possible sequence to get θ = 6. Thus,
for k = 6, we may expect an empty stability set for some preference
profiles. Assume that we have the following cycle:

x1 ≻≻C1 x2 ≻≻C2 x3 ≻≻C3 x4 ≻≻C4 x5 ≻≻C5 x6 ≻≻C6 x1

This cycle put some restrictions on the preferences of the players:

x4 ≻1 x5 ≻1 x6 ≻1 x1 ≻1 x2

x5 ≻2 x6 ≻2 x1 ≻2 x2 ≻2 x3

x6 ≻3 x1 ≻3 x2 ≻3 x3 ≻3 x4

x2 ≻4 x3 ≻4 x4 ≻4 x5 ≻4 x6

x3 ≻5 x4 ≻5 x5 ≻5 x6 ≻5 x1

From this partial profile, we can observe that x2 ≻C2 x3 and x6 ≻C1

x2. Since x2 ≻≻C2 x3, x6 % x3 ∀ i ∈ C2. This contradicts the fact
that x3 ≻4 x6. It is not possible to build a cycle for the dominance
of order 1 if k = 6.

Incidentaly, Example 7 raises the question of whether we could
restrict ourselves to minimal winning coalitions in the computation
of θ. Unfortunately, contrary to the Nakamura number, Example 8
shows that we can’t. The fact that θ = ∞ when we consider minimal
winning coalitions only does not guaranty the non emptiness of the
stability set.

Example 8. Consider a 9-player game and the following minimal
coalitions: C1 = {1, 2, 3, 4, 9}, C2 = {2, 3, 4, 5, 6}, C4 = {4, 5, 7, 8, 9},
C5 = {3, 5, 6, 7, 8}, C6 = {1, 2, 7}. If we only consider these coali-
tions, we cannot built a sequence γ which satisfies the conditions



a) and b). Nevertheless, we can prove that θ = 6 if we also con-
sider the coalition C3 = {1, 2, 4, 7} ⊃ C6 since we can build a se-
quence γ = (C1, C2, C3, C4, C5, C6) which mets conditions a) and
b). 7, 8 6∈ C1

⋂

C2, 8, 9 6∈ C2

⋂

C3, 3, 6 6∈ C3

⋂

C4, 1, 2 6∈ C4

⋂

C5,
4 6∈ C5

⋂

C6, 5 6∈ C1

⋂

C6. Consider the following preferences over 6
alternatives:

x6 ≻1 x1 ∼1 x3 ∼1 x5 ≻1 x2 ≻1 x4

x6 ≻2 x1 ∼2 x5 ≻2 x2 ≻2 x3 ≻2 x4

x1 ∼3 x5 ≻3 x2 ∼3 x4 ∼3 x6 ≻3 x3

x1 ≻4 x2 ∼4 x6 ≻4 x3 ≻4 x4 ≻4 x5

x2 ∼5 x4 ≻5 x1 ∼5 x3 ∼5 x5 ≻5 x6

x2 ∼6 x5 ≻6 x1 ∼6 x3 ∼6 x4 ∼6 x6

x3 ≻7 x2 ∼7 x4 ≻7 x5 ≻7 x6 ≻7 x1

x4 ≻8 x1 ∼8 x2 ∼8 x3 ∼8 x5 ≻8 x6

x1 ∼9 x4 ≻9 x2 ∼9 x3 ∼9 x5 ∼9 x6

There are only 6 dominance relations for this profile (see Table 1 in
the appendix for all the details):

x1 ≻C1 x2, x2 ≻C2 x3, x3 ≻C3 x4, x4 ≻C4 x5, x5 ≻C5 x6, x6 ≻C6 x1

For all ℓ = 1, . . . , 6, one can check that for all i ∈ Cℓ, xℓ−1 %i xℓ+1;
in turns, xℓ ≻≻Cℓ

xℓ+1
3. Thus, the stability set is empty.

5 Conclusion

The main contribution of this paper is to show that the non empti-
ness of the stability set depends upon a new number, θ, that is not
related to the Nakamura number. Example 5 and 6 have shown that
the two numbers, θ and ν, can be different, but we don’t know yet
whether they can be arbitrarily different. Another open issue is to
find an algorithm for the computation of θ; Some of the examples we
provide here prove to be tricky. At least, the main unsolved problem
is the prove whether θ is really the right bound, that is, to build for
any game an empty stability set if k = θ. The fact that θ gives back
the right conditions for quota games is encouraging, but Example 7
shows that we may have to compute θ in a different way to get a
necessary and sufficient condition.

3 Clearly, when ℓ = 6, ℓ + 1 = 1
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Appendix

Table 1. The winning coalitions for Example 8

Option ≻ ∼ ≺ Option

x1 1,2,3,4,9 8 5,6,7 x2

x1 2,3,4,9 1,5,6,8 7 x3

x1 1,2,3,4 6,9 5,7,8 x4

x1 4,9 1,2,3,5,8 6,7 x5

x1 4,5,8,9 6 1,2,3,7 x6

x2 2,3,4,5,6 8,9 1,7 x3

x2 1,2,4,6 3,5,7 8,9 x4

x2 4,5,7 6,8,9 1,2,3, x5

x2 5,6,7,8 3,4,9 1,2, x6

x3 1,2,4,7 6 3,5,8,9 x4

x3 4,7 1,5,8,9 2,3,6 x5

x3 5,7,8 6,9 1,2,3,4 x6

x4 4,5,7,8,9 1,2,3,6 x5

x4 5,7,8,9 3,6 1,2,4 x6

x5 3,5,6,7,8 9 1,2,4, x6

For each pair of alternatives (xi, xj), we indicate the voters who prefer xi to xj in
the first column, the voters who are indifferent in the second column, and the voters
who prefer xj to xi in the third column. The winning coalitions are outlined in bold.


