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Abstract

In this paper we propose a generalization of the comonotonicity notion
by introducing and exploring the concept of conditional comonotonicity.
We characterize this notion and we show on examples that conditional
comonotonicity is the natural extension of the concept of comonotonicity
to dynamic settings.

1 Introduction

The notion of comonotonicity appears quite naturally in decision theory (see
Yaari, 1987), finance (see Dybvig, 1988a and b), insurance and actuarial sci-
ences (see Dhaene et al., 2002 a and b). In this paper, we propose a general-
ization of this notion by introducing and exploring the concept of conditional
comonotonicity. We characterize this notion and we show on examples that
conditional comonotonicity is the natural concept when dealing with dynamic
settings.

Let us first recall that a subset of R? is said to be comonotonic if it is
completely ordered for the componentwise order' of R?. Now, two random
variables defined on the same probability space are said to be comonotonic if
the support of the joint distribution is comonotonic.

Characterizations and properties of comonotonic random variables can be
found in Denneberg (1994) or Dhaene et al. (2002a). In particular, if two random
variables x and y are such that there exists a nondecreasing function ¢ for which
x can be written in the form x = ¢ (y) (or if y can be written in the form
y = ¢ (x)), then = and y are comonotonic. In fact, x and y are comonotonic if
and only if they are nondecreasing functions of the same third random variable
z. As underlined by Shaun and Dhaene (1998) comonotonic risks can be then
considered as “common monotonic”.
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This concept of comonotonicity emerges naturally in social choice theory
since as proved by Landsberger and Meilijson (1994) , all Pareto optimal (for the
second order stochastic dominance) risk allocations are comonotonic. In partic-
ular, in insurance, most classical risk sharing schemes between insurer and rein-
surer or between insured and insurer lead to partial risks that are comonotonic.
From the individual point of view, the optimal consumption plan of a utility
maximizing agent, under a given budget constraint, is anticomonotonic with
the state price density?. Dybvig (1988a and b) elaborates on this property to
introduce the concept of efficient strategies and inefficiency costs. More gener-
ally, the concept of comonotonicity has revealed to be very useful and has been
extensively studied and applied (see e.g. Denneberg, 1994, Dhaene et al., 2002
a and b, Landsberger and Meilijson, 1994, Chateauneuf et al., 1996, Carlier and
Dana, 2002).

However the comonotonicity concept is not in general adapted to dynamic
settings. In particular, we shall see that the comonotonicity of Pareto optimal
allocations is no longer satisfied in a general dynamic setting. More precisely
we show that when the agents maximize a discounted sum of their expected
utility for future consumption with a path-dependent utility function (e.g. a
habit formation utility function) and/or a stochastic discount rate the Pareto
optimal allocations are no more comonotonic but conditionally comonotonic.
Similarly, the optimal consumption plan of a utility maximizing agent, under a
given budget constraint, is no more anticomonotonic with the state price den-
sity but only, in some sense, conditionally anticomonotonic. Analogously, in
insurance, as soon as we consider a dynamic, “realistic enough” setting, we are
led to introduce a weaker form of comonotonicity. Indeed, many contracts en-
countered in insurance like quota share coverage (resp. coverage with maximal
limit, resp. stop-loss coverage) in which one agent takes a risk equal to ax (resp.
min(z, £), resp. (x — d)+) where x represents the total risk and « (resp. ¢, resp.
d) is a given proportion (resp. maximal limit, resp. franchise) would lead to
comonotonic risks if a (resp. ¢, resp. d) was constant which is not the case in
practice. In practice, dynamic risk-sharing contracts permit to adapt dynami-
cally the proportion «, the limit ¢ or the franchise d depending on the previous
claims. Loosely speaking, in these dynamic settings, for the insurance examples
as well as for the Pareto optimal allocations or for the utility maximizing agent,
the comonotonicity is satisfied at a given date ¢ but only from date t — 1 point
of view. We propose in this paper to introduce, characterize and explore the
implications of such a generalization of the usual concept of comonotonicity. In
a natural way, we shall call this concept conditional comonotonicity.

The paper is organized as follows. We start in Section 2 by recalling the
standard notion of comonotonicity, its definition and its main different char-
acterizations and properties. We then give a formal definition of conditional
comonotonicity. We provide different characterizations and properties of condi-
tional comonotonic random variables, which are the “conditional analog” of the
well known characterizations and properties of (simply) comonotonic random

2i.e. comonotonic with the opposite of the state price density.
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variables. Section 3 deals with examples and applications of the notion of condi-
tional comonotonicity. We show that the concept of conditional comonotonicity
appears as the natural extension of the concept of comonotonicity as soon as
we deal with dynamic settings. We consider the examples of habit-formation
utility functions and utility functions with a stochastic discount rates. Further-
more, we show that the concept of conditional comonotonicity is particularly
adapted in order to analyze the impact of subjective beliefs on the risk-premium
in a CCAPM-like framework. More precisely, we show that a subjective prob-
ability that has a density conditionally anticomonotonic with the total wealth
can be interpreted as a pessimistic one and that such a pessimistic subjective
belief leads to an increase of the risk premium. These results are consistent
with those of Abel (2002) or Cecchetti et al. (2000) obtained in various set-
tings with various definitions of the concept of pessimism. All these definitions
have in common that, loosely speaking, they put more weight on bad (resp.
good) states of the world. Our conditional comonotonicity property appears
then as a well adapted mathematical tool for a formal definition of the concepts
of optimism and pessimism in a dynamic framework.
All proofs are in the Appendix.

2 Conditional comonotonicity

We consider a probability space (2, F, P) and a sub sigma-field G of F. We
assume that F and G are complete, i.e. that they contain all the zero-probability
sets. We shall sometimes assume that the space is endowed with a filtration
T
(Ft)i—o -
We start by recalling the standard concept of comonotonicity.

Definition 1 A subset A C R? is said to be comonotonic if for all ((z1,1), (22,2))

in A X A, we have (x1 —y1) (x2 — y2) > 0.

So a subset A C R? is comonotonic if for any (z1,y1) and (z2,y2) in A, either
(z1,91) < (w2,y2) or (w1,y1) > (w2,y2) holds. This means that for any (21,1)
and (z2,y2) in A, if z; < y; for some i = 1,2, then (z1,y1) < (22,y2). Hence a
comonotonic set is “simultaneously nondecreasing” in each component.

Before to introduce the definition of comonotonic random variables let us re-
call that a set A is called a support for a given random variable Z if P (Z € A) =
1 holds true.

Definition 2 Two random wvariables X and Y on (Q,F,P) are said to be
comonotonic if the law of (X,Y) has a comonotonic support.

Dhaene et al. (2002) obtain the following equivalent characterizations for
comonotonicity of two random variables. As usual, for a given random vari-
able Z, we let Fz denote its cumulative distribution function. This function
is right-continuous and nondecreasing and we define, as usual, its inverse by
F ' (p) =inf{z € R: Fz(x) > p}.
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Proposition 1 (Dhaene et al. (2002)) Let X and Y be two random vari-
ables on (2, F, P). The following conditions are equivalent:

1. The law of (X,Y) has a comonotonic support.
2. For all (x,y) € R?, we have F(x yy(z,y) = min(Fx (z), Fy (y)).

3. We have (X,Y) 4 (Fx'(U), Fy ' (U)) where U ~ U 1y, ie. for any Borel
subset A of R?, P[(X,Y) € A]) = P [(Fx'(U),Fy'(U)) € A].

4. There exist a random wvariable & and two nondecreasing functions f and
g such that (X,Y) 4 (F(€),9(8)) i.e., for any Borel subset A of R,
P(X,Y) € A]) = P[(f(£),9(8)) € A].

See also Denneberg (1994) for other characterizations and properties of
comonotonic random variables. We propose to generalize this notion of comonotonic-
ity conditionally to G. In the next, we shall denote by F'( X,Y)lg the conditional
cumulative distribution function defined by F(x v, (x,y) =P[X <z,Y <y|G]).
We know that there exists a transition kernel M : (2, F) — (R?,R?) such that
for all Borel subset A of R?, P((X,Y) € A|G)(w) = M (w,A) and M(w,.) is
the conditional law of (X,Y") with respect to G.

Definition 3 Two random wvariables X and Y on (Q,F,P) are said to be
comonotonic conditionally to G if the conditional law of (X,Y) with respect
to G has a comonotonic support.

Before to elaborate more on this concept let us provide an elementary ex-
ample of conditionally comonotonic variables that are not comonotonic in the
usual sense. Let us take Q = {wy,ws,ws,ws} and let us consider the random
variables X and Y defined by

XY
w1 1 3
w2 2 4
w3 3 1
Wy 4 2

These two random variables are clearly not comonotonic. However, if we con-
sider the sub-sigma field G defined by G = {0, {w1,ws}, {ws,ws},Q}, then it
appears that X and Y are comonotonic conditionally to G.

It is easy to see that if two random variables are comonotonic in the classical
sense then they are comonotonic conditionally to any sub-sigma field G. Further-
more, the comonotonicity in the classical sense is equivalent to the comonotonic-
ity conditionally to the trivial sigma-field.

We obtain the “conditional analog” of Proposition 1.

Proposition 2 Let X and Y be two random variables on (2, F, P). The fol-
lowing conditions are equivalent:
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1. The conditional law of (X,Y") with respect to G has a comonotonic support.
2. For all (z,y) € R?, we have F(X’y)|g(x, y) = inf(FX‘g(a:),an(y)).

3. We hawve, for any Borel subset A of R?,
P((X,Y) € A|G)(w) = P[(Fx| (Uw), Fy! (Uw)) € 4],

where F;(L (.,w) is the inverse function of FX‘g(., w).

4. There exist a random wvariable £ and two functions f : Ox R — R and
g : QOx R— R such that f(.,z) (resp. g(.,x)) is G—measurable, f(w,.)
(resp. g(w,.)) is nondecreasing and such that for any Borel subset A of
R?, P((X,Y) € A[G)(w) = P[(f(w,£),9(w,§)) € A].

The last property means that (X,Y") has the same conditional distribution
as (f(w,§),g9(w,§)) for some random variable £ and some G—measurable with
respect to the first variable, nondecreasing with respect to the second variable,
functions f and g. The next proposition provides an almost sure representation
instead of a representation in distribution.

Proposition 3 Let X and Y be two random variables on (2, F, P). The fol-
lowing conditions are equivalent:

1. The random variables X and Y are comonotonic conditionally to G.

2. There exist a random wvariable & and two functions f : Ox R — R and
g : Ox R — R such that f(.,z) (resp. g(.,x)) is G—measurable, f(w,.)
(resp. g(w,.)) is nondecreasing and such that (X,Y) = (f(w,§),g(w,§))
P—a.s.

3. There exist two functions f : Qx R—R and g : Ox R — R such that
f(, ) (resp. g(.,x)) is G—measurable, f(w,.) (resp. g(w,.)) is continuous
and nondecreasing and such that (X,Y) = (f(w, X +Y),9(w,X +Y))
P—a.s.

If we replace in the two last conditions the almost sure equality by an equality
for each w, we would obtain the definition of a non-probabilistic concept of
conditional comonotonicity. The non-probabilistic conditional comonotonicity
would then correspond to the (probabilistic) conditional comonotonicity with
respect to all possible probability measures P on (€, F).

Finally, we shall need in the next section the following generalization of the
well known result that if two random variables on (§2, F, P) are comonotonic,
then their covariance with respect to any probability measure, absolutely con-
tinuous with respect to P, is nonnegative (see for instance, Chateauneuf et al.,
1996). We denote by covg (X,Y) the covariance of X and Y conditionally to
g.



halshs-00151516, version 1 - 6 Jun 2007

Proposition 4 Let X and Y be two random variables on (2, F,P). If X and
Y are comonotonic conditionally to G, then we have cong (X,Y) > 0 for all
probability measure Q absolutely continuous with respect to P.

We also introduce the notion of conditionally comonotonic processes.

Definition 4 Two adapted random processes (X:) and (Z;) defined on (Q, F, (Ft) , P)
are said to be conditionally comonotonic if fort =0,--- , T —1, the random vari-
ables Xyy1 and Zyy1 are comonotonic conditionally to F;.

When the uncertainty is described by an event tree, the conditional comonotonic-
ity concept is clear enough: at each date—t node the restriction of (X;y1) and
(Zi41) to the immediate successors of the considered node are comonotonic in
the classical sense.

With these definitions, it is easy to see that for adapted processes (X;), (d;)
and (¢;), the processes (X;), (X; — dt_l)'s'7 X — (X¢ — dt_1)+, min( X, l¢—1)
and X; — min(X;, ¢;_1) are conditionally comonotonic.

The following result is then an immediate consequence of Proposition 4

Corollary 1 The product of two conditionally comonotonic martingales (or
submartingales) is a submartingale.

In the next section, we show that conditional comonotonicity appears as a
particularly well adapted generalization of the usual concept of comonotonicity
when dealing with dynamic settings.

3 Examples and applications

3.1 Habit formation utility functions

Let us consider a utility maximizing agent endowed with the following habit-
formation utility function

U((¢t)i=0,..7)=FE

Z u(er — xt)]

t=0
where (2¢),_q ... 7 is defined by
xg =0, Tep1 = acy — bxy.

where a and b are given constants with a # b and b # 0 and where u is a concave
differentiable utility function. We clearly have

t
Terl = @ Z (—b)f'_l€ Cle -

k=0

This habit-formation discrete time framework is a slight generalization of the
model of Campbell and Cochrane (1999).
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The agent is submitted to a budget constraint given by

T
Z QtCt] <a
t=0

where «a is the agent’s initial wealth and where (q;) is the state-price density
process, i.e. P(w)q:(w) is the price at date 0 (and in terms of date-0 units of
consumption) of one unit of consumption at date ¢ and in the state of the world
w.

The first order necessary conditions for optimality can be written as follows

E

uw (cp — ) — A\qe + apy =0
u' (e —xy) + by + pu—1 =0

where the scalar A and the adapted process () are the Lagrange multipliers
associated to the optimization program and where 1 = 0. This leads to

o A — qt—k 4 1
L — — (a —Db)* (a—b)tuo
1
to = —gu'(CO)
Ab
/ _
u'(co) = a0

and finally,

net | A g
e = (u) l_b—a (bqt+a E —(aq_ z)’f)
k=1

The multiplier A is determined by the budget constraint.
From the concavity of w it is clear then that (c;) is conditionally comonotonic

to (—%qt) . From the condition u'(cp) = %qe we obtain that b)‘Tb > 0 and

t—1
+a Z (=) "¢,
k=0

a
(¢t) is then conditionally comonotonic to (—g¢) .

A simple example shows that we do not have the (global) comonotonicity
between (c;) and (¢¢). Let us assume that a = 0.1, b = —0.9, u(c) = logc and
let us chose « in order to have A = 1. Finally, let us take the price process q as
follows

q t=0 t=1 t=2
w1 1 2 4
w2 1 2 1.001
w3 1 0.5 1
Wy 1 0.5 0.25
We obtain then, at ¢ = 2, ca(w1) =~ 0.47, co(w2) ~ 1.83, ca(ws) ~ 1.73,

co(wy) == 13.73.
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The conditional comonotonicity appears then as more adapted than the clas-
sical (global) comonotonicity to this habit-formation framework.

If we assume now that we have n agents i = 1,--- ,n with utility functions
defined as previously by u;, a; and b;, it is clear that at the equilibrium all the
individual allocations will be conditionally comonotonic. An extension of the
previous example to a two agents framework permits to show that the equilib-
rium allocations are not necessarily (globally) comonotonic among the agents.
Indeed, let us take the same utility function for both agents u(c) = logc, the
same price process as in the previous example, the same parameter A = 1 for
both agents and a; = 0.1, by = —0.9, a2 = 0.01, by = —0.99. We obtain then the
following allocations

agents 1=1 1=2
w\1 t=20 t=1 t=2 t=0 t=1 t=2
w1 1,1111 0,6993 0,4730 1,0101 0,5177 0,2796
w2 1,1111 0,6993 11,8341 1,0101 0,5177 1,0557
w3 1,1111 2,9683 11,7302 1,0101 2,0720 1,0564
Wy 1,1111 2,9683 13,7302 1,0101 2,0720 4,3318

In fact, agent 2 puts less weight on past consumption in order to evaluate present
utility. This weight on past consumption is sufficiently small in order to have as
in the classical expected utility framework that ¢? is comonotonic with —¢ (or
equivalently anticomonotonic with ¢) which is not the case for c.

It is easy to prove that the conditional comonotonicity property is satisfied
by any Pareto optimal allocation. Furthermore, the equilibrium allocation above
is an example of Pareto optimal allocation that is not (globally) comonotonic.

3.2 Expected utility functions with a stochastic discount
factor

The same properties as in the habit-formation framework can be obtained in a
classical expected utility framework if we represent the psychological discount
factor by a stochastic and predictable process (instead of a scalar as in the
standard framework).

Indeed, let us consider an agent maximizing the following utility function

T
U ((Ct)t:O,m ,T) = E [Z ﬂtu(ct)]
t=0

under the budget constraint

E

T
Z tht] <«
=0

where the adapted process (g;) is the state price density process, where « is the
initial wealth and where (3;) is a predictable psychological discount factor.
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The first order conditions leads to
B’ (¢r) = Ay, for all ¢

where X is the Lagrange multiplier associated with the budget constraint.

Since (3;) is predictable and ' is decreasing, the consumption process ap-
pears immediately as conditionally anticomonotonic with the price process. If
we assume as previously that u(c) =loge, A = 1 and that the price process and
the discount process are given by

g t=0 t=1 t=2 B t=0 t=1 t=2
w1 2 4 w1 1 105
wo 1 2 1.001 wy 1 1 105
ws 1 05 1wy 1 1 1
wi 1 05 025 wg 1 1 1

we obtain
c t=0 t=1 t=2
w1 1 0.5 0.2625

w2 1 0.5 1.0490
w3 1 2 1
Wy 1 2 4

and it appears then that the consumption process is not necessarily (globally)
anticomonotonic with the price process.

If we now introduce a second agent with the same characteristics except
that he has a constant (equal to 1) discount factor, we obtain the following
equilibrium allocation

agents 1=1 1=2

w\t t=0 t=1 t=2 t=0 t=1 t=2
w1 1 0.5 0.2625 1 0.5 0.25
w2 1 0.5 1.0490 1 0.5 0,990
w3 1 2 1 1 2 1
w4 1 2 4 1 2 4

and the individual allocations are then obviously conditionally comonotonic but
are not (globally) comonotonic.

3.3 CCAPM and pessimism

An immediate consequence of Proposition 4 is the following

Corollary 2 For positive random variables X and Z such that X is comonotonic
with Z conditionally to Fy, we have
XY
cov,fD oo A
EF [XY]

Y
> covl [ ,Z]

for any positive random variable Y.
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A possible application of this result is related to the Consumption based
Capital Asset Pricing Model (Ingersoll, 1987, Huang and Litzenberger, 1988,
Duffie, 1996). This formula provides a relationship, valid at the equilibrium,
between the excess expected return of a given asset and the covariance between
these returns and the marginal utility of the representative agent. More pre-
cisely, we have

v (t+ 1, ep41)
Ef ' (t+ 1 ee)]

P P
Ef [Ris1] — 7y, = —cov} 1

where 7‘{ 41 is the risk-free rate between date ¢ and date t +1, Ryy1 is the return
of the considered asset on the same period, e;;1 is the total wealth at date ¢t + 1
and v is the utility function of the representative agent.

It has been often argued that investors might have a “subjective belief/opinion”
reflecting their pessimism/optimism. Consider then a slight extension of the
standard model and suppose that the representative agent maximizes his ex-
pected utility from future consumption under a subjective probability @, equiv-
alent to P. The representative agent maximizes

ZU(Ct)]

t=0

U ((ct)i=0,-..,7) = E9

under the budget constraint

E

T
Z QtCt‘| <a.
t=0

It is easy to verify that the CCAPM formula becomes then

My 10" (t+1,e041)
EP Rt — 1!, = —cov? { = ’ ’
t [Rit] =i CEP My (t+1,e441))

t+1

where (M,) is the density process of @) with respect to P

There are different ways to define a pessimistic belief. It seems natural to
relate the definition of a pessimistic belief to the fact that it puts more weight
(with respect to the true probability) on bad states of the world (bad returns)
and less weight on good states of the world (good returns). We propose the
following definition.

Definition 5 A probability belief Q equivalent to P, with density process (My)
is said to be pessimistic (resp. optimistic) (with respect to the returns process
(Ry)) if (My) is conditionally anticomonotonic (resp. comonotonic) with (Ry) .

Under @ the expected return between date ¢t and date t 4+ 1, from date ¢

point of view is given by EtQ [Riy1] = EF []Vf\’/ftrl Rt+1:| and by Proposition 4,

we have E? [Ry41] < EF [MA}—JZI] EFP [Ry11] = Ef [Ri11]. The expected return

10
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under the pessimistic probability is then lower than under the objective initial
probability which is a natural property for a pessimistic belief.
The following corollary is then an immediate consequence of Corollary 2.

Corollary 3 The expected excess return predicted by the CCAPM in a pes-
simistic beliefs setting is higher than in the standard setting.

In an optimistic beliefs setting we would have the opposite result. The im-
pact of the introduction of a subjective belief on the market price of risk is then
very clear: it leads to an increase (resp. decrease) of the market price of risk of
a given asset (with respect to the standard setting) if the subjective probability
is pessimistic (resp. optimistic), where pessimistic means, in particular, that
the instantaneous rate of return of the considered asset (under this probability)
is lower than under the objective initial probability. Our results are consis-
tent with those of Abel (2002), Cechetti et al. (2000), Chauveau and Nalpas
(1998) or Hansen et al. (1999) which introduce distorted beliefs associated to
cautious/pessimistic individual behavior.

Appendix

Proof of Proposition 2
1. = 2. If the support of M(w,.) is comonotonic, we have
(z,y) = P[X <2,V <y|g])
= M (-,]—00;z] x |—00;y])
= lnf{M ('7]_005 IL‘} X ]_OO; +OO]) s M (',]—OO; +OO] X ]_OO; yD} :

Fixy)

lg

2. = 3. It suffices to prove the equality for all Borelian set of the form
A =]—o0;z] X ]—o0;y]. We have

P [(F;(TQ(U, W), F;L(U,w)) € ]—o00; 2] X ]—o0; y}}
=P {U < Fxp,(z,w),U < FY|g(yaw)}

= P |U <inf (FX‘Q(-’.I?,W>7FY|Q(:U;W)):|
= inf(Fx, (z,w), Fy|, (y,w)).

3.=> 4. We take £ =T, f(w,s) = F)}llg(s,w) and g(w,t) = F;llg (t,w).

4. = 1. The set {(f (w,& (")), g (w,&(W')));w" € Q} C R? is comonotonic.

Proof of Proposition 3

1. = 2. From Proposition 2, there exist a random variable £ and two func-
tions f : Ox R—R and g : Ox R— R such that f(.,z) (resp. g¢g(.,z))
is G—measurable, f(w,.) (resp. g¢(w,.)) is nondecreasing and such that for
any Borel subset A of R?, P((X,Y) € A|G)(w) = P[(f(w,§),9(w,&)) € A] or
equivalently P((f~!(w,X),g7 (w,Y)) € A|G) = P|(¢,€) € A]. Consequently,

11
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we have P(f~}(w,X) = g_l(w,Y)}Q) = 1, P—a.s. and then P(f~!(w,X) =
g (w,Y)) = 1. Let us define the random variable £ by £(w) = [~ (w, X (w)),
we have (X,Y) = (f(w,g),g(w,é)) , P—as.

2. = 3. For a given w, (a,b) — a + b is an homeomorphism between
{(f(w,2),9(w,x)) : x € R} and {(f(w, x) + g(w,z)) : © € R} . Indeed, if f(w,x)+
9{wr2) = Flry) + 9(wry) with & > g we have £(w,2) > f(w,y) and glw,z) >
g(w,y) and then f(w,z) = f(w,y) and g(w,z) = g(w,y). Let us denote ¢,
the converse application. We have ¢, : f(w,z) + g(w,z) — (f(w,z),g(w,x))
and ¢, can be written on the form (f( .-), 9 (w,.)) . We have then (X,Y) =
(f(w X +Y), 4w, X + Y)) , P—a.s.

3. = 1. Immediate.

Proof of Proposition 4
We have

cov? (X,Y) (w) = B¢ [XY] (w) — B [X] () B¢ [Y] (W)

= /xlylM (w,d(xl,yl)) Q@M (w,d($2,y2))

~ 5 [ oA (o) © M 0 2, 2)
~ 5 [ M (o d (@) @ M 0,d (2, 2)
= [ = 2) (= ) M (o (1,)) @ M (1 2, 2)

which is nonnegative since the conditional law of (X,Y) with respect to G have
a comonotonic support.

Proof of Corollary 1
If (X;) and (Y;) are conditionally comonotonic martingales (or submartin-
gales), we have
Ei 1 [ XYy = Ev 1 (Xy)Ei—1 (Y2) + covi—1 (XiY7)
> X 1Y,

Proof of Corollary 2
This inequality is equivalent to

Ep{ﬂ]>Ep[ YZ]

" LEF[XY] " LEF[Y]
or to
XZ
¢ == = E’ 2]
By [X]

and finally to cov? (X,Z) > 0, where @ is the probability defined by g—g =

EPL(Y)' Proposition 4 concludes.
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