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The theory of asset pricing takes its roots in the Arrow-Debreu model (see,
for instance, Debreu 1959, Chap. 7), the Black and Scholes (1973) formula,
and the Cox and Ross (1976) linear pricing model. This theory and its link to
arbitrage has been formalized in a general framework by Harrison and Kreps
(1979), Harrison and Pliska (1981, 1983), and Duffie and Huang (1986). In
these models, security markets are assumed to be frictionless: securities can
be sold short in unlimited amounts, the borrowing and lending rates are equal,
and there is no transaction cost. The main result is that the price process of
traded securities is arbitrage free if and only if there exists some equivalent
probability measure that transforms it into a martingale, when normalized by
the numeraire. Contingent claims can then be priced by taking the expected
value of their (normalized) payoff with respect to any equivalent martingale
measure. If this value is unique, the claim is said to be priced by arbitrage
and it can be perfectly hedged (i.e. duplicated) by dynamic trading. When
the markets are dynamically complete, there is only one such a

and any contingent claim is priced by arbitrage. The
of each state of the world for this probability measure can be interpreted as the
state price of the economy (the prices of $1 tomorrow in that state of the world)
as well as the marginal utilities (for consumption in that state of the world) of
rational agents maximizing their expected utility.

When there are frictions, including dynamic market incompleteness, the
characterization of the no-arbitrage condition is nomore equivalent to the ex-
istence of a unique equivalent martingale measure. More precisely, for each

1
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Papers in Economics

https://core.ac.uk/display/7308665?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


equivalent martingale-measure condition
equivalent supermartingale-measure condition, equivalent

submartingale-measure condition, absolutely continuous martingale-measure con-
dition

kind of imperfection, the is replaced
by a weaker one :

, etc. Besides, we generally have, more than one measure satisfying these
conditions. Furthermore, when there are frictions, even if a contingent claim
can be duplicated by dynamic trading, it is not necessarily possible to price it by
arbitrage. However arbitrage bounds can be computed, for arbitrary contingent
claims, taking the expected value of their (normalized) payoff with respect to
all the measures that characterize the absence of arbitrage opportunities. These
bounds are the minimum amount it costs to hedge the claim and the maximum
amount that can be borrowed against it using dynamic strategies. These are the
tightest bounds that can be inferred on the price of a contingent claim without
knowing the agent�s preferences. The determination of these bounds in a dy-
namic setting leads to a maximization (and/or minimization) program, and, in a
dynamic setting, is often transformed into a stochastic optimal control problem.
The main assumption in these models is, in fact, a necessary condition for the
existence of an equilibrium: the no-arbitrage condition. These preference-free
theories give results of great generality without specifying the equilibrium in its
full details.

Another important class of valuation theories makes assumptions on pref-
erences and derives more speci�c pricing restrictions than the preference-free
theory does, even in the presence of imperfections. The price of a given con-
tingent claim, for these theories, is just the expected value of its (normalized)
terminal payoff with respect to a probability measure, whose density is propor-
tional to the marginal utility (for consumption) of the considered agent. From a
mathematical point of view, starting with a given utility function, the problem
is to write the �rst order conditions of the agent�s utility maximization program,
taking into account the potential imperfections in the description of the budget
constraints and/or of the strategies in order to characterize the marginal utility
for consumption at the �nal date. In a multi-period setting, this maximization
problem is a stochastic optimal control problem. The main advantage of this
approach is that it leads to a unique price for a given contingent claim. The
main drawback is that this price depends on the choice of the utility function
and on the agent endowment. If the utility function belongs to a given connected
class of utility functions, we will obtain an interval of possible prices for that
claim. More speci�cally, if the considered class is the set of all von Neumann-
Morgenstern (VNM) increasing and concave utility functions, the set of possible
prices is exactly the set obtained with the arbitrage approach as shown by Jouini
and Kallal (1999). The unique way to obtain tighter bounds with the utility-
maximization approach seems then to consider speci�c functions, or speci�c sets
of functions, smaller than the set of all the VNM ones.

In fact, there is an interesting link between the two approaches. Since the
arbitrage upper bound for a given contingent claim is equal to the minimum
amount it costs to hedge it, taking the market frictions into account, the agen-
t�s problem (maximization of the utility provided by the terminal payoff among
the strategies satisfying a given dynamic budget constraint) can be transformed
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arbitrage upper bound

Let be a positive real number. An integrable predictable
process is called admissible if and (i.e. for
all , the stochastic integral almost everywhere). is called
admissible if it is admissible for some .

bounded losses

We say that the semi-martingale satis�es the condition of no-
arbitrage, (NA), if

into a static problem where we maximize the utility among the set of contin-
gent claims satisfying a budget constraint where the classical price functional is
replaced by the functional. If we have, for instance, an
explicit formula for the arbitrage upper bound, it suffices then to solve a static
maximization problem instead of the initial stochastic dynamic control problem.
The characterization of the no-arbitrage assumption is therefore crucial in order
to solve the contingent claim pricing problem as well as to solve the individual
utility maximization problem of each agent in the economy. The last step, if we
want to explore all the implications of the Arrow-Debreu model in this �nancial
setting is then to write the equilibrium conditions in order to ensure that all the
individual solutions are �compatible�.

Let be a probability space and be a �ltration which models our
information structure. This �ltration is supposed to satisfy the usual conditions,
i.e. the �ltration is right continuous and contains all negligible sets (if

and then We also suppose that the sigma-
algebra , and we consider a real valued semimartingale which
models the price process for the marketed claims. In the next, we will denote by

real line and by the set of nonnegative ones. Let us de�ne, as in Delbaen
and Schachermayer (1994), an admissible strategy as follows:

This admissibility condition can be interpreted as a condition
for strategies with a zero initial investment.

We consider, as in Stricker (1990), the convex cone in the space
of equivalent classes of measurable functions, de�ned up to equality almost
everywhere, given by

admissible and exists a.s.

The set is then the set of all terminal payoffs obtained through some admis-
sible strategy.

Since represents the set of all admissible terminal payoffs the no-arbitrage
condition amounts to say that it is impossible to obtain a non-negative, non-zero
payoffs with a zero initial investment.

Assume that it is possible to separate and in the sense that there
exists a non-zero linear functional and a real number such that and
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Let be a locally bounded
real valued semi-martingale. There is an equivalent local martingale measure
for if and only if (where is the space of
bounded measurable functions and where the closure is taken with respect to the
norm-topology of )

and assume that the separating functional admits a representation
as an expectation operator with respect to a probability measure , then under
the (NA) condition, is equivalent to and for each in In
particular, for each we have , therefore,

and is a martingale measure for
Unfortunately, the (NA) condition is seldom sufficient to apply a separation

theorem. In the case where is locally bounded we have the following:

This last condition is called No Free-Lunch with Vanishing Risk (NFLVR)
and deals with sequences of strategies such that the negative parts of their
terminal payoff tends to zero uniformly instead of strategies with non-negative
terminal payoff as in the (NA) condition. Remark that the main difference
between these two conditions lies in the fact that we have to consider a closure.
Indeed, the condition is weaker than

which is equivalent to the (NA) condition
If, in the previous condition, we replace the norm-topology closure by the

topology closure (where is the space of all integrable measurable
functions) we obtain a version of the No Free-Lunch (NFL) condition introduced
by Kreps (1981), and the existence of an equivalent local martingale measure is
obtained for a bounded càdlàg, and adapted process

Other intermediary concepts, as the No Free-Lunch with Bounded Risk
(NFLBR) condition (where the closure is de�ned as the set of weak*-limits and
where the negative parts of the terminal payoffs tend to zero in probability and
remains uniformly bounded), have been introduced in the literature and permit
to obtain results similar to the previous theorem in different contexts: �nite time
set and (NA) condition with Dalang et al. (1989) (see Schachermayer (1992),
Kabanov and Kramkov (1994a) and Rogers (1995) for elementary proofs), in�-
nite but discrete time set with Schachermayer (1994), continuous and bounded
processes in continuous time with Delbaen (1992). Harrison and Kreps (1979)
and Harrison and Pliska (1981) used the concept of simple strategies. Kreps
(1981) used a concept of �no free-lunch� involving the convergence of nets or
generalised sequences. Duffie and Huang (1986) and Stricker (1990) used
convergence. Lakner (1993) used convergence in Orlicz spaces. Furthermore,
it appears that the class of semi-martingales is the most general one compati-
ble with this kind of results. Indeed, from the work of Föllmer and Schweizer
(1991) and Ansel and Stricker (1993) we know that No Free-Lunch conditions
imply, in some sense, that is a semi-martingale. Conversely, the existence of
an equivalent-martingale measure for implies, by Girsanov�s theorem, that
is a semi-martingale.

As in Harrison and Kreps (1979) and Kreps (1981) and for a given contingent
claim, we de�ne the arbitrage pricing interval as the set of all the prices that are
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compatible with the No Free-Lunch condition, i.e. introducing this contingent
claim at one of these prices does not create free-lunches. In all the mentioned
papers, it appears that this set is equal to the set of expected values of the
considered claim terminal payoff with respect to all the probability-measures
which characterize the absence of free-lunch.

When there is no imperfection, the cash-�ow space can be identi�ed with
In case of short-sale constraints, it can be identi�ed with

admissible, and exists a.s.

and when there are short-selling costs, it can be identi�ed with

admissible,
and exists a.s.

where (resp. ) models the long (resp. short) position returns. When there
are transaction costs, can be identi�ed with

admissible, and exists a.s.

where represents the total variation of and the magnitude of the
transaction costs. Jouini and Kallal (1995a and b) characterized �rst the ab-
sence of arbitrage opportunities in these different situations. Other contribu-
tions on related subjects are due to Kabanov and Kramkov (1994b), Shirakawa
and Konno (1995), Kusuoka (1995), Cvitanic̀ and Karatzas (1996), Cvitanic̀,
Pham and Touzi (1999), Kabanov (1999). The differences between all these
references are in the choice of the topology (or no topology) in order to de�ne
the concept of free-lunch, the choice of a space of admissible strategies (discrete
strategies, simple strategies,...) and �nally the choice of possible imperfections
(or no imperfection). This choice is summarized by the choice of a convex cone
contained in instead of itself in order to model the opportunity
set. In this context, it is to �nd a separating hyperplane between that
set (or its closure with respect to some topology) and . Jouini and Kallal
(1999) extended all the arbitrage, viability and equilibrium classical results to
that setting mainly by assuming that the opportunity set is a convex cone (or
even a convex set) and the pricing rule is sublinear. In this issue, Kabanov
and Stricker (2001) propose a generalization of Jouini and Kallal�s (1995a) re-
sult to the important case of a multi-asset market model where the transaction
costs are de�ned for each kind of transaction between any pair of assets. They
use the geometric formalism developed previously by Kabanov (1999) and they
characterize the absence of arbitrage opportunities in terms of martingale-like
measures. Their result is established in a discrete time and �nite set of states
of the world framework and they only deal with arbitrages and not with free-
lunches.

In order to take a large set of possible frictions into account Carassus and
Jouini (1997,1998,2000) in discrete time or in a deterministic setting, Jouini
and Napp (2000) and Jouini, Napp and Schachermayer (2000) in continuous
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3 The utility maximization problem

separating

kill

the combined problem of optimal
portfolio selection and consumption rules for an individual in a continuous-time
model where his income is generated by returns on assets and these returns or
instantaneous �growth rates� are stochastic

time propose to deal directly with the space of possible cash-�ows instead of the
space of terminal payoffs and they provide a characterization of the No Free-
Lunch assumption in terms of the existence of a functional. Napp
(2001) develops an arbitrage pricing theory and a super-replication concept in
this cash-�ow space.

However, all these results are obtained under a convexity condition on the
space of attainable payoffs. This last assumption is not satis�ed in economies
with �xed costs, i.e. with transaction costs which are not proportional to the
size of the transactions. In this framework, the terminal payoff of a strategy
is where is a bounded non-linear function of the strategy
instead of as in the classical case. Therefore, it is easy to understand
that large scale transactions will the transaction cost effect and that the
characterization of the no-arbitrage condition should be an asymptotic version of
the classical one. Jouini, Kallal and Napp (2001) prove that this characterization
is in terms of absolutely continuous martingale measures and show that the
existence of such a measure is necessary but not sufficient and that we need the
existence of a family of such measures each one associated with a given date and
a given event at that date in order to characterize the absence of free-lunches.

Before Merton�s (1969) paper, most models of portfolio selection only considered
one period. Furthermore, the investment decision by households was viewed in
two parts : (a) the �consumption-saving� choice where the individual decides
how much income and wealth to allocate into current consumption and how
much to save for future consumption; and (b) the �portfolio-selection� choice
where the investor decides how to allocate savings among the available invest-
ment opportunities. Merton (1969) examined �

�.
The original analysis of Merton�s model is based on the Hamilton-Jacobi-

Bellman equation and requires an underlying Markov state process. After the
papers of Harrison and Kreps (1979) and Harrison and Pliska (1981, 1983), and
their characterization of the no-arbitrage assumption in terms of the existence of
martingale-measures, Pliska (1986), Cox and Huang (1989, 1991) and Karatzas,
Lehoczky and Shreve (1987) used this methodology in order to analyze this
consumption-investment problem. This new approach is based on duality argu-
ments and permits to transform the initial dynamic problem into a static one
and to solve it without assuming any �Markov� condition.

Let us now introduce the main results related to this problem.
Let be a �xed probability space and denote the interval

on which we are going to treat our problem : corresponds to the terminal
date for all economic activity under consideration. All processes that we shall
encounter in this section are de�ned on .

6



E

�
‖ ‖ ∑ � �
Z Z

d

1

2

3

1

2

3

n
i

i

d

2
=1

2

T

T

T

T

T

T

[1988]
1

�

∈

∈

∈

∈
∈

�

�

∈

{� � }

∫

� �

{ }

∫

T

T

T

T
T T

T

T

T
T

T

T

T

0

0 0 0
0

0

1

0
2

0

2

2

1

1

0

0

Assumption A1

Assumption A2

�

�

∈

{ ∈ }

‖ ‖ ∞

{ ∈ } �
{ ∈ } � { ∈ }

� { ∈ }

�

{ ∈ } ∞

{ ∈ }

� � � �

∈
� �

�

t

t t t

t

t t t t t t

t
N
t

t t

T

d t t

t
d

T

t

t

t t

t

t t

t t

t t t

t

t

t

t t t t N

t t

t

t t
t

s s

t t t t t t t t t t

(1989)

= = 1

= [( ) + ] = 1

= ;

(
 ) ( )

=
( ) ( )

	 ;

	

;
; ;

( ) ;
( )

( ) 


(2) ( )

; sup

( )
= ;

( ) [( 1 )] 0

( )

˜ = ˜ ;

˜ exp ( )
˜

˜ = ˜ [( ) + ] = ˜ [ + ] ˜ = 1

N

t
S

dS S r dt, S

N t N S

dS S b � dt � dW , S .

W W , ..., W t N

, F, P F P
W W

F F
F L F

t R

dt < P.

r t N
b t N � t

N N � t
F

t, ω .

F

S t S <
t , � N

�
N � � t

� � b r P , t T.

� F

S S t

S S � r ds t

S

dS S b r dt � dW S � � dt dW , S .

All vectors are column vectors and transposition is denoted by the superscript . We denote
by the nonnegative real number .

See for instance Karatzas-Shreve
As usual, denotes the -dimensional vector whose component are equal to one.

The real-valued interest rate process , the dimensional
process , the dimensional dividend yield process as
well as the volatility -matrix-valued process are supposed to
be progressively measurable with respect to and bounded uniformly in

in

For all in the volatility matrix has full rank and
the norm of is uniformly bounded.

We consider a market consisting in one bond and assets. More precisely,
the primitive market model is the same as in Karatzas , except that we
consider here dividends paying assets.
We adopt a model for the market consisting of one bond with price at time
denoted by satisfying the differential equations

, (1)

and stocks with prices at time denoted by the dimensional vector
satisfying

(2)

Here, is a -dimensional Brownian motion on

a probability space and denotes the -augmentation of the
natural �ltration generated by . We assume that the sample paths of
specify completely all the distinguishable events, which mathematically entail

. Since standard Brownian motions start from zero with probability
one, is trivial. We will denote by the set of -progressively
measurable processes taking values in such that

a.s.

Under this assumption , Equation admits a unique real-valued, -
adapted, continuous solution , satisfying .

Therefore, a -dimensional process can be de�ned by :

a.s.

With the above assumptions, is -progressively measurable and uni-
formly bounded.

We shall also introduce the discounted price process de�ned

by for all in . Using Itô�s Lemma, we easily get
that is the unique solution of the following stochastic differential equation:
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For any -valued process in let the real-valued process
denote the exponential local martingale given for each in by

If denotes a vector in then denotes the diagonal matrix
whose diagonal entries are the components of

Notice that assets prices can �uctuate in an almost arbitrary, not necessarily
Markovian way.

We know that in such a model, there exists a unique equivalent probability
measure de�ned on that makes the full process a martingale for

. It is given by

We then have , where is the Brownian

motion for de�ned by for all in (see Gir-
sanov�s Theorem) We shall denote in the following, the martingale process

by .

In the context of the above market-model, consider an agent who starts out
with an initial capital and can decide of the amounts
that he invests at time in the different assets, and of the rate at which
he withdraws funds for consumption. Assuming that at each time , sales and
dividends must �nance purchases and consumption, the corresponding wealth
process, denoted by , satis�es the following stochastic differential equation

( Self-�nancing condition)

(3)

which can be rewritten

( Self-�nancing condition)

(4)

The set of investment-consumption strategies satisfying the previous
self-�nancing condition and the following no-bankruptcy condition is called the
admissible strategies set and denoted by :

(No-bankruptcy condition)

This last condition amounts to saying that at each time , the investor must
be able to cover his debts -see e.g. Karatzas-Lehoczky-Shreve (1987) or Duffie
(1992) where the same assumption is made.
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The function is on strictly increas-
ing strictly concave and satis�es Inada conditions (

. The function is on , strictly
increasing, strictly concave and satis�es Inada conditions.

A pair in is optimal for an agent with an initial
endowment if and only if there exists a constant such that

Under the self-�nancing condition, the process

consisting in the current discounted wealth plus the total discounted consump-
tion is a -supermartingale (Fatou�s Lemma). It is then easy to see that
the market excludes any arbitrage opportunity which turns out to be char-
acterized in our context by the existence of a pair in such that

).

Let denote the set of pairs where is an adapted nonnegative con-
sumption rate process and is a nonnegative -measurable random variable
describing the terminal wealth. An agent is represented by a utility function

given by

where and satisfy the following assumption.
,

, i.e., and
)

Under Assumption , we shall denote by the derivative of and by
the inverse function of , which is a strictly decreasing continuous

function on in . We shall also denote by the inverse function of
.

The considered agent has an initial endowment and tries to maximize
his utility on both his consumption over the time-interval and his
terminal wealth. The optimal demand of the agent in the consumption com-
modity as well as his optimal portfolio are determined by the optimization
problem

.

Adapting the proofs of Duffie (1994) and Karatzas (1989), we get that

(5)

(6)
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This last proposition permits to solve explicitly the agent�s optimization pro-
gram. Huang and Pagès (1992) extended this methodology to the in�nite hori-
zon framework. Karatzas, Lehoczky, Sethi and Shreve (1986) provided explicit
computations in that framework assuming constant coefficients in the price evo-
lution equations. He and Pearson (1991 a and b) and Karatzas, Lehoczky,
Shreve and Xu (1991) extended the methodology to incomplete markets and
proved that the optimal investment/consumption plan is given, as in the classi-
cal case, by the inverse of the marginal utility evaluated at the random variable
which is optimal for a well-de�ned dual problem. Cvitanic̀ and Karatzas (1992)
used the same approach in order to solve the problem when there is convex
constraints on the strategies (short-sales constraints, borrowing constraints,...).
Fleming and Zariphopoulou (1991) solved the problem assuming different bor-
rowing and lending rates. Cuoco (1997) and El Karoui and Jeanblanc-Picqué
(1997) considered random endowment streams. Cvitanic̀ and Ma (1996) and
Cuoco and Cvitanic̀ (1998) generalized these results in the context of a �large
investor�. In that context, the strategy of the investor has a direct nonlinear im-
pact on the price dynamics. The main technique in all these references consists
in embedding the original problem into a family of perfect (linear) ��ctitious�
markets, where security prices dynamics are modi�ed and agents receive an ad-
ditional stochastic �endowment� re�ecting the nonlinearity in the market price
of risk. The �ctitious markets are designed in such a way that the optimal policy
in one of them coincides with that in the actual, nonlinear market.

Using the partial differential equations (PDE) approach, Dumas and Lu-
ciano (1989) �rst formulated the problem in the presence of transaction costs.
The main contributions in this context are Davis and Norman (1990), Fleming,
Grossman, Vila and Zariphopoulou (1990) and Shreve and Soner (1994).

When there are imperfections, the utility maximization approach can be
used in order to provide pricing formulas for new contingent claims. There are
mainly two methods. The �rst one, initiated by Hodges and Neuberger (1989)
in the transaction costs setting, consists in using the marginal utility of the
considered agent at his optimal consumption-investment plan as a state-price
density. The second method, initiated by Davis (1994) consists in comparing
the optimal utility levels with a deterministic initial endowment and
with a stochastic endowment equal to the payoff of the considered claim. The
�fair� price is then de�ned by the equation

Papers along these lines include Constantinides (1986), Panas (1993), Davis,
Panas and Zariphopoulou (1993), Davis and Panas (1994), Davis and Zariphopoulou
(1995), Cvitanic and Karatzas (1996), Constantinides and Zariphopoulou (1997)
and Barles and Soner (1998).
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4 The equilibrium

In this issue, Cvitanic̀ and Wang (2001) show that the martingale/duality
approach adopted in the frictionless model works also in the transaction costs
framework and prove that the optimal terminal wealth is given as the inverse
of marginal utility evaluated at the random variable which is optimal for an
appropriately de�ned dual problem. They prove the existence of a solution for
this dual problem and doing so they resolve a question left open by Cvitanic̀
and Karatzas (1996). A similar problem is studied by Deelstra, Pham and Touzi
(2000) where the utility functions are de�ned on instead of

Framstad, Øksendal and Sulem (2001) considers also the transaction costs
framework but in a jump diffusion market. Using a viscosity solution approach,
they show that the solution of the problem in that context has the same form
as in the pure diffusion case : there is a no-transaction cone such that it is
optimal to make no transactions as long as the wealth position remains in that
cone and to trade on the boundary. Bellamy (2001) solves the same problem
but assuming market incompleteness instead of the presence of transaction costs
and using a Hamilton-Jacobi-Bellman (HJB) approach.

Using �ltering techniques, Lakner (1995) considers utility maximization prob-
lems where the agent must estimate the mean rate of return of the assets. In this
issue, Dokuchaev and Zhou (2001) considers the case where the stock apprecia-
tion rates are not observable and where the strategies depend only on the known
distribution of these rates and on the current prices. Furthermore, they use gen-
eral utility/loss functions (including mean-variance criteria and goal achieving
problems) and they consider some lower and upper constraints on the termi-
nal wealth. The problem is solved by means of backward stochastic differential
equations as well as a dual formulation.

Finally, we want to mention another family of optimization problems related
to the contingent claims pricing : the hedging problems. These problems are not
represented in this special issue but are studied by many papers in the recent
literature. The main problem in all these paper is to compute the hedging price
of a given contingent claim with respect to a given hedging criterion. If we
assume that the agents want to minimize the downside risk, then the hedging
price is equal to the super-replication price and its computation leads to solve
a stochastic-control-based problem as in the pionneering paper of El Karoui
and Quenez (1991, 1995). If we assume that the agents want to minimize the
quadratic risk then we have to solve the mean-variance hedging problem and we
refer to Föllmer and Schweizer (1991) or Schweizer (1993) for a survey about
related results.

Models of competitive equilibrium go back to Walras (1874). The �rst com-
plete proof for the existence of an equilibrium in an economy with �nitely many
commodities was given by Arrow and Debreu (1954). In the chapter 7 of De-
breu (1959), the author explains how this model permits to take into account
dynamic markets with uncertainty. Bewley (1972) studied the competitive equi-
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librium in an in�nite-dimensional commodity space, namely and Mas-Colell
(1986) generalized Bewley�s results to Hausdorff locally convex, topological vec-
tor spaces under a �uniform properness condition� on the agent�s preferences.
Araujo and Monteiro (1989 a and b) and Duffie and Zame (1989) proved inde-
pendently the existence of an equilibrium without Mas-Colell�s uniform proper-
ness condition. Dana, Le Van and Magnien (1997) extended Mas Colell�s result
to topological locally solid Riesz spaces under a local non-satiation condition
weaker than the uniform properness one. Aase (1992) and Bernis (2000) ap-
plied these results to the reinsurance markets.

All the previous models does not take explicitely into account dynamic secu-
rity trading. Models where the agents achieve equilibrium allocations by trading
in securities like the capital asset pricing model (CAPM) or the consumption
based capital asset pricing model (CCAPM) can be found in the literature go-
ing back to Merton (1971), Cox, Ingersoll and Ross (1985), Duffie and Huang
(1985), Huang (1987) and Karatzas, Lehoczky and Shreve (1990).

The link between these two approaches is made by Duffie and Huang (1985)
where the authors explain how an Arrow-Debreu equilibrium can be imple-
mented by trading in securities. This role of securities was, in fact, already
recognized by Arrow (1952). The difference between the two approaches is il-
lustrated by Cuoco (1997) where the budget constraints are associated to all the
possible equilibrium prices (all the risk-neutral measures) instead of a unique
budget constraint associated to the equilibrium price as in the classical general
equilibrium model.

In Karatzas, Lehoczky and Shreve (1990), all agents are endowed in units
of the same perishable commodity, which arrives at some time-varying random
rate. Agents may consume their endowment as it arrives, they may sell some
portion of it to other agents, or they may buy extra endowment from other
agents. The endowment, however, cannot be stored, and agents wish to hedge
the variability in their endowment process by trading with one another.

In this model all the prices are in term of a unique consumption good. When
the market is complete it is equivalent to assume that the agents receive their
endowment initially rather than over time. In that case and in order to have a
stochastic total wealth, we assume that the consumption good is produced by
the �rms and distributed as dividends among the shareholders. The equilibrium
condition imposes then a total consumption equal to the total supply of the
consumption good and a total investment in each �rm equal to the total value
in term of consumption good of that �rm.

With the notations of Jouini and Napp (1998), the mathematical description
of the model is the following. Let be an economy with agents indexed by

and let us assume that the agent has an initial wealth and
a utility function given by

where and satisfy our assumption . As previously each agent maximizes
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his utility level over the set of admissible strategies. More precisely, the
agent problem is

In this framework an equilibrium consists in a dimensional price processes
and trading-consumption choices which are optimal for the

agents, i.e.

and such that for all in , the following market clearing conditions hold almost
surely:

where is the number of �rm outstanding shares
Note that the last condition is redundant with the two previous ones by the

self-�nancing condition.
In Karatzas, Lehoczky and Shreve (1990) it is shown that under mild con-

ditions a unique equilibrium exists. In this issue, Chiarolla and Haussmann
(2001) specializes and extends the Karatzas and al. (1990) model to a situation
where the endowment streams of the agents are denominated in money, not
in goods, and are not exogenous. The labor provided by the agents to a �rm
produces the consumable good through a production function. The agents have
then to choose a consumption and a leisure levels in order to maximize their
utility function. Furthermore, the �rm de�nes the level of employment by a
pro�t maximization program. The utility functions of the agents depend then
on two control variables and the main contribution of this paper is to extend the
classical one-dimensional approach to this framework. The authors provide �rst
order necessary conditions for equilibrium, and derive from there the existence
of such an equilibrium. They also solve explicitly two examples.

Basak and Croitoru (2001) exploit the equilibrium conditions in order to
analyze the taxation impact on the asset prices. They consider a simple two
agents model and use the ��ctitious� market techniques described in the previ-
ous section in order to solve the individual utility maximization problem. The
main difficulty is due to the presence of two redundant assets but with different
taxation rules. The redundancy adds an extra step in the agent�s problem :
once he has chosen his risk exposure, he must decide how to allocate that risk

13
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