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Abstract

This paper provides an introduction to the mathematical theory of
possibility, and examines how this tool can contribute to the analysis of
far distant futures. The degree of mathematical possibility of a future is
a number between O and 1. It quantifies the extend to which a future
event is implausible or surprising, without implying that it has to happen
somehow. Intuitively, a degree of possibility can be seen as the upper
bound of a range of admissible probability levels which goes all the way
down to zero. Thus, the proposition ‘The possibility of X is Π(X)’ can
be read as ‘The probability of X is not greater than Π(X)’.

Possibility levels offers a measure to quantify the degree of unlikeli-
hood of far distant futures. It offers an alternative between forecasts and
scenarios, which are both problematic. Long range planning using fore-
casts with precise probabilities is problematic because it tends to suggests
a false degree of precision. Using scenarios without any quantified uncer-
tainty levels is problematic because it may lead to unjustified attention
to the extreme scenarios.

This paper further deals with the question of extreme cases. It exam-
ines how experts should build a set of two to four well contrasted and pre-
cisely described futures that summarizes in a simple way their knowledge.
Like scenario makers, these experts face multiple objectives: they have to
anchor their analysis in credible expertise; depict though-provoking pos-
sible futures; but not so provocative as to be dismissed out-of-hand. The
first objective can be achieved by describing a future of possibility level
1. The second and third objective, however, balance each other. We find
that a satisfying balance can be achieved by selecting extreme cases that
do not rule out equiprobability. For example, if there are three cases, the
possibility level of extremes should be about 1/3.
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1 Introduction

This paper is written for the long range planners who have not been exposed
to the theory of possibility, and are puzzled by requests for ‘probabilities of
scenarios’. Recognizing that probability theory is more often than not irrelevant
to quantifying the degree of uncertainty about distant futures, the paper argues
that this need could generally be satisfied with quantitative possibility levels.

The paper is organized as follows. Section 2 reviews the problem with prob-
abilities in Futures Studies. It is generally agreed that there should be a distinc-
tion between Scenarios and Forecasts. Both are detailed descriptions of a sys-
tem’s future, with the conventional difference that a set of scenarios is presented
without quantifying any degree of confidence or likelihood, while forecasts are
assigned a probability distribution. We argue that making this distinction does
not really solve the recurring controversy about whether and how to quantify
uncertainty for far distant futures.

Section 3 discusses the meaning of the sentence “The possibility level of
future f is π”, where π is a number between 0 and 1. It calls Futurible a future
which is assigned a possibility level, and shows that the concept is missing from
previous uses of fuzzy modeling in Futures Studies, which were more interested
in dynamic system modeling and experts elicitation.

Section 4 deals with the question “At which level of possibility should the
futuribles be selected?”. We examine from a normative point of view how the
experts should build a set of two to four well contrasted and precisely described
futuribles that summarizes in a simple way complex information. We argue
that the set should contain at least one future at possibility level 1 and that if
it contains extreme scenarios, their possibility should be 1/n.

2 Uncertainty in Future Studies

2.1 The sempiternal demand for probabilities

The Intergovernmental Panel on Climate Change [IPCC, 2000] elaborated long-
term greenhouse gas emissions scenarios to help assess the urgency of action
pertaining to climatic change. One important purpose of these scenarios is to
drive global ocean-atmosphere general circulation models. This is why they
had to be quantitative, and not only specify the political framework, but also
tabulate precise time series of future emissions disaggregated by world region.
Even if some combinations of values which lead to high emissions, such as high
per capita income growth and high population growth, appear less likely than
other combinations, IPCC did not report any likelihood considerations. All the
scenarios were considered ‘equally sound’.

Using these scenarios led IPCC to report a range of global warming over
the next century from 1.4 to 5.8 ◦C. This turned out to be controversial, as it
dramatically revised the top-range value which was previously 3.5 ◦C, a revision
that was not driven by much new scientific knowledge. This figure of 5.8 ◦C
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appears to result from the combination of the new high emissions scenario with
the unchanged high parameter of climate sensitivity. That led to controversies
illustrating a recurring debate between the makers and the users of scenarios:

• Schneider [2001] and others argued that the absence of any probability
assignment would lead to confusion, as users select arbitrary scenarios or
assume equiprobability. As a remedy, there has been a steady flow of
literature estimating the Probability Density Function of global warming
in 2100. Reilly et al. [2001] estimated that the 90% confidence limits were
1.1 to 4.5 ◦C, while Wigley and Raper [2001] found 1.7 to 4.9 ◦C for the
same 1990 to 2100 warming.

• Grübler and Nakićenović [2001] and others argued that good scientific
arguments preclude determining the probability of occurrence or the like-
lihood of events that far in the future. According to the IPCC report’s lead
authors, no method of assigning probabilities to a 100-year climate fore-
cast was sufficiently widely accepted and documented to pass the review
process. They underlined the difficulty of assigning reliable probabilities
to socioeconomic trends in the latter half of the 21st century, the difficulty
of obtaining consensus range for quantiles like climate sensitivity, and the
possibility of a nonlinear geophysical response.

This IPCC case is only one recent manifestation of a deeper problem. The
need to quantify the level of truth of each scenario is a source of permanent
tension in Futures Studies. Decision-makers often demand quantification of un-
certainty, but consultants in strategic scenario planning are reluctant to prob-
abilize. As reported in Best [1991], Adam Kahane from Shell explicits well the
problem with probabilities:

We don’t assign probabilities to our scenarios, for several reasons.
First, we intentionally write several scenarios that are more or less
equally plausible, so that none is dismissed out of hand. Second, by
definition, any given scenario has only an infinitesimal probability
of being right because so many variations are possible. Third, the
reason to be hesitant about all scenario quantification — not proba-
bilities, economic growth rate or whatever — is that there is a very
strong tendency for people to grab onto the numbers and ignore the
more important conceptual or structural messages.

P. Wack concludes more sanguinely on probability:

But I have a strong feeling that it will be poisonous and will con-
taminate the logic of scenarios.

To which David Kline, supervisor of the gas forecasting and model devel-
opment unit of the California Energy Commission, respectfully disagreed and
added:

Trying to bridge just this kind of gap [. . . ] represents one of the
most important intellectual and practical endeavors of our time.
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2.2 Probability is not of the essence

Many specialists of the Bayesian school argue that probabilities can and should
be used because they allow to model any subjective judgment of plausibility de-
gree. Yet the persistence of the controversy on scenarios versus forecasts clearly
shows that this Bayesian ‘probability applies to everything’ approach is not con-
vincing for many specialists. Besides the arbitrariness of deciding which theory
is interesting, there are indeed many useful results and technological applica-
tions of the fuzzy logic, for example in process control and expert elicitation.

One way to analyze that controversy on ‘The probability of scenarios’ is
to frame the activity of Futures Studies as a situation of communication from
analysts A to business people B. Scenarios and Forecasts are two different
communication tools to make B aware of ideas that A regards as actually or
potentially valid. Whether scenarios should be probabilized is just a question
of terminology, in this paper the convention is to define scenarios as futures
without probabilities. The interesting question is to know when to use a given
tool.

In order to discuss in which circumstances scenarios may be more appropriate
than forecasts, consider the following taxonomy of ignorance situations. These
are only some of those discussed in Smithson [1988, Fig. 1.1] :

Surprise: A pattern which is discrepant from everything one has been exposed
to before. Like many physiological stimuli, surprise has opposite effects
at low and high doses. A small discrepancy is likely to recruit attention:
novelty is necessary for learning. But a large discrepancy leads to pure and
simple ignorance: a situation that does not fit into any existing schemata
cannot be recognized.

Taboos: Things that should not be known, or even asked about.

Strategic uncertainty: All kinds of disinformation, lies and fallacies that are
at the core of interactions when people and organizations compete with
each others.

Randomness: The prototype of randomness is to draw one card from a well
mixed deck so that all outcomes can be considered symmetrically. Some
repetitive events such as the toss of a dice prove to be in reasonably close
agreement with the mathematical concept of independently repeated ran-
dom events [Savage, 1954, p. 3]. Probability is the well known historical
approach to modeling randomness.

Vagueness: A characteristic of natural language, the prototype being the state-
ment that someone is ‘Tall’. Fuzzy theory was elaborated to process in-
formation given in natural language.

Terminology is conventional and inevitably arbitrary to some extent. There
are probably as many definitions of the word ‘Risk’ as there are risk analysts.
While the categorization above relates to the interesting question ‘What is Risk
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?’, it is not an attempt towards a comprehensive taxonomy. The point is only
that there are many kinds of ignorance to deal with. To each kind of ignorance
corresponds a class of methods, mathematical or not, which are regarded as
more or less appropriate by a given community of practice. Depending on the
kind of ignorance A and/or B wants to reduce, different communication tools
will be appropriate.

One of the main purposes of scenarios is to prevent surprises by training
the decision-makers’ recognition ability. Surprise possibly leads to very inade-
quate decisions. For example, at 07:02 December 7, 1941 the radar operators
J. Lockard and G. Elliot tracked a very large reflexion 136 miles north of their
position in Oahu. This was the first use of radar in warfare by U.S. Military
Forces, and the untrained lieutenant on duty dismissed their report. One hour
later, 183 Japanese airplanes were attacking Pearl Harbor. Extending the field
of perception gives a competitive advantage by allowing the decision-makers
to respond faster to their changing environment. This explains why it makes
sense to present the scenarios as easy-to-remember narrative storylines: stories
in which situations are rich in concrete details and create emotions are likely to
be more efficient at making a long lasting human impression.

Futures studies are also used to explore strategic uncertainties, for example
by playing war games in military planning. Game theory can be regarded as
the most appropriate mathematical method to model this kind of situations.
Arguably, it is more fundamental than probability to describe the workings of
some social systems such as the economy.

The study of taboos in Anthropology and Sociology rarely uses probabilities
or anything quantitative, preferring more narrative methods.

Why is the idea that probabilities can be used to quantify degrees of likeli-
hood in all kinds of situations so common? This paper is written on the premise
that it is not because the majority of people are strict Bayesians, but because
they are simply unaware of the alternatives, and common sense prescribes to
stick to a traditional theory that works well enough. That could explain :

• Unawareness about other kinds of ignorance. To some extent the privi-
leged focus on probabilities can be related to the huge practical success of
Shannon [1948]’s mathematical theory of communication. However, that
approach does not relate to any human dimension at all:

Semantics aspects of the communication are irrelevant to the
engineering problem.

The above shows that social sciences are interested in other issues than
fighting white noise.

• Unawareness that there are tools to deal with ignorance beyond random-
ness. The next section presents a few of those.

Unawareness tends to cause exclusion of non-probabilistic kinds of ignorance
from the field of scientific inquiry. But negotiating on the meaning of ‘scientific’
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and on the perimeter of the system studied would leave little doubt that the
subject matter of Futures Studies involves social systems, therefore has a need
to describe situations of ignorance beyond randomness. This paper proposes to
do so by using possibility theory.

2.3 Fuzzy modeling and scenarios

The algebra of possibilities can not be separated from the fuzzy theory, and
there is a significant body of literature on the use of fuzzy modeling to study the
evolution of dynamic systems. Two specific applications to scenario building will
be discussed, based respectively on fuzzy cognitive maps and on fuzzy system
dynamics.

Misani [1997] proposes to use fuzzy cognitive maps to build scenarios. A
fuzzy cognitive map is an oriented graph like a classical influence diagram, where
the strength of causal relationships between uncertain variables is quantified.
The specificity of fuzzy cognitive maps is that each variable xi is represented by
an activation level in [0, 1], and the intensity of each causal link is represented
by a number li,j in [-1, 1]. Such a map can be compared to a Bayesian network
stripped of all its probabilistic machinery. It is very much like an associative
neural network, with the difference that the topology of the cognitive map re-
flects knowledge about the working of the system, while the neural network’s
topology is given a priori.

These maps are used like neural networks, by iteration. The iterating rule is
that the activation level xi of a node i is determined by the activation level of its
parents pa(i) and by the strength of the link. Formally, xi(t+1) is a function of∑

j∈pa(i) xj(t)li,j . Iterations are performed until a stable state is found, and the
trajectory represents a qualitative simulation of the system dynamics. Different
initial configurations may reveal different final stable patterns, each of which
can be used to write a consistent scenario.

Canarelli [1997] proposes a conceptually similar approach, altough more flex-
ible. The knowledge base has two parts. The first part represents the system
dynamics. It is a collection of linguistic rules such as ‘if the standard of living is
high, then car ownership is high’. The second part represents linguistic values
of the variables. It is a collection of possibility distributions defining to which
extent ‘the standard of living in the area of study is high’ given the numerical
value of the underlying variables (for example income).

That approach is similar to fuzzy cognitive maps in that the evolution of
the system is computed by iterating from one date to the next. The additional
flexibility comes from the fuzzy inference unit, which is more sophisticated than
simply a neuron-like linear combination of the inputs. An essential difference of
the scenario building method proposed by Canarelli is that it looks only at the
transitory dynamics, not at the final pattern. Thus the initial state is fixed to
whatever is observed in reality, and the dynamics is governed by exogenously
specified policy variables. Each scenario corresponds to a set of specifications
for the policy variables.

Both these methods allow for rapid model development based on expert’s
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knowledge. As practical tools for approximate reasoning, they potentially offer
interesting ways to build futuribles. Historically, the kind of mathematics used
above has been of interest for two distinct epistemic communities. The appli-
cations of fuzzy modeling presented above can be seen as deriving from Zadeh
[1978]’s ideas about ‘level of confidence’ in fuzzy theory, which has spread in a
community led by engineers and computer scientists. The other community is
characterized by social scientists, who would trace possibility to Shackle [1953]’s
notion of ‘potential surprise’ and claim a much older interest on rationality and
decision-making in Economics. This article rather belongs to the latter school.
While applying the methods presented in section 4 below could benefit from
advances in fuzzy modeling, to understand them better it is necessary to review
mathematical and philosophical foundations of what is a level of possibility.

3 Degrees of possibility: the mathematical the-
ory

This section discusses the definition of the degree of possibility of a future. The
first part 3.1 gives a taste of the basic elements and interpretations of possibility
theory. Next, 3.2 presents de Finetti [1937] interpretation defining possibility
levels using gambling odds. Finally, 3.3 formalizes this view of possibility using
the concept of upper probability and precaution.

The discussion mostly draws upon Dubois and Prade [1998], especially sec-
tion 5.6 on possibility as an upper bound on probability, and on Walley [1991,
sec. 3.8]’s canonical correspondences between probability sets and preference
relations. It is argued that the relation ‘future f is more probable than future
g’ is a partial order, so that even though the possibility π(f) of future f is 1
and π(g) = 0.6, it can not be said that ‘f is more probable than g’.

3.1 Possibility 101

Let Ω denote the universe of discourse, that is the set of all futures that can
be described. Let x be a variable ranging on Ω (for example x is the global
warming at the end of the century, in ◦C). Denote πx(f) the possibility level
that x = f . Dubois and Prade [1998] explain that:

A possibility distribution represents a state of knowledge distin-
guishing what is plausible from what is less plausible, what is the
normal course of things from what is not, what is surprising from
what is expected. The function πx represents a flexible restriction
of the values of x with the following conventions:

πx(f) = 0 means that x = f is impossible.
πx(f) = 1 means that x = f is totally possible (=plausible).
Distinct values may simultaneously have a degree of possibility

equal to 1. Flexibility is modelled by letting πx(f) between 0 and
1. [...] Clearly, if Ω is the complete range of x, then at least one of
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the elements of Ω should be fully possible as a value of x, so that
∃f, πx(f) = 1 (normalization).

This paper considers only normalized possibility distribution: we assume
that Ω is an exhaustive description of the futures. This explicitly excludes
situations of surprises, which is the main reason why we stay away from the
word Scenario. Since the word Forecast is also reserved for the probabilistic
context, this paper uses the word Futurible. It is a contraction of futur possible,
a neologism that has been used for more than 40 years by the French school of
Prospective [Mousli and Roëls, 1995].

Possibility theory is similar to probability in the sense that it uses numerical
set functions to measure the degree of confidence assigned to a subset S ⊂ Ω,
and that the measure is based on a distribution defined on the elements f ∈ Ω.
The possibility measure Π describes to what extent the information encoded by
πx is consistent with the statement ‘the value of x will be in S’. The possibility
measure is defined from the distribution using:

Π(S) = max
f∈S

πx(f) (1)

In a professional setting, the rule can be understood as follows: when the an-
alyst presents a set of futuribles, for example S = {f, g, h}, the convincing power
of the set is assessed by looking only at the most plausible element regardless
of the number of futuribles in S.

Formally, the possibility measure is normalized by Π(Ω) = 1 and Π(®) = 0
(The glyph ® denotes the empty subset). It has the property that for any pair
of subsets S, T :

Π(S ∪ T ) = max (Π(S) , Π(T )) (2)

The possibility of the union is indeed the possibility of the most plausible
future in S ∪ T , that is Π(S ∪ T ) = maxf∈S∪T π(f). If one considers that S
and T are theories predicting the future, this property states that the degree
of plausibility of the theory ‘the future will be in S OR T ’ is the degree of the
most plausible prediction of the two.

In possibility theory the max operator plays the role of addition in probabil-
ity theory. Recall that whenever P is a probability measure, P (S)+P (S) = 1 for
any event S and its complement S. With possibility the corresponding equality
is max(Π(S), Π(S)) = 1. Whenever Π is a possibility measure, the dual function
defined by N(S) = 1−Π(S) is called a necessity measure.

That distinction between possibility and necessity does not appear with
probabilities, but is key to any theory used to quantify the plausibility of pre-
cisely described futures, which fall into the Π(S) ≤ 1 and N(S) = 0 case. Only
non-probabilistic approaches allows to assign a non-zero possibility while rec-
ognizing at the same time that the necessity is infinitesimal. This solves the
problem of the infinitesimal probability of scenarios (mentioned in A. Kahane’s
quote, section 2.1) : when S contains just a few precisely described futuribles
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and Ω is large, then the probability P (S) can only be zero, since all the proba-
bility weight goes to P (S).

3.2 A meaning for possibility levels

Within scientists interested in decision-making, there have been controversies
on the foundations of statistics [Savage, 1954]. These controversies pertain as
much to possibility theory as to probability theory. Different interpretations of
uncertainty take different observable variables as fundamental. Three points of
view should be mentioned:

• An objective approach can be used to derive possibilities from data. For
example, one could use a database of model simulations to draw a possi-
bilistic histogram of the CO2 concentration in 2100.

• A subjective approach can be used to derive possibilities from expert’s
verbal statements, or with the P300 Event-Related Potential, an electric
measure of mental activity the amplitude of which increases with unpre-
dictable, unlikely, or highly significant stimuli.

• A logicist approach can be used to understand why the theory of possi-
bility is paradoxical. If S is an event, N(S) = Π(S) = 1 means that S is
true (or will certainly happen), N(S) = Π(S) = 0 means that S is false
(or impossible), but (Π(S) = 1 and N(S) = 0) means neither true or false,
simply no information. This goes beyond Aristotelian logic, more specifi-
cally against the axiom of the excluded middle. While reasoning without
this axiom is unusual, the ‘constructive mathematics’ school demonstrated
that most interesting mathematical theorems can be demonstrated with-
out this axiom [Bishop, 1967].

In this paper we rely on a kind of subjective interpretation, De Finetti’s
point of view, for reasons that will be explained below. Other approaches, which
might fit better the models reviewed in 2.3, are equally consistent but there is no
space to discuss the pros and the cons of the alternative interpretations. These
controversies never prevented the practical use of probability, so hopefully they
will not prevent the use of possibility either.

To start with an informal introduction to possibility, consider a race between
my horse and yours. One can define ‘The possibility of my horse winning the
race is 0.3’ as a shortcut for the imprecise piece of information ‘The probability
of my horse winning the race lies in the [0, 0.3] interval’. More generally, the
proposition ‘The possibility of S is Π(S)’ can be read as ‘The probability of S
is not greater than Π(S)’.

That explanation of possibility is not a satisfying fundamental definition,
since it depends on what probability means. Following de Finetti [1937]’s ideas,
we define ‘The possibility of my horse winning the race is Π’ as synonymous
with the following gambling rules:

• Don’t bet that my horse will win the race.
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• Bet that it will loose the race if and only if that pays more than Π
1−Π : 1

Note that there are odds for which no bet would be accepted at all. The
intuition behind these rules is an attitude of rational precaution. Implicitly, it
is assumed that only gambles with positive expected value are desirable, and
that any probability level in [0, Π] is equally admissible. Since I admit that the
probability of my horse winning can be zero, betting on it would not be safe.
On the other hand, the net expected gain of a bet on your horse at rate r : 1 is
(1 − p) × r − p × 1, which is known to be larger than (1 − Π) × r − Π. So if
r > Π

1−Π , the net expected gain is positive and it makes sense to desire such a
gamble.

This approach is operational since it can in principle be reversed to model a
person’s beliefs from that person’s observed gamble behavior. It fits well with
the widespread idea that markets transmit information. However this point
needs more discussion. In economic terms, consider a contingent financial asset
that is worthless if event S happens, but pays off 100 euros otherwise. Observing
an expert who bought that asset for 50 euros (but passed over at 51) only reveals
that: the expert believes that the probability (and therefore the possibility) of
S happening is not greater than 0.5.

To conclude more precisely, one needs either additional assumptions or ad-
ditional observations. An additional observation of the behavior with respect
to the complementary asset (the one that pays off 100 euros only if S happens)
is especially illuminating. The beliefs of an expert that would not buy it event
at 0.01 euro could be represented with a possibility level. This contrasts with
an expert who believes that the probability of S is precisely 0.5, and would buy
at 49.99 euros.

Another way to get more observations is to involve more experts. During the
last decade, predictive markets have been set up to trade this kind of contingent
assets with the explicit goal to reveal what informed people think on politics,
sports or security issues (See for example University of Iowa or intrade.com.)
The possibilistic case corresponds to the opening of the markets, when only one
side is making offers. Actively traded contracts define a probability all the more
precise than the bid-ask spread is small.

There are two reasons that make the De Finetti’s approach especially rel-
evant for futuribles. First, in the context of Futures Studies there is no need
for additional observations of the kind discussed above. This is because there
is a natural additional assumption: the degree of necessity of any precisely de-
scribed future is zero. So while the infinitesimal probability of scenarios is a
problem with probabilistic methods, it is actually an useful assumption with a
possibilistic framework. Second, De Finetti’s interpretation naturally allows to
define possibility as upper probability, as discussed next.

3.3 Possibility as upper probability

We now go back to the formal theory of possibilities. This section gives a
formal definition of the notions of admissible probability and desirable gambles
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introduced above. Finally, it defines when a futurible is more probable than
another.

Imagine for example that there are n different theories about the future,
each suggesting a different probability distribution pi. To treat these theories
equally, it is natural to consider the linear pool of all probability distributions
{p =

∑
αipi , for all the the αi ≥ 0 such that

∑
αi = 1}. In one dimension,

this set would be an interval such as [0, 0.3]. More generally, the set can be
represented as a solid polyhedron defined by its vertexes pi. In the sequel, we
are interested in sets of admissible probabilities, which are closed convex sets of
probabilities.

A convex solid can also be defined by the planes containing its faces. Say that
a measure of probability p is admissible in front of the measure of possibility π
when p(S) ≤ π(S) for any event S. This defines a set of all admissible probability
measures in front of π, denoted Cπ in the sequel. That set is never empty: since
the normalization axiom implies that there exists f such that π(f) = 1, the
probability stating that f is certain (p(f) = 1) is admissible.

Cπ = {p such that: for any S ⊂ Ω, p(S) ≤ Π(S)} (3)

Given a set of admissible probability measures C, one can turn the definition
around and consider the maximum of p(S) for all p in C. This will be called S’s
plausibility level and denoted p(S).

p(S) = max
p∈C

p(S) (4)

Finally, Walley [1991, sec. 3.8]’s theorems allow to define two mathematical
structures that are naturally related to any set of admissible probabilities C:

The partial order relation defined by: a future f is more probable than g if
and only if p(f) > p(g) for all p in C.

A desirable gamble is a function ranging on Ω with positive expected value
for any admissible probability.

The notion of desirable gambles offers the link with de Finetti’s approach.
There is a geometric duality: the larger the set of admissible probabilities, the
smaller the set of desirable gambles.

The partial order associated with a possibility distribution is the partial
order of the set of admissible probabilities implied by this distribution.

Table 1 displays a numeric example of the above.

4 Application: guidelines for assessing far dis-
tant futures

After having discussed the meaning of a single futurible’s possibility level, we
now turn to the problem “at which level of possibility should the futuribles be
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S {a} {b} {c} {a, b} {b, c} {c, a} {a, b, c}
Π(S) 0.4 1 0.2 1 1 0.4 1
N(S) 0 0.6 0 0.8 0.6 0 1
p1(S) 0 1 0 1 1 0 1
p2(S) 0.2 0.6 0.2 0.8 0.8 0.4 1

Table 1: Example with Ω = {a, b, c}: a measure of possibility Π, the corre-
sponding measure of necessity N and two admissible measures of probability p1

and p2. Future b is more probable than c (for any p admissible, p(c) ≤ 0.2 and
p(b) ≥ 0.6) but future a does not compare with c.

selected ?”. To answer this question, we model a situation of communication
from A (the analyst) to B (the businesspeople, or the decision-maker) with the
following assumptions.

The analyst’s information will be represented by a set of admissible prob-
abilities C on an universe of discourse Ω. The analyst can only communicate
a summary (S, π), where S ⊂ Ω contains n=2 to 4 futures and π is their pos-
sibility distribution. We assume there is a real-valued objective function J(f)
that defines the performance of a future f with respect to the businesspeople’s
goals. Finally, what makes the problem interesting is the assumption that both
Ω and C are very large. In other words, the set of futures that can be described
is infinite, and the information given by C is very imprecise.

We study how to choose S and π. First we show that this problem has more
dimensions than the classical problem of transmitting a signal over a limited
bandwidth channel. There are three goals that the analysts would like to reach
simultaneously: no future should be dismissed out of hand as less probable than
another, the set of futuribles should be plausible, and it should explore a wide
range of outcomes. We show that these three principles interact to suggest that
the extreme futuribles should be selected at possibility level 1/n exactly.

4.1 The problem

Given (Ω, C, J), we proceed in two steps to define an interesting (S, π). First,
given S, how to choose π ? Assume that the analyst’s priority is to not imply
undesirable policies. Denoting DA the set of desirable gambles for A, this as-
sumption means that DB ⊂ DA. By duality, this means that Cπ includes the
restriction of C to S. In other words, the possibility level π(f) presented to the
businesspeople must not be inferior to the maximum probability of f admissible
to the analyst. Since there is no reason to restrict DB further:

π(f) = max
p∈C

p(f) = p(f) (5)

Second, how to choose the focal futuribles S ?
From a classical signal theory point of view, one would seek to minimize

the unavoidable information loss occurring during the communication. The
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difficulty is that imprecise probabilities explicitly recognize that ignorance (and
therefore information) is not unidimensional, as discussed in 2.2.

To intuitively explain why it would be difficult to determine S by simply
minimizing information loss using a single real-valued measure of uncertainty,
consider the classical Entropy definition of information. Klir [1999] noticed that
a good measure of the informational content of C is the maximum of the entropy
reached by all admissible probability distributions p ∈ C. Geometrically, this
value measures a distance between the set C and the point corresponding to
equiprobability. But this does not inform about the size of C, since no single
index could summarize both the size and the position of a geometrical figure
at the same time. Generalized entropy cannot discriminate between void infor-
mation and equiprobability. Actually, as soon as equiprobability is part of C,
generalized entropy is maximized.

Instead of defining S by optimization, I propose a toolbox of three mathemat-
ical principles to complement the many existing informal techniques of Futures
Studies. Three criteria could guide the choice of focal futuribles. First, none
should be preferred to another. Second, the set of futuribles should be maxi-
mally plausible. Third, that set of futuribles should span the largest possible
interval with respect to the decision-maker’s variables of interest.

4.2 Incomparability

In line with section 3.3, a future f is said to be more probable than g if and only
if p(f) > p(g) for all p in C. It is not always possible to say that any one of two
futures is more probable than the other. If C is large enough, it might contain
two probability distributions p1 and p2 such that on the one hand p1(f) > p1(g)
but on the other hand p2(f) < p2(g). Incomparability is a good thing here
because in a set of futuribles, none should be dismissed out of hand as less
probable than another. It suggests to choose S such that no future in it is more
probable than any other.

A sufficient condition for this is that S maximizes generalized entropy. If
equiprobability on S is in the interior of C, then no element of S is more probable
than another. This suggests:

Rule 1 (No preference) Choose S such that equiprobability on S belongs to
the interior of C.

This sufficient condition is not necessary, consider for example an urn with
20 red balls and 70 ‘black or yellow’ balls. But it is justified in practice by the
following considerations. When S is presented without information about the
relative likelihood of the different scenarios, a Bayesian decision-maker is likely
to use a so-called uninformative, that is to say uniform, probability distribution.
One advantage of this method is that at least the decision-maker is not led to
use a wrong (inadmissible) probability distribution.
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4.3 Plausibility

The second principle focuses on getting the most likely futures on board. To
this end, consider equation 4 defining S’s plausibility level p(S) as the maximum
of p(S) for all p in C. That plausibility should be maximized:

Rule 2 (Maximum plausibility) Choose S to maximize p(S).

When C is defined by a possibility distribution, the way to satisfy this con-
dition is to include one (or more) futurible of possibility 1, which means ideally
that it should be so realistic that nobody would bet against it at any rate. One
practical justification for this principle could be that when executives hire a
team of external consultants to write about the future, the qualification of the
team’s report is assessed by how well the baseline displays knowledge of the
conventional thinking in the industry.

Note that the rule “include at least one possibility 1 futurible” is not equiv-
alent to “Include one Business-as-Usual scenario”. It depends on how (Ω, C)
is defined. It is only when (Ω, C) is so precise that there is only one f∗ such
that p(f∗) = 1 that the rule implies a Business-as-Usual scenario. It is then
necessary and sufficient to include f∗ in S to maximize the plausibility of the
scenario set. But introducing a Business-as-Usual future may not be desirable
because it would become an ‘official future’ exclusive point of focus, thus de-
feating the very purpose of any kind of uncertainty analysis. There are several
technical ways to make sure that C is large enough to avoid this.

One way is to derive C from possibility distributions with flat tops, where
more than one future can have possibility 1.

Another way is to use constraint-based methods. With those, C derives from
a possibility distribution that can only take the values 0 or 1: any future that
can be described is either viable or impossible. The admissible probabilities can
be defined simply as those which give a zero probability to impossible futures.
With constraint-based methods, the first and second principles simply rule out
impossible futures.

A third way to avoid a central future could be to resort to more sophisticated
theories to define C, such as Dempster-Shafer theory of evidence. In this case,
the maximum plausibility principle would imply to account for all the dissonant
points of views.

Having an even number of futuribles is within the scope of the methods
presented in this paper. The choice to include or not a Business-as-Usual future
is left with the analyst, depending on the institutional context as much as on
the precision of available information.

4.4 Contrast

The third desirable property of a good set of futuribles is that it should be well
contrasted to represent the range of possible futures. Contrast is defined relative
to the performance criteria J for the system being analyzed. For business futures
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Figure 1: Where to choose the futures on the possibility distribution curve.
In each of the four panels, the curve shows the possibility distribution (the π
vertical axis) of the variable of interest J (for example, global warming in 2100).
There are three principles: 1/ To ensure that no future is less probable than
another, choose only points above the π = 1/n possibility level, where n is the
number of futures. 2/ To ensure credibility, choose at lease one point at level
1. 3/ To provide constrast, choose points as apart as possible. These principles
play out differently depending upon the shape of the possibility distribution and
the number of futures to be determined, as illustrated.

J may be profits, for public policy social welfare, for environmental economics
the pollution level.

The range [inff∈S J(f) , maxf∈S J(f)] is an indicator of diversity that should
be maximized:

Rule 3 (Diversity) Choose S to maximize the range of the variable of interest.

This rule suggests to choose two extreme futuribles that respectively mini-
mize and maximize J . This principle may seem ambiguous since it is not always
possible to compare two intervals [J(f1), J(f2)] and [J(f3), J(f4)] with respect
to inclusion. However, it is possible to mix and match futuribles, and consider
the least performing of J(f1), J(f3) and the most performing of J(f2), J(f4).

An important case is when a future is described by a n-uple (x1, . . . , xn),
each argument xi being a numerical parameter, and J is monotonous in each
parameter. In this practical case, there is a ‘worst’ and a ‘best’ future. The
former has all the parameters minimizing J , the later maximizing it.

In the common case when extreme futures are those with the smallest pos-
sibility (bell-shaped distribution), this rule tends to push the futuribles apart.
But it is limited by the principle of no preference. The possibility of each ele-
ment in a set of n futures should be greater than 1/n. So while these futures
are extreme, their possibility remains at a significant level.

4.5 Illustration

In summary, Figure 1 illustrates how the principles of incomparability, plau-
sibility, and contrast help determine futuribles. The four graphs correspond
to three classes of methods which can be used to define a set of admissible
probabilities : constraints, possibility distribution (with a pointy or a flat top)
or finally evidence theory. The first, second and third graphs show the dis-
tribution of the performance criteria J according to the analyst’s information,
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defined as the maximum of the possibility of all futures in Ω that reach J . That
is: πJ(u) = maxJ(f)=u π(f).

The first graph, left, represents the case in which constraints are used to sort
out viable futures from the impossible or unacceptable ones. The set of viable
futures is a segment at π = 1, and the two focal futuribles are the dots at the
ends of this segment.

The second graph depicts a setting where a Business-as-Usual storyline is
presented to the decision-maker, as the possibility distribution has a single max-
imum. The set of three futuribles is displayed with dots. The second principle
suggests to choose the least surprising futurible, at possibility level 1. The first
and third principle interact to suggest to choose the other two futuribles at
possibility level 1/3.

The third graph illustrates how to choose four futures using a trapezoidal
possibility function so that there is no Business-as-Usual. In this case the ex-
treme futuribles can be chosen at possibility level 0.25, since there are four
futures.

Finally the fourth graph, right, is more sophisticated. The vertical axis is no
more a possibility scale, but means to represent plausibility levels in Dempster-
Shafer theory of evidence. The two different triangles represent two different but
internally consistent points of view about the future. Maximizing plausibility
implies to choose one futurible at the top of each triangle, in order to represent
each point of view.

5 Discussion and concluding remarks

The paper suggests a novel approach for the integrated assessment of far distant
futures. In this approach, possibility distributions are used to define a small set
of two to four futuribles which has to satisfy three properties: Plausibility (the
set should be maximally realistic), Incomparability (no futurible should be more
probable than another), and Contrast (it should describe a maximal range for
the variable of interest). It is shown that plausibility is achieved if at least one
futurible is totally possible. Contrast and incomparability balance each other.
We find that a satisfying balance can be achieved by selecting extreme cases
that do not rule out equiprobability. For example, if there are three cases, the
possibility level of extremes should be about 1/3.

In the toolbox of methods for long range analysis, the approach discussed
here lies between probabilistic forecasting and narrative scenario making. There
are several limitations to this approach:

• This is a formal way to summarize rich information into a simpler form in
which it can be passed on easily to policy makers. Mathematical methods
may have harmful effects because people have a tendency to discount
the extreme cases and grab onto numbers, ignoring the more important
structural messages. Also, the view that information flows one way from
the analyst to the decision makers discounts the interactive dimension of
the analysis. Scenario making is better for these two aspects.
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• Possibility theory is not as well developped as probability theory. It fol-
lows that it is less well known, and there is much less commercial software
to deal with it. With respect to decision making, as discussed above, De
Finetti’s subjective point of view on statistics provides an epistemic inter-
pretation of possibility. It allows to define which gambles are desirable,
whatever the meaning of a gamble (policy option or investment opportu-
nity). However, possibility theory does not easily allow to compute opti-
mal decisions by expected value maximisation. Probabilistic forecasting
is better at this.

• This method is relevant only for the part of the problem which can be
represented formally by a possibility distribution. With respect to the
other dimensions of ignorance such as vagueness or strategic uncertainty,
other mathematical tools are needed (respectively fuzzy theory and game
theory).

This research was motivated by the IPCC report about the possible global
warming over the next century: +5.8 ◦C, without probability or likelyhood con-
siderations. When it comes to long term environmental issues, there is no ac-
cepted method to assign a probability to any precisely described future, and
that number would be infinitesimal anyway. This is a problem for [IPCC, 2000]
scenarios, because although all of them are equally valid the one leading to
5.8 ◦C of global warming in 2100 is more extreme in an unspecified way.

We found that the concept of degrees of possibility can be a useful addition
to the toolbox of methods for assessing far distant futures. It allows to quantify
the unlikelihood of future events, without giving a false probabilistic precision.
This explains why bounds on probabilities have found their way in the current
IPCC guidelines for expressing risk and uncertainty. Further empirical work is
needed to assess a degree of possibility for the +5.8 ◦C warming by 2100 figure.
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