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Arbitrage With �Fixed Costs�and
Interest Rate Models

Abstract

In this paper, we study securities market models with ��xed costs.�We characterize the

absence of arbitrage opportunities and we provide fair pricing rules. We then apply these

results to extend some popular interest rate and option pricing models, which present arbitrage

opportunities in the absence of ��xed costs.�

In particular, we prove that the quite striking result obtained by Dybvig, Ingersoll and Ross

(1996), which asserts that, under the assumption of absence of arbitrage, long zero-coupon rates

can never fall, is no longer true in models with ��xed costs,� even arbitrarily small ones. For

instance, models where the long-term rate follows a di¤usion process are arbitrage-free in the

presence of ��xed costs� (including arbitrarily small ones). We also rationalize models with

partially absorbing or re�ecting barriers on the price processes. In particular, we propose a

version of the Cox, Ingersoll, and Ross (1985) model which, as in Longsta¤ (1992), produces

yield curves with realistic humps but does not assume an absorbing barrier for the short-term

rate. This is made possible by the presence of (even arbitrarily small) ��xed costs.�

Keywords arbitrage - �xed costs - contingent claims pricing - interest rate models - long zero-

coupon rates - Dybvig, Ingersoll and Ross - Brennan and Schwartz - barrier models.
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I. Introduction
In this paper, we study securities market models with ��xed costs.�We characterize the

absence of arbitrage opportunities and we provide fair pricing rules. We then apply these

results to extend some classical interest rate and option pricing models which present arbitrage

opportunities in the absence of ��xed costs.�

Transaction costs are usually said to be �xed if they are constant regardless of the size of

the transaction. In this paper, we study more general ��xed costs�structures where the cost of

transacting has a �xed component, i.e., is bounded away from zero independently of the quantity

traded. Some results will more speci�cally focus on �bounded �xed costs�structures, for which

transaction costs are bounded (below and above) regardless of the size of the transaction or on

�vanishing �xed costs�structures, i.e., transaction costs structures such that the marginal cost

tends to zero when the transaction size increases. Note that �bounded �xed costs� structures

are a speci�c case of �vanishing �xed costs�structures.

As underlined by Brennan (1975), such ��xed costs�structures capture reasonably well the

basic features of the commission structure of many stock exchanges which involve a stated

amount plus a declining percentage of the value of the transaction. In fact, investors incur

many di¤erent fees and charges that depend, among other things, on the traded volume, traded

amount, traded asset, and the total fee is in general bounded below by a given amount that

corresponds to the ticket charges that have to be paid for each transaction regardless to the

size of that transaction and bounded above. For instance, on the GLOBEX clearing system

where fees are capped (for trades executed for members trading within their division for their

own account) at $50 per day per product, per operator.1 We refer to Jones (2002) for a general

1More details on the clearing and execution fees are provided on the Chicago Mercantile Exchange website
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description of the trading costs structure on the NYSE accross the 20th century.

Note that such a ��xed costs� structure is not limited to the modelization of clearing or

trading fees imposed by stock exchanges. Indeed, as underlined by Leape (1987),

�acquiring assets virtually always incurs �nancial charges such as brokerage fees,

which in general have a �xed costs component (...). Even in the cases in which

such costs appear proportional to the amount invested, there are typically minimum

investment requirements which are equivalent to �xed costs of trading. The costs of

acquiring assets also include the opportunity costs and information costs associated

with analyzing new assets. Such costs are truly costs of participating in particular

markets and are independent of the amount invested.�

In fact, our ��xed costs�structure can model brokerage fees, holding costs, �xed investment

taxes to gain access to a market (such as a foreign market), operational and processing costs that

typically exhibit strong economies of scale (e.g. through automation), ��xed costs�involved in

setting up an o¢ ce and obtaining access to information, the opportunity cost of looking at a

market or of doing a speci�c trade and brokerage arrangements where marginal fees go to zero

beyond a given volume that is reset periodically (a common practice in the industry).

Other frictions studied in the literature include transaction costs that are proportional to the

quantity of asset traded. Without minimizing the relevance of this type of frictions, the ��xed

costs� speci�cation analyzed in this paper is of importance for three major reasons developed

by Viard (1995) :

�First as Leape (1987) argued, a number of costs associated with purchasing and

(http://www.cme.com/clr/clring/fees/equtyclrng1867.html)
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holding assets approximately satisfy the �xed-costs speci�cation (...)

Second, such costs are more analytically challenging than proportional costs.

The latter can be easily accomodated in the standard CAPM framework with little

additional analysis, because such costs simply reduce the net rate of return.2

Third, �xed costs o¤er a simple and plausible explanation for the observation that

many investors hold exactly zero of most available assets; although proportional costs

would alter an investor�s holding of any particular asset, they generally would not

drive such holdings to zero.�

We �nd that the absence of arbitrage opportunities in models with �bounded �xed costs�

(or more generally with �vanishing �xed costs�) is equivalent to the existence of a family of

nonnegative state-price densities compatible with the asset price processes. The only di¤erence

with the frictionless setting lies in the fact that these state-price densities may be nonnegative

instead of positive. When the �xed costs are neither bounded nor vanishing, we still have that

the existence of nonnegative state price densities implies the absence of arbitrage opportunity,

but the converse implication does not necessarily hold. Remark that a zero state price density

for some states of the world does not mean that investors might have consumption for free in

those states since they always incur a positive �xed cost. Furthermore, we de�ne fair pricing

rules as those that are arbitrage-free and lie below the superreplication cost. Indeed, no rational

agent would pay more than its superreplication cost for a contingent claim since there is a

cheaper way to achieve at least the same payo¤ using a trading strategy. We then show that

the only fair pricing rules are those that are equal to the sum of a ��xed cost� function and

2Although this is challenging in a dynamic setting (see Jouini and Kallal (1995) for a characterization of the
no-arbitrage in a proportional transaction costs framework).
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of a linear pricing rule associated to one of the nonnegative state-price densities given by the

absence of arbitrage. While we focus on discrete time models, the characterization of the absence

of arbitrage opportunity remains essentially the same in a continuous time setting. However, as

usual in continuous time and for technical reasons, the concept of no arbitrage is replaced by

the one of no free-lunch, and the boundedness condition on the �xed costs structure has to be

modi�ed accordingly (see Jouini, Kallal and Napp, 2001).

The main impact of the introduction of ��xed costs,� in discrete time as well as in contin-

uous time, is the enlargement of the set of possible state-price densities from the positive ones

to the nonnegative ones. The absence of arbitrage opportunities in a ��xed costs� framework

is therefore weaker than in a frictionless model and some models that contain arbitrage oppor-

tunities in the absence of frictions might become arbitrage-free with the introduction of ��xed

costs�including arbitrarily small ones. This enables us in Section 3, in a discrete time setting,

to rationalize some model speci�cations that are usually rejected for arbitrage considerations,

but have other desirable properties. The discrete time framework permits to provide intuitions

about how things work and to see exactly how the �xed costs and the 0-weights in the state

price densities rationalize the models under consideration.

In particular, we prove that the quite striking result obtained by Dybvig, Ingersoll and Ross

(1996), which asserts that, under the assumption of absence of arbitrage, long zero-coupon rates

can never fall, is no longer true in models with ��xed costs,�even arbitrarily small. In particular,

we consider discrete time versions of the classical Brennan and Schwartz (1979) model. Based on

the pure expectation theory, this model assumes a di¤usion behavior for long-term rates,3 and is

3Long rates are de�ned as the limit zero-coupon rate when maturity goes to in�nity. It does not correspond
to what is usually called long rate on the markets, namely the rate associated to the longest marketed maturities
(e.g. 30 years).
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therefore incompatible with the absence of arbitrage result given by Dybvig, Ingersoll and Ross

(1996). We show that such a model is now compatible with the absence of arbitrage (with ��xed

costs,�even arbitrarily small). This enables to reconcile arbitrage conditions and the empirical

observations that do not seem to reject Brennan and Schwartz (1979) model (see Chan et al.,

1992). In the same spirit, we also provide examples of term structure models adapted from Ho

and Lee (1986) where the long-term zero-coupon rates can both increase and decrease.

�Fixed costs� also permit us to rationalize models with partially absorbing or re�ecting

barriers on the asset price process. In a frictionless framework, such models obviously admit

arbitrage opportunities but they are arbitrage free in the presence of ��xed costs,� including

arbitrarily small ones. In addition, we show that in such models the price of a call option is equal

to the price of a barrier option in a model without any barrier. We also propose a discrete-time

version of a Cox, Ingersoll and Ross (1985) model which, as in Longsta¤ (1992), produces yield

curves with realistic humps. However, our model does not assume an absorbing barrier for the

short rate, but instead assumes ��xed costs.�

There is an existing body of literature that studies �xed transaction costs: Du¢ e and Sun

(1990), Grossman and Laroque (1990) and Morton and Pliska (1995), among others, study the

optimal portfolio problem with transaction fees that are proportional to the size of the overall

portfolio (as opposed to the size of the speci�c transaction). In the same spirit, Luttmer (1999)

adresses the empirical problem of the required level of transaction costs for observations on

consumption choices to be consistent with data on asset returns. Brennan (1975), Goldsmith

(1976), Levy (1978), Mayshar (1979, 1981), Leape (1987) and Viard (1995) consider a CAPM

model with ��xed costs�in order to propose an explanation to the empirical evidence of limited

diversi�cation: households hold a very limited set of assets. Jouini, Kallal and Napp (2001) study
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the characterization of the assumption of no-free-lunch as well as viability issues in securities

market models with ��xed costs�in a continuous time framework.

The paper is organized as follows. Section 2 presents the absence of arbitrage characterization

in models with ��xed costs,�and provides a general description of fair pricing rules. Section 3

provides applications of these results to interest rate models. All proofs are in the Appendix.

II. Models with �Fixed Costs�

A. Arbitrage in Models with �Fixed Costs�

1. Formulation of the Market Model

The model to be studied here is the so-called event-tree model and the reader, familiar with

such a framework, may skip the �rst paragraph.

A �nite set 
 of states of the world is speci�ed and �xed. Also speci�ed is a time horizon T

which is the terminal date for all economic activity under consideration. The information arrival

is given by a family of increasingly �ner partitions fF0; :::; FT g of 
 such that F0 = f
g and

FT = ff!g : ! 2 
g. A date t�node is an element of Ft. We denote by �t the set of all date

t�nodes and for �t 2 �t , f (�t) = f�t+1 2 �t+1 : �t+1 � �tg can be interpreted as the set of

the immediate successors of the date t�node �t:

There are n+1 assets and for a date t�node �t; we denote by Zk(�t) the price at time t and

in the node �t of asset k: We assume that Z0 � 1: this amounts to assuming the existence of

an asset called a numéraire, i.e. with positive prices at every time, and considering discounted

price processes.

In this framework, a portfolio is described by a vector � 2 Rn+1 where �k is the quantity of

asset k held by the investor. A portfolio strategy is then an adapted process (�t)t=0;��� ;T where

�(�t) is the portfolio held at date t in the event �t:
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Each time investors revise their portfolio of risky assets, they pay a given transaction cost.

The amount paid might depend on the traded assets, the quantity of assets that are traded,

the traded amount as well as on the portfolio composition and on previous trades. For a given

portfolio strategy (�t)t=0;��� ;T ; the transaction cost paid by the investors at date t and in the

node �t is given by c�(�t): We also denote by C�t (�t); the total transaction costs paid by the

investor up to time t: We shall impose the following conditions :

� For a given strategy �; the process c� is nonnegative and adapted to the information

structure fF0; :::; FT g ;

� if there is a trade at date t and in the state of the world �t (i.e. �t(�t) 6= �t�1(�t�1) for

�t�1 2 �t�1 such that �t 2 f(�t�1)) then C�t (�t) > c where c is a given positive minimum

transaction cost.

The �rst condition means that the ��xed costs�are nonnegative and depend only on present

and past information and the second condition means that investors have to pay a given minimum

amount at least once, in order to trade.

We shall say that the ��xed costs�are vanishing if

� for any strategy �, any date t and any date-t node �t, we have lim�!1
c��(�t)

� ! 0:

This condition re�ects the declining marginal rate of the transaction costs structure. It is in

particular satis�ed when the transaction costs are bounded.

Many transaction costs structures are taken into account with this modelization

� clearing fees and brokerage arrangements where the amount to be paid is a function of the

traded amount and where marginal fees go to zero beyond a given amount. We have then
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c�t =
Pn

k=1 f
k(
�
�kt � �kt�1

�
Zkt ) where f

k is the fees structure associated with asset k and

satis�es fk(x) > c for x 6= 0 and lim�!1
fk(�x)
� ! 0;

� trading fees and brokerage arrangements where the amount to be paid is a function of

the quantity of assets that are traded and where marginal fees go to zero beyond a given

volume. We have then c�t =
Pn

k=1 f
k(�kt � �kt�1) where fk is the fees structure associated

with asset k and satis�es the same conditions as above,

� holding costs where the amount to be paid is a function of the quantity of assets held in

the portfolio. We have then c�t =
Pn

k=1 f
k(�kt ) where f

k still satis�es the same conditions

as above,

� �xed investment taxes to gain access to a market or ��xed costs� involved in setting up

an o¢ ce and obtaining access to information where the amount is paid once before the

�rst access to that market. Let us denote by Ck the amount to be paid in order to

have a later access to the k�th market. We have then C�(�t) � Ck at any date where

�kt (�t) 6= �kt�1(�t�1) for �t�1 2 �t�1 such that �t 2 f(�t�1)

� operational and processing costs that exhibit strong economies to scale where the paid

amount might be a function of the traded amount or the traded quantity with a possible

�xed initial amount. The costs structure is then a combination of the structures presented

above.

In all the examples above we have assumed that there is no cost associated to transactions

on the riskless asset denoted by 0. In the case of transaction costs, this assumption is made

without any loss of generality since any trade on the riskless asset implies a trade on at least

10



one other asset. In the case of holding costs, this assumption means that there is no holding fee

on the riskless asset. Such an assumption is made in order to make the arguments clearer and

can be relaxed without di¢ culties.

2. Arbitrage Opportunities

We can now introduce the notion of arbitrage. As usual, an arbitrage opportunity is a plan

that yields through some combination of buying and selling securities, a positive gain in some

circumstances without a countervailing threat of loss in other circumstances. More precisely,

De�nition 1. A two-period arbitrage opportunity with ��xed costs�consists of a portfolio4 �

such that
nX
k=0

�kZ
k(�t) + c

�(�t) � 0

and
nX
k=0

�kZ
k(�t+1)� c�(�t+1) � 0 for all �t+1 2 f(�t)

with at least one strict inequality, for some t and some �t in �t:

Before going any further, we provide some intuition of how things work and illustrate our

results. A strategy that leads, exclusive of transaction costs, to a nonnegative and nonzero net

gain which is zero in some states, would be an arbitrage opportunity in the frictionless framework,

but is not an arbitrage in the ��xed costs�setting. Indeed, since positive transaction costs have

to be paid, the net gain (inclusive of transaction costs) becomes negative in some states. For

instance, a corporate bond and a government bond with the same characteristics can have the

same price in a model with ��xed costs�even if the corporate bond has a positive probability of

4Strictly speaking, the transaction costs process c� is only de�ned for strategies � and not for portfolios.
However, for a give date�t node �t a portfolio � can obviously be identi�ed with the strategy that consists in
buying that portfolio at date t in the event �t and selling it at date t+ 1:
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default and the government bond is considered as default free. Indeed, buying the government

bond and selling the corporate bond would be an arbitrage in the frictionless setting but not in

the setting with ��xed costs.�Hence, the assumption of absence of arbitrage in the frictionless

case is not equivalent to the assumption of absence of arbitrage in the case with ��xed costs.�

In order to clarify the link between the concepts of arbitrage with ��xed costs� and of

frictionless arbitrage, we may remark that we have the following:

Proposition 2. If there is a two-period arbitrage opportunity with ��xed costs,� then there

exists a portfolio � such that

� � Z(�t) < 0

and � � Z(�t+1) � 0 for all �t+1 2 f(�t)

for some t and some �t in �t: The converse implication holds also true for �vanishing �xed

costs.�

The existence of an arbitrage opportunity with �vanishing �xed costs� is equivalent to the

existence of a strong form of a frictionless arbitrage, i.e. a portfolio with negative initial cost

and nonnegative payo¤s.

In order to illustrate this result, consider a two-period binomial model, i.e. a model consisting

of one risky security with a value of 1 at date 0 and a value of u in state up and of d in state

down at date 1; and one riskless security; with a value of 1 at date 0 and a value of (1 + r) in

both states of the world at date 1:

It is easy to see that if d < (1 + r) < u; then the model is arbitrage-free, in both cases, with and

without ��xed costs;� if d = (1 + r) or u = (1 + r) ; then it is arbitrage-free in the model with
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��xed costs�but not in the frictionless model anymore; if d > (1 + r) or u < (1 + r) ; then it

contains arbitrage opportunities in the frictionless model as well as in the model with �vanishing

�xed costs.�

A characterization of the absence of arbitrage with ��xed costs�then follows:

Proposition 3. There is no two-period arbitrage with ��xed costs� (resp. �vanishing �xed

costs�) if (resp. if and only if) for each date t and each date t�node �t there exists a nonneg-

ative state-price density on f(�t) compatible with the asset prices i.e. there exists a family of

nonnegative numbers (��)�2f(�t) such that

Zk(�t) =
X

�t+12f(�t)

��t+1Z
k(�t+1) k = 0; :::; n:

For illustration purpose, let us consider a two-period �nancial model with one bond and one

stock where the riskless rate is equal to the lowest possible rate of return of the stock. According

to the Fundamental Theorem of Asset Pricing, since there is an arbitrage opportunity for the

frictionless case, there cannot exist a positive compatible state-price density. Nevertheless, the

state-price density that puts all the weight on the states of the world such that the riskless rate

is equal to the lowest possible rate of return of the stock is compatible with our �nancial model.

The fact that state price densities can be zero when the physical probability is non zero

seems quite striking and counterintuitive. It does not mean that investors have access to units

of consumption in these states for free since this access to units of consumption is linked to

the payment of a �xed cost in all states. We can wonder whether the situation with zero state

price densities in states of positive physical probability is compatible with equilibrium or at least

utility maximization. Here again, it does not mean that the agent�s marginal utility in these
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states is zero. It just means that the �xed cost structure and the agent�s utility function are

such that at some point of consumption it is not possible to increase the agent�s utility, since

any marginal increase of consumption in these states (with zero state price densities) would be

compensated by a marginal increase of the �xed cost to pay in all other states. An example

of such a situation is provided in the Appendix. Note that this example is not a singular one

and we have the following general result. Even if there are zero state-prices, a large class of

agents will �nd a positive optimal solution to a consumption investment problem, namely those

agents who have a marginal utility function decreasing faster than the marginal ��xed cost.�

This condition is for instance satis�ed if we assume that the ��xed transaction costs�structure

is vanishing but not bounded above and that the utility functions are in the HARA class (i.e.

� u0

u00 (x) = �+ �x) and satisfy the empirically reasonable condition � < 1.

The same results can be obtained in a dynamic setting. Furthermore, in such a setting

an arbitrage opportunity can be de�ned as a strategy on the whole tree instead of a strategy

between a node and its successors. The next result provides a straightforward extension of the

no-arbitrage characterization to such a dynamic framework.

De�nition 4. A dynamic arbitrage opportunity is a strategy described by a nonnull dynamic

portfolio � (i.e. a portfolio �(�t) for all date t = 0; :::; T � 1 and all date t�node �t) satisfying

for all t; for all �t 2 �t and all �t+1 2 f (�t) the following self-�nancing condition

�(�t) � Z(�t+1) = �(�t+1) � Z(�t+1) + c�(�t+1)

and such that

�(�0) � Z(�0) + c�0 � 0
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and, for all �T 2 �T ;

�k (�T ) = 0; k = 1; :::; n;

� (�T ) � Z (�T )� c� (�T ) � 0: (0.1)

The condition �k (�T ) = 0; k = 1; :::; n means that the portfolio is liquidated at the �nal

date. We then have:

Proposition 5. The existence of a dynamic arbitrage opportunity is equivalent to the existence

of a two period arbitrage opportunity.

As a corollary to Proposition 3, in the presence of �vanishing �xed costs� the no-arbitrage

condition implies the existence of a nonnegative compatible state-price density � on the whole

tree, i.e. � = (� (�t))t=0;��� ;T;�t2�t such that, at each date t = 0; � � � ; T � 1 and at each date

t�node �t; we have

� (�t)Z (�t) =
X

�t+12f(�t)

� (�t+1)Z (�t+1) :

Indeed, it su¢ ces to multiply the di¤erent state-price densities obtained at each node between

that node and its successors to construct a nonnegative state-price density compatible with the

assets prices.

Such a state-price density can be seen as a nonnegative (instead of positive as in the friction-

less case) subjective probability on the space 
 of the states of the world and the compatibility

condition between the state-price density and the price processes becomes then a martingale

condition on the traded assets prices under this subjective probability.

However the existence of a nonnegative compatible state-price density is not a su¢ cient
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condition to rule out any arbitrage opportunity. We consider the following model for which

T = 2; 
 = f!1; :::; !4g ; F1 = ff!1; !2g ; f!3; !4gg ; n = 1 and the prices are given by:

1 1 1 for the bond

1

1
1:5

0:5

0:5
1

1

for the risky security.

There exists a nonnegative state-price density given by

1

1
0:5

0:5

0
0

0

Nevertheless, as we have seen earlier, the model is not arbitrage-free: we only need at date

1 and in the lower date 1�node f!3; !4g to buy one unit of the risky security and to sell one

unit of bond and to clear the position at date 2 to obtain an arbitrage opportunity.

In order to completely characterize the assumption of absence of arbitrage, we need to intro-

duce a whole family of nonnegative state-price densities or equivalently of martingale measures

with nonnegative weights. Let us start with some de�nitions.

For a given date i 2 f0; � � � ; T � 1g and a given date i�node �, we de�ne the sub-model S� by

a set 
� = � of states of the world and a family of increasingly �ner partitions (F�t )t2f0;:::;T�ig

with F�t = f�0 2 Ft+i : �0 � �g and asset prices de�ned for �0 2 F�t ; for t in f0; :::; T � ig, by

Z� (�0) = Z (�0). In fact, the sub-model S� can be described by the sub-tree starting in �:
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Theorem 6. There is no dynamic arbitrage opportunity with �vanishing �xed costs� (resp.

��xed costs�) if and only if (resp. if) for all date i and all date i�node �; there exists a

nonnegative state-price density �� = (�� (�t))t=0;��� ;T�i;�t2F�
t
compatible with the asset prices

in the sub-model S�, i.e.for all t 2 f0; � � � ; T � ig and all �t 2 F�t

��(�t)Z
�(�t) =

X
�t+12f(�t)

��(�t+1)Z
�(�t+1):

The absence of arbitrage opportunities is then characterized by the existence of martingale

measures with nonnegative weights for every sub-tree.

B. Pricing in Models with �Fixed Costs�

In this subsection, we restrict our attention to �vanishing �xed costs structures.�

A contingent claim x is de�ned by its payo¤s in each terminal node �T 2 �T . It pays, at

date T , the amount x (�T ) at the node �T .

A contingent claim x is said to be attainable (in the frictionless model) if there exists some

dynamic portfolio � satisfying for all t; for all �t 2 �t and all �t+1 2 f (�t) the self-�nancing

frictionless condition �(�t) � Z(�t+1) = �(�t+1) � Z(�t+1) such that � (�T ) � Z (�T ) = x for all

�T 2 �T : Let M denote the set of all attainable contingent claims. Note that M is a linear

space.

De�nition 7. A fair pricing rule on the set of attainable claims M is a functional p de�ned on

M , such that

1. p induces no arbitrage, i.e. it is not possible to �nd a dynamic portfolio � satisfying the

self-�nancing condition �(�t)�Z(�t+1) = �(�t+1)�Z(�t+1)+c�(�t+1) and contingent claims
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m1; :::;md in M for which
Pd

i=1 p (mi)+ � (�0) �Z (�0)+ c�0 � 0,
Pd

i=1mi+ � �Z � c�T � 0

on �T and one of the two is nonnull.

2. p (m) � ps (m), where

ps (m) � inf
�
� (�0) � Z (�0) + c�0, � is self �nancing and � � Z � c�T � m on �T

	

Part 1 is the usual no-arbitrage condition; it encompasses the fact that the model is arbitrage-

free and could be replaced in a frictionless model by
Pd

i=1 p (mi) � 0,
Pd

i=1mi � 0 and one of

the two is nonnull. Part 2 says that a fair price for m is smaller than its superreplication price

and corresponds to a monotonicity assumption; we impose that if it is possible to obtain a better

payo¤ than m at a cost ps (m), then no one will accept to pay more than ps (m). Note that

since m is attainable by a frictionless self �nancing strategy, and since the total cost incurred

for any strategy is bounded, there always exists at least a self �nancing (inclusive of transaction

costs) strategy dominating m.

The following proposition gives us the fair pricing rules on M through the use of the non-

negative state-price densities on the whole tree �
 introduced in Theorem 6. Notice that the

linear functional l given by l
�
(� (�T ) � Z (�T ))�T2�T

�
= � (�0) � Z (�0) for all frictionless self

�nancing strategy � is well de�ned on M : indeed, if two frictionless self �nancing strategies �

and �0 generate the same contingent claim m, i.e. if their terminal values are both equal to

m; then their initial value must also be equal; if not, the strategy given by � � �0 or by �0 � �

would be a strong form of frictionless arbitrage opportunity, which would lead to the existence

of an arbitrage opportunity with �vanishing �xed costs�as seen in Proposition 1. We �nd that

any fair pricing rule can be written as the sum of the linear functional l and of a �vanishing
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�xed cost,�or expressed in terms of the nonnegative state-price densities found in the preceding

section,

Proposition 8. If the ��xed costs structure�is bounded (resp. vanishing), then any fair pricing

rule p on the set of attainable claims M is given by

p (m) =
X

�T2�T

�
 (�T )m (�T ) + c (m) for all m in M

where �
 is any nonnegative state-price density as determined in Theorem 6 and where c is

bounded (resp. vanishing i.e. c(�m)� !�!1 0).

Moreover, if p (�x) � � [p (x)], for � su¢ ciently large; then the ��xed cost� function c (�) is

nonnegative:

This implies that p(�m)
� !�!1

P
�T2�T �


(�T )m(�T ) for any attainable contingent claim

m. Therefore, the unit price of any attainable contingent claimm is given by
P

�T2�T �

(�T )m(�T )

in the limit of large quantities traded.

As usual, we say that the market is complete (in the frictionless model) if any contingent claim

is attainable (in the frictionless model). It is then easy to see that if the market is arbitrage-free

and complete, there exists a unique nonnegative state-price density and there exists a unique

fair price for any contingent claim in the limit of large quantities.

If we further assume that the frictionless model is arbitrage-free, the unique state-price

density is then positive and the unique fair price for a contingent claim in the model with

�vanishing �xed costs� is equal to the frictionless price in the limit of large quantities. If the

market is incomplete, the set of possible prices5 in the model with �vanishing �xed costs�for a

5The set of possible prices is de�ned, as usual, as the set of prices given by all the possible fair pricing rules.
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contingent claim is equal to the set of possible frictionless prices (and their limits).

III. Applications
In this section, we apply the results of Section 2 in order to show that popular term structure

of interest rate models that are rejected by the results in Dybvig, Ingersoll and Ross (1996) are

indeed arbitrage-free in the presence of ��xed costs� (including arbitrarily small ones). We

also show that ��xed costs�allow us to use models where asset prices are bounded and reach

their bound. In particular, we obtain yield curve shapes as in Longsta¤ (1992), in a Cox,

Ingersoll and Ross (1985) like model but without assuming an absorbing barrier for the short

rate. As in Section 2, all the models under consideration are in a discrete time framework.

This permits to provide simple intuitions about how things work. It would be possible to

generalize them in continuous time through some technical adjustment. For instance, in order

to construct arbitrage free models where asset prices are bounded and reach their bound it

su¢ ces to consider processes that have a positive probability to be absorbed when they reach

the bound. The absolutely continuous state price density will then put a zero-weight on all

the trajectories that are not absorbed and the whole weight on the absorbed trajectories. The

same kind of considerations apply in the Dybvig, Ingersoll and Ross (1996) property discussion:

it su¢ ces to consider interest rate models where the nondecreasing trajectories have a positive

weight under the initial probability and to put all the weight on these trajectories in the state

price density.

A. Long Rates can Fall

We start by proving that the quite striking result obtained by Dybvig, Ingersoll and Ross

(1996), which asserts that, under the assumption of absence of arbitrage, long-term zero-coupon

rates can never fall, is not true in models with ��xed costs.�We then show that in Ho and Lee
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(1986)-like term structure interest rate models, long-term rates can �uctuate if there are ��xed

costs.� Finally, we show that, with ��xed costs,� the Brennan and Schwartz (1979) model is

indeed arbitrage-free.

1. A Simple Example

Let us recall the framework of Dybvig, Ingersoll and Ross (1996). There are traded zero

coupon bonds of all integer maturities. For t < t0, we de�ne � (t; t0) to be the discount bond

price, i.e. the price at t of receiving a unit payo¤ at some later date t0. The zero-coupon rate

z (t; t0) is de�ned implicitly by

� (t; t0) � 1

[1 + z (t; t0)]
t0�t :

The long-term zero-coupon rate at time t, is given by zL (t) = limt0!1 z (t; t
0) if the limit exists.

A free lunch is de�ned as a sequence of net trades such that i) the payo¤ tends uniformly to

a nonnegative random variable that is positive with positive probability and the price tends to

zero or ii) the price tends to a negative number but the payo¤ tends uniformly to a nonnegative

random variable.

Then the authors prove that, under the assumption of no-free lunch, if for s < t, the long-term

zero coupon rate exists at time s and exists with probability one at time t, then zL (s) � zL (t; !)

with probability one (Dybvig, Ingersoll and Ross, 1996, Theorem 2, p.9). To do so, they use

an arbitrage argument of the form i). However, if we transpose their result in our discrete time

and �nite states of the world framework, the set of attainable payo¤s is closed and a free-lunch

is in fact an arbitrage.

Their result can then be rephrased in our framework as follows. An arbitrage is a net trade
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with zero cost and nonnegative, nonzero terminal payo¤. Under the assumption of no-arbitrage,

if for s < t, the long-term zero coupon rate exists at time s and exists with probability one at

time t, then zL (s) � zL (t; !) with probability one.

As a consequence of Dybvig, Ingersoll and Ross (1996) result, models where the long-term

rate follows a speci�ed nonmonotone behavior and in particular models where the long-term

rate follows the discrete time analogon of a di¤usion are rejected by the no-arbitrage condition.

However this does not mean that models where the long-term yield is a risk factor as in Du¢ e

and Kan (1996) have to be systematically rejected. Indeed, in these models, the long-term yield

corresponds to a yield associated to a long but �nite horizon while in Dybvig, Ingersoll and

Ross (1996), the long-term rate is the limit rate when the horizon goes to in�nity. In fact, it is

possible to construct models where

� for any t; the function t0 ! z (t; t0) is nonmonotone,

� for any T; the function t! z(t; t+ T ) is nonmonotone,

� however, t! zL(t) have a monotone nondecreasing behavior.

Such an example is provided in the Appendix.

We show on a simple counterexample that in models with ��xed costs,� long-term zero-

coupon rates can fall. Suppose it is known that the spot rate will be r1 until s, and that at

time s it will be revealed to either shift to r2 (< r1) forever or to remain at r1 forever, which is

illustrated by

1! :::! (1 + r1)
s ! (1 + r1)

s+1 ! :::! (1 + r1)
t ! :::

& (1 + r1)
s
(1 + r2)! :::! (1 + r1)

s
(1 + r2)

t�s ! :::
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We assume that the discount bond prices are given (for t0 � t) by � (t; t0) = 1

(1+r1)
t0�t for t � s

and, for t > s, by � (t; t0) = 1

(1+r1)
t0�t (resp.

1

(1+r2)
t0�t ) if r1 (resp. if r2).

In fact, for t0 � t > s and for s � t0 � t; interest rates are deterministic and bond prices

are uniquely determined without making any assumption on the state-price density or on the

risk premium. For t0 > s � t; our bond prices correspond to a state-price density which puts a

zero weight on the lower branch of the tree. In a ��xed costs� framework, by Theorem 6, this

model does not contain any arbitrage opportunity in a �nite horizon. As far as free lunches are

concerned, it is clear that we need not consider strategies starting after date s+1. For strategies

starting before date s , it is easy to see that any net trade in the state r1 is equal to 0 if we

do not take the ��xed costs�into account and is smaller than �c if we take them into account.

Hence, there is no sequence of net trades, taking the ��xed costs�into account, converging to a

nonnegative nonnull random variable.

We then obtain zL (t) = r1 for t � s and for t > s, zL (t) = r1 if r1 and zL (t) = r2 if r2, so

that, since r2 < r1, we do not have zL (s) � min! zL (t; !) (more precisely, for all t1 � s and all

t2 > s, we have zL (t1) � zL (t2; !) with probability one and P [zL (t1) > zL (t2; !)] > 0).

We have then proved that when there are ��xed costs� (including arbitrarily small ones),

the result in Dybvig, Ingersoll and Ross (1996) is no longer true : long-term rates can fall. In

our example they fall with a probability that can be chosen arbitrarily, namely the probability

for the short-term rate to shift from r1 to r2 at date s:

2. Ho and Lee-like Models

It is shown in Dybvig, Ingersoll and Ross (1996;Section IV ), that in the Ho and Lee (1986)

model, the long-term rates can only increase. We prove here that with the introduction of ��xed

costs,�long-term rates can decrease in Ho and Lee-like models. More precisely, we �rst give an
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example of an arbitrage-free Ho and Lee model in which long-term rates fall with probability

one. We then give an example of a trinomial model, analogous to Ho and Lee, for which long-

term rates can both increase or decrease by introducing ��xed costs� (even arbitrarily small

ones).

Suppose that �t = fu; dgt : In such a context, a date�t node �t is a sequence (�1; � � � ; �t)

of elements of fu; dg and, for �t = (�1; � � � ; �t) ; f(�t) = f(�t; u) ; (�t; d)g with, by de�nition,

(�t; u) = (�1; � � � ; �t; u) and (�t; d) = (�1; � � � ; �t; d):

Assume now as in Ho and Lee (1986) that the value of any portfolio is independent from the

chosen path and that discount bond prices satisfy:

�(t; T; (�t�1; �t)) =
�(t� 1; T; �t�1)
�(t� 1; t; �t�1)

H(T � t; �t)

with H (�; �) = h (�), if � = u; H (�; �) = h� (�), if � = d, and h 6= h�.

Proposition 9. If there are ��xed costs,�the functions h and h� can be chosen such that h is

constant equal to 1 and h� (n) = [h� (1)]n > 1 and the model is then arbitrage-free. Furthermore,

in such a framework we have

1 + zL (t; (�t�1; u)) = 1 + zL (t� 1; �t�1)

1 + zL (t; (�t�1; d)) < 1 + zL (t� 1; �t�1)

Hence we have proved that the Ho and Lee (1986) model can lead to nonincreasing long-term

rates in the presence of ��xed costs�including arbitrarily small ones. In fact, in our setting the

long-term rates fall with a probability equal to one.

In order to construct a model where the long-term rates can �uctuate (i.e. increase and
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decrease depending on the states of the world), we have to extend the Ho and Lee (1986) model

to a trinomial setting.

In order to construct such a trinomial generalization of the Ho and Lee (1986) model, we

still assume that the value of any portfolio is independent from the chosen path and that

�(t; T; (�t�1; �t)) =
�(t� 1; T; �t�1)
�(t� 1; t; �t�1)

H(T � t; �t)

but with �t = fu;m; dgt. In the next, such a model is called a generalized trinomial Ho and

Lee model. We then have the following result

Proposition 10. In a ��xed costs� framework, there exists an arbitrage-free speci�cation of

the generalized trinomial Ho and Lee model such that

1 + zL (t; (�t�1; u)) > 1 + zL (t� 1; �t�1)

1 + zL (t; (�t�1;m)) = 1 + zL (t� 1; �t�1)

1 + zL (t; (�t�1; d)) < 1 + zL (t� 1; �t�1)

Hence we have constructed a Ho and Lee like model where long-term rates can �uctuate.

More precisely they increase along the upper branches of the trinomial tree and they decrease

along the lower branches. Consequently, models where long-term rates have a nonmonotonic

behaviour are no longer rejected for arbitrage considerations.6

6As underlined by Dybvig, Ingersoll and Ross (1996) in a frictionless framework, �It is not permissible to
specify a term structure model with a stochastic factor which is the long (asymptotic) end of the zero-coupon
yield curve unless this factor can only increase over time�.
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3. The Brennan and Schwartz Model

In the Brennan and Schwartz (1979) model the long-term rate is assumed to follow a di¤usion

process and according to Dybvig, Ingersoll and Ross (1996) is not compatible with the no-

arbitrage condition. In this section we consider a discrete time version of Brennan and Schwartz

model and we prove that such a model where the long-term rates follow a di¤usion process (or

more precisely a discrete time approximation of a di¤usion process) is compatible with the no

arbitrage condition in the presence of ��xed costs,�even arbitrarily small. Consequently, even

if in such a model the long-term rates �uctuate and decrease in some states of the world, we

cannot reject it based on arbitrage considerations if there are ��xed costs�(including arbitrarily

small ones). This enables to reconcile arbitrage conditions and the empirical observations that

do not seem to reject Brennan and Schwartz (1979) model (see Chan et al., 1992).

Let us �rst recall that in the Brennan and Schwartz (1979) model, the short-term rate and

the long-term rate, respectively denoted by ` and r; are governed by the following di¤usion

equation

8>><>>:
d`t = � (`t; rt; t) dt+ �1`tdW

1
t

drt = a (`t � rt) dt+ �2
p
rtdW

2
t

where a; �1 and �2 are given positive constants and where � is a given bounded function of the

current date and of the long-term and short-term rates.

In the next we consider the following model for the long-term and short-term rates. It is

not recombining but our aim is to show the acceptability of such a model and as we will see, we

obtain simple pricing formulas. Let
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`n+1 = `n

8>>>>>><>>>>>>:

exp

��
�(`n;rn;n T

N )
`n

� 1
2 ~�

2
1

�
T
N + ~�1

q
T
N

�
with a probability pu

1 with a probability pm

exp

��
�(`n;rn;n T

N )
`n

� 1
2 ~�

2
1

�
T
N � ~�1

q
T
N

�
with a probability pd

rn+1 = rn

8>>>>>><>>>>>>:
exp

n
(a(`n�rn)rn

� 1
2
�22
rn
) TN +

p
2 �2p

rn

q
T
N

o
with a probability qu

exp
n
(a(`n�rn)rn

� 1
2
�22
rn
) TN

o
with a probability qm

exp
n
(a(`n�rn)rn

� 1
2
�22
rn
) TN �

p
2 �2p

rn

q
T
N

o
with a probability qd

where T is a given horizon, ~�1; a; �2 are positive constants and where � is a given bounded

function.

This model consists of 9 di¤erent states of the world at each date, with a probability piqj for

each state (i; j)i=u;m;d
j=u;m;d

and we have the following result

Proposition 11. There exists a speci�cation of the probabilities (pu; pm; pd) and (qu; qm; qd)

such that the model above is a discrete time approximation of the Brennan and Schwartz (1979)

model. Furthermore, in a ��xed costs�setting, there exists an arbitrage-free bond price structure

compatible with this model, i.e. such that the short-term rate is given by r and the long-term

rate by `:

Hence we have proved that in the presence of ��xed costs,�the Brennan and Schwartz (1979)

model (or more precisely a discrete time approximation of this model) is compatible with the

no-arbitrage condition. This compatibility is due to the introdution of ��xed costs� since in

such a model the long-term rates �uctuate and following Dybvig, Ingersoll and Ross (1996)

this property leads to arbitrage opportunities in a frictionless setting. There obviously might

be many other frictions that might lead to the same result; however the introduction of ��xed
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costs�is the only one7 for which arbitrage opportunities vanish and such that by Proposition 8

the bond prices structure remains the same as in the frictionless setting (at least in the limit of

large quantities).

B. Price Processes with Upper and Lower Bounds or Absorbing

Barriers

We now turn to securities price models that are bounded and can potentially reach their

bounds. We then propose a discrete-time version of a Cox, Ingersoll and Ross (1985) model

which, as in Longsta¤ (1992), produces yield curves with realistic humps, but without assuming

an absorbing barrier for the short rate by introducing ��xed costs.�

1. The Binomial Model of Cox, Ross and Rubinstein (1979) with Bounds

The introduction of ��xed costs�enables us to consider as arbitrage-free models where the

asset price processes reach some bounds and to determine in such a framework a fair pricing

rule for contingent claims. Indeed if we assume that the discounted price process of a given

asset is bounded by an upper barrier and reaches this barrier without being absorbed then it is

clear that there is no positive state-price density compatible with this asset price process. This

price process leads then to arbitrage opportunities in a frictionless setting. However a state-price

density which, once the barrier reached, puts all the weight on the constant discounted price

path might be compatible with this asset price process. By Theorem 6 the presence of upper

bounds on the discounted asset prices may then be compatible with the no-arbitrage condition

in a ��xed costs�setting.

We will illustrate this property on a version of the binomial model of Cox, Ross and Ru-

7Among the classical frictions studied in the litterature (proportional transaction costs, shortselling costs,
portfolio constraints,...)
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binstein (1979) with bounds. This model has been studied in Sondermann (1988) ;8 for other

purposes.

More precisely, denote by (Wt)t2f0;��� ;Tg the stochastic process given by:

Wt = Z0 �
tY

n=1

(1 + �n)

where (�n) is a family of independent random variables such that

�n =

8>><>>:
� + 1

2�
2 def= �u with probability p

�� + 1
2�
2 def= �d with probability 1� p

for �xed 2 > � > 0, 0 < p < 1: The process (Wt)t2f0;��� ;Tg is a geometric random walk with

compensated stochastic drift and corresponds to the security price process in the Cox, Ross

and Rubinstein model (1979): Note that in such a context, a date�t node �t is a sequence

(�1; � � � ; �t). As we have mentioned, we assume that for some reason, the price process cannot

go beyond some a priori given bounds. We shall here �x an upper bound M and we assume for

simplicity of exposition that M belongs to the set of values taken by the process (Wt)t2f0;��� ;Tg.

The price process of our security is given by (Zt)t2f0;��� ;Tg with Z0 = W0 and where, for �t =

(�1; � � � ; �t) and �t+1 =
�
�1; � � � ; �t+1

�
2 f(�t);

Z(�t+1) = Z(�t)
�
1 + �t+1

�
if Z(�t) < M and, if Z(�t) =M;

Z(�t+1) =

8>><>>:
M if �t+1 = �u

Z(�t)
�
1 + �t+1

�
if �t+1 = �d

:

8This paper might be di¢ cult to consult. See also Sondermann (1987).
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In the next this model is called the generalized Cox, Ross and Rubinstein model (1979) with

bounds. The aim is to value a European call x = (ZT �K)+ for some a priori given bound

M � Z0:

We have the following result

Proposition 12. The generalized Cox, Ross and Rubinstein model (1979) with bounds is

arbitrage-free in a ��xed costs� setting. Furthermore, if the ��xed costs structure� is van-

ishing, the price of a European call option in this model is equal (in the limit of large quantities)

to the price of a barrier option with same strike and maturity in the frictionless Cox, Ross and

Rubinstein model (1979) :

It is shown in Sondermann (1988) that the corresponding option pricing formula can be

simpli�ed for small grid sizes. Letting the grid size go to zero, by the Central Limit Theorem

the analog of the Black and Scholes (1973) formula is obtained for such options and then for

European call options with bounds on the underlying asset. These formulas reduce to the Black

and Scholes formula if the upper bound goes to in�nity. The same kind of results can be obtained

if we introduce a lower bound on the asset prices and the pricing formulas we obtain reduce to

the Black and Scholes formula if the lower bound approaches zero.

Hence we have proved that the presence of ��xed costs� (including arbitrarily small ones)

allows us to use models with bounds on the discounted asset price processes. Such bounds might

be subjectively assumed by some investors in order to model the fact that, from their point of

view, the price of a given asset cannot exceed a given level. They can also be seen as objective

bounds due to policy constraints as in target zones where some bounds are imposed on the

exchange rates (as in the previous European Monetary System). They �nally can be seen as

30



objective bounds resulting from the choice of a given model.

Such situations can be encountered for instance in interest rate models where r = 0 is an

absorbing barrier as in Longsta¤ (1992) : Indeed, in such models, the price of a given bond when

the barrier r = 0 is reached is equal to 1 which corresponds to an upper bound for a bond price

in models where the short-term rates are always nonnegative. Longsta¤ (1992) introduced such

models in order to enlarge the set of possible shapes of the interest rate term structure in a Cox,

Ingersoll and Ross model (1985).

2. The CIR Model with Partially Absorbing Barrier

The Cox, Ingersoll and Ross (1985) model has been empirically tested by Brown and Dybvig

(1986) and by Brown and Schaefer (1994). These authors have shown that the volatility of the

short-term rate conforms relatively well to empirical observations, but they argue that the model

is not �exible enough to capture the variety of shapes encoutered in practice. More precisely,

while this model allows for inverted shapes at the short end of the curve, it fails at capturing

yield curves with a hump. Longsta¤ (1992) proposes an extension of this model allowing for an

absorbing barrier at r = 0 for the short-term rate: He provides then analytical pricing formulas

for the bonds and argues that this model leads to more realistic term structures of interest

rates. The aim of this section is to show that Longsta¤ (1992)�s approach and formulas (or

more precisely their discrete time version) are compatible with the no arbitrage condition with

��xed costs,� even if r = 0 is not an absorbing barrier. This permits to enlarge the set of

possible shapes of the interest rate term structure, and as underlined by Longsta¤ (1992) to

generate possible humps, without imposing the unrealistic absorbing barrier condition. Indeed,

it is di¢ cult to accept that when the short-term rate reaches zero it will stay at that level forever.

Let us consider the following model for the short-term rate
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rn+1 = rn +

8>>>>>><>>>>>>:
a (`� rn) TN +

p
2�
p
rn

q
T
N with a probability 1=4

a (`� rn) TN with a probability 1=2

a (`� rn) TN �
p
2�
p
rn

q
T
N with a probability 1=4

Following Nelson and Ramaswamy (1990) this model is a discrete time approximation of the

Cox, Ingersoll and Ross model (1985) model (CIR) for which the short-term rate is governed by

the following di¤usion equation

drt = a (`� rt) dt+ �
p
rtdWt:

For this reason, the discrete time model introduced above is referred to in the next as the discrete

CIR model.

If 2�2 < a` as imposed by Cox, Ingersoll and Ross model (1985) and if r0 > 0 then both

models lead to a (strictly) positive short-term rate at any date with probability one. The Cox,

Ingersoll and Ross model (1985) does not explore the case where the condition 2�2 < a` is not

satis�ed and where the short-term rate might be equal to zero with a positive probability.

However, Longsta¤ (1992) pointed out that this condition can be relaxed if we impose a

boundary condition on the bond prices when the short-term rate is equal to zero. In particular,

he considers an absorbing barrier at r = 0 for the short-term rate and imposes bond prices equal

to one once the barrier is reached. In that case, he provides analytical pricing formulas for the

bonds.
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The discrete time version of Longsta¤ (1992) absorbing barrier model is given by :

rn+1 = rn +

8>>>>>><>>>>>>:
a (`� rn) TN +

p
2�
p
rn

q
T
N 1=4

a (`� rn) TN 1=2h
a (`� rn) TN �

p
2�
p
rn

q
T
N

i
+

1=4

if rn 6= 0

rn+1 = rn if rn = 0:

In the next the discrete time version of the bond prices formulas obtained by Longsta¤ (1992)

in the absorbing barrier framework will be called Longsta¤�s bond prices.

Let us modify the discrete CIR model as follows.

rn+1 = rn +

8>>>>>><>>>>>>:
a (`� rn) TN +

p
2�
p
rn

q
T
N 1=4

a (`� rn) TN 1=2

[' (rn)]+ 1=4

where

' (rn) =

8>><>>:
a (`� rn) TN �

p
2�
p
rn

q
T
N if rn > 0

0 if rn = 0

This model corresponds to a generalization of the discrete CIR model with a partially absorbing

barrier at r = 0: Indeed, when rn is positive, we de�ne rn+1 as in the discrete CIR model with

only one modi�cation : a (`� rn) TN �
p
2�
p
rn

q
T
N in the lower branch is replaced by its positive

part in order to ensure that the short-term rate remains positive. When rn is equal to zero, then

there are three possible states of the world at date n+ 1; for one of them the short-term rate is

absorbed and remains equal to zero and for the two others the short-term rate is re�ected. In

the next we refer to this model as the partially absorbing CIR model.
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Proposition 13. For � small enough and N large enough (more precisely for j�j < ap
2
and

�2 TN � �2 inf

�
1
r0
;
�

2ahp
2�+

p
2�2+4a2`h2

�2�
), Longsta¤�s bond prices are compatible with the

partially absorbing CIR model with ��xed costs�(in the sense that these prices can be derived

in an arbitrage-free way from the partially absorbing model for the short-term rate).

In order to obtain the same term structure as in the absorbing barrier model we choose a

risk-neutral probability for which zero is actually an absorbing barrier. This is made possible

by the fact that in the presence of ��xed costs� the risk-neutral probability and the actual

probability do not have to be equivalent. A given barrier can then be absorbing under one of

them only.

Our term structure is then the discrete time analog of the speci�c example of Longsta¤

(1992;Section 3) and allows for humps at longer maturities: However, the short-term rate dy-

namics is not the same: we do not assume that zero is an absorbing barrier. We only impose that

when the short-term rate reaches zero, there is a nonnull probability that it stays at zero, for

at least one period. As underlined by Longsta¤ (1992), the behavior of Treasury-bill yields ap-

pears to be more consistent with such a sticky boundary than with a totally re�ecting boundary:

extremely low levels of yields tend to persist rather than immediately increasing back toward

higher levels.

IV. Conclusion
We have shown that with the introduction of ��xed costs�(including arbitrarily small ones),

we can enlarge the set of possible arbitrage-free models to include popular models of the term

structure of interest rates. In particular, models with bounded prices processes reaching their

bounds are now arbitrage-free. In addition, we have relaxed the monotonicity constraint imposed
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for arbitrage considerations on the long-term rates by Dybvig, Ingersoll and Ross (1996) :

When the initial frictionless model is arbitrage-free we proved that contingent claims prices

remain the same in the limit of large quantities after the introduction of the ��xed costs.�When

the initial frictionless model contains arbitrage opportunities, we proved that the absence of

arbitrage in the model with frictions is characterized by the existence of a nonnegative state-

price density (or equivalently by a martingale measure possibly with zero-weights) and that

contingent claims prices are given (in the limit of large quantities) by this state-price density.

Appendix

Proof of Proposition 2 The direct implication is immediate and using the fact that lim�!1
c��(�t)

� !

0 it su¢ ces to multiply the considered portfolio by a su¢ ciently large constant in order to es-

tablish the converse implication.

Proof of Proposition 3 As usual, this result is a direct application of Farkas-Minkowski

Lemma.

An example of utility maximization with zero state price densities in some states

Let us consider a �nancial market where two securities denoted by A and B can be traded

at two dates 0 and 1 and in two possible states of the world (with equal probability) s1 and

s2 at date 1 (security A has a value of 1 at date 0 and a value of 1 or 2 at date 1 in state s1

or s2 respectively and security B is always worth one unit of account). We consider an agent,

who, endowed with an initial wealth w and a CARA utility function with an absolute risk

aversion � = 1; tries to maximize his expected utility from terminal wealth. Furthermore, we

assume that a transaction fee c� = 1+2j�j
2+2j�j is paid at date 0 only if the agent trades a quantity

� 6= 0 of asset A at date 0: Clearly, the transaction costs increase with the quantity traded and
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are bounded above and bounded away from zero for � 6= 0: It is easy to see that an optimal

trade should satisfy the condition � � 0 and that it leads then to a terminal wealth equal to9

(w� c�; w+ �� c�): If � is large enough, we have w� c� � w� 1; w+ �� c� � w+ �� 1 and any

marginal increase of the traded quantity from � to � + �� would lead to a move of the utility

level from u to u + �u with �u = � 1
4 exp(�w + c

�) 1
(1+�)2 +

1
2 exp(�w � � + c

�)(1 � 1
2(1+�)2 ) �

� exp(�w+1)
4(1+�)2 + 1

2 exp(�w � � � 1) < 0 for � large enough. Furthermore, it is easy to see that

for � > � ln(2 exp
�
�c�

�
� 1); the utility level associated to that trade is higher than the utility

level associated with no trade. In particular, for � > � ln(2 exp
�
� 1
2

�
� 1) � 1:55; it is better to

trade. Hence, in such a framework our agent chooses to trade at a given optimal level �� such

that 0 < �� <1:

Proof of Proposition 5 If there exists an arbitrage portfolio � as in De�nition 1 between a

node �t and its successors, it su¢ ces to consider the dynamic strategy that consists in buying

the portfolio � at the node �t; and investing the �pro�ts�in bonds.

Conversely suppose that there is a dynamic arbitrage opportunity described by a portfolio � then

there exists a node �t such that �(�t) � Z(�t) < 0: If �(�t) � Z(�t+1) � 0 for all �t+1 2 f(�t);

then according to Proposition 1 we have an arbitrage portfolio at �t; but if �(�t) � Z(�t+1) < 0

for some �t+1 2 f(�t), then using the self-�nancing condition, we have �(�t+1) � Z(�t+1) < 0;

we start again from the node �t+1 and there must exist a date � and a node � 2 �� such that

�(�) � Z(�) < 0 and � � Z � 0 on f(�) in order to obtain at the end � � Z � 0:

Proof of Theorem 6 If there is no arbitrage opportunity it su¢ ces to multiply the di¤erent

state-price densities obtained at each node between that node and its successors starting from

� to construct a nonnegative state-price density compatible with the asset prices.

9 If � = 0 then there is no trade and no transaction cost. We de�ne then c0 by c0 = 0:
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Conversely, for a given date i�node �; it su¢ ces to consider the state-price density (��)�2f(�)

de�ned on the successors of � by �� = ��(�): This state-price density characterizes the absence

of arbitrage opportunities between � and its successors for every � and then the absence of

dynamic arbitrage opportunities.

Proof of Proposition 8 It is easy to see that for all m in M ,

lim
�!+1

ps (�m)

�
= lim

�!+1

�ps (��m)
�

= l (m)

Since there is no arbitrage, we must have p (m) � �p (�m) so that

��s (�m) � �p (�m) � p (m) � �s (m) ,

and the price functional p can be written as the sum of a linear functional and of a ��xed cost�

function, i.e. for all m, p (m) = l (m)+ c (m) where c(�m)
� !�!1 0. The case of bounded ��xed

costs structures�can be treated similarly.

If we assume that p (�m) � � [p (m)], it is easy to see that the ��xed cost�function is nonnega-

tive. Furthermore, for all frictionless self-�nancing dynamic portfolio �,

l
�
(�(�T ) � Z(�T ))�T2�T

�
=

X
�T2�T

�
(�T )�(�T ) � Z(�T );

where �
 is any nonnegative state-price density like in Theorem 4.
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Consequently, the fair price p (m) associated with any attainable contingent claim m is given by

p (m) =
X

�T2�T

�
(�T )m(�T ) + a ��xed cost�

An example of nondecreasing long-term rate with nonmonotone �nite horizon rates

Let us assume that the sequence of short-term rates rn between date t = n and n + 1 is 1-

uniform.10 It is clear that z (n; n0) (resp. z(n; n + N)) can both increase or decrease when n0

(resp. n) increases. However ln(1 + zL(n)) is the limit of the average of the ln(1 + rn) and is

equal to 1
2 ln 2: We have then that zL(n) is constant, independent of n and equal to

p
2� 1:

Proof of Proposition 9 Proceeding like in the frictionless case, we obtain that the absence of

arbitrage with ��xed costs� is implied by the existence of � 2 [0; 1], independent from n, and

such that �h (n) + (1� �)h� (n) = 1 and h(n)
h�(n) =

h
h(1)
h�(1)

in
:

Indeed, in that case we get that the discounted process XT =
�
�(t;T )
�t

�
t
satis�es for all

�t 2 �t;

XT
t (�t) = �X

T
t+1 (�t; u) + (1� �)XT

t+1 (�t; d)

and the prices do not depend on the chosen path.

The choice of � = 1 (which, by Theorem 6, is licit in a ��xed costs� framework) leads to

h � 1 and h� (n) = [h� (1)]n. As far as long-term rates are concerned, we have

10A sequence (xn) with values in [0; 1] is said to be k�uniform if for all rectangle D =
Qk
i=1 [ai; bi] with

0 � ai � bi � 1; i = 1; � � � ; k; we have

lim
n!1

1

n

n�1X
i=0

1D(
�
xki; xki+1; � � � ; xk(i+1)�1

�
) = (b1 � a1) � � � (bk � ak):

A sequence is said to be 1�uniform if it is k�uniform for all k � 1:
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1 + zL (t; (�t�1; u)) = limT%1 [� (t; T; (�t�1; u))]
� 1
T�t

= limT%1

h
�(t�1;T;�t�1)
�(t�1;t;�t�1) h (T � t)

i� 1
T�t

= 1 + zL (t� 1; �t�1)
and

1 + zL (t; (�t�1; d)) = limT%1 [� (t; T; (�t�1; d))]
� 1
T�t

= limT%1

h
�(t�1;T;�t�1)
�(t�1;t;�t�1) h

� (1)
T�t

i� 1
T�t

= 1
h�(1) [1 + zL (t� 1; �t�1)]

< 1 + zL (t� 1; �t�1)
Proof of Proposition 10 It su¢ ces to take H (n; �) equal to an (resp. 1, resp. 1

an ) if � = u

(resp. � = m, resp. � = d) where a < 1 is a given constant. There exists � = (0; 1; 0) 2 [0; 1]3,

such that �1an + �2 + �3 (1=an) = 1, and, with the notations of the previous proof, the process

XT =
�
�(t;T )
�t

�
t
satis�es

XT
t (�t) = �1X

T
t+1(�t; u) + �2X

T
t+1(�t;m) + �3X

T
t+1(�t; d):

By Theorem 6 this model is arbitrage-free in a ��xed costs� framework. As far as long-term

rates are concerned and using the same approach as in the previous proof, we obtain

1 + zL (t; (�t�1; u)) = 1
a [1 + zL (t� 1; �t�1)]

> 1 + zL (t� 1; �t�1)

1 + zL (t; (�t�1; u)) = 1 + zL (t� 1; �t�1)

1 + zL (t; (�t�1; d)) = a [1 + zL (t� 1; �t�1)]

< 1 + zL (t� 1; �t�1)

Proof of Proposition 11 Let us take pu =
�21�

�
l ((

�
l �

1
2 ~�

2
1)

T
N�~�1

p
T
N )

2~�1
h
~�1+(

�
l �

1
2 ~�

2
1)
p

T
N

i , pm =
~�21��

2
1+(

�2

l2
� 1
4 ~�

4
1)

T
N

~�21�(
�
l �

1
2 ~�

2
1)
2 T
N

,
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pd =
�21�

�
l ((

�
l �

1
2 ~�

2
1)

T
N+~�1

p
T
N )

2~�1
h
~�1�(�l �

1
2 ~�

2
1)
p

T
N

i ; qu = 1=4; qm = 1=2; qd = 1=4, for some positive constant �1 < ~�1

and for N su¢ ciently large: In that case, it is easy to check that P = (pu; pm; pd) de�nes a

probability and following Nelson and Ramaswamy (1990) our model is a discrete approximation

of the Brennan and Schwartz (1979) model.

Let the risk-neutral probability [� (i; j)]i=u;m;d
j=u;m;d

be such that � (m;m) = 1 and let � denote

the induced probability measure on the terminal states of the world. We then construct bond

prices as the discounted expected value under the probability � of the bond�s terminal payo¤,

and obtain

� (n; n0; (`; r)) =
h�
1 + u`;rn

�
:::
�
1 + u`;rn0�1

�i�1
where the sequence u`;rs is de�ned inductively by8>><>>:

u`;rs+1 = u
`;r
s exp

�
a(`�u`;rs )

ul;rs

T
N

�
u`;rn = r

By construction and by Theorem 6, the �nancial market consisting of these bonds is arbitrage-

free in a ��xed costs�setting and admits r as short-term rate. Furthermore, we can verify that

the long-term rate induced by these bond prices is given by `. Indeed, we have

ln(1 + z (n; n0; (`; r))) =
1

n0 � n

n0�n�1X
k=0

ln
�
1 + u`;rn+k

�

and by a classical Cesaro argument we get

ln(1 + zL (n; (`; r))) = lim
k!1

ln
�
1 + u`;rk

�
:
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when this last limit exists. It is then easy to check that the limit of u`;rk is equal to ` and we

obtain then zL (n; (`; r)) = `:

Proof of Proposition 12 For M =1, (Zt)t2f0;��� ;Tg is equal to (Wt)t2f0;��� ;Tg and there is a

unique probability measure that we shall denote by P � that makes (Zt)t2f0;��� ;Tg a martingale

and it is given by the positive transition probability p� = 1
2 �

1
4�: By Proposition 8 any fair

pricing rule is given by the sum of a ��xed cost�function and of the expected value with respect

to P � (which corresponds to the option price in a frictionless setting).

It is easy to check that this model is also arbitrage free in a �xed-costs setting for M <1.

We turn then directly to pricing issues. There is a unique probability measure P �M with

nonnnegative weights which makes (Zt) a martingale. This probability is equal to the above

mentioned probability measure (with positive weights) P � on the paths for which the bound M

is not reached and puts a zero weight on the paths for which the bound is reached and left. The

process (Zt) has under P �M the same distribution as the primitive price process absorbed at the

upper bound M (and denoted by ~WT ) under P �. Thus any admissible price for a European call

x = (ZT �K)+ can be written as the sum of a �xed cost and of EP
�
M

�
(ZT �K)+

�
which is

equal to EP
�
��
~WT �K

�
+

�
and corresponds to the price of a barrier option, where the barrier

is set at M , in the classical binomial model where the risk-neutral probability is given by P �:

Proof of Proposition 13 As in CIR or in Longsta¤ (1992) we look for a state-price density �

compatible with the no-arbitrage condition in a ��xed costs�setting such that the risk premium

is equal to � for r 6= 0.

More precisely, we look for � = (�1; �2; �3) 2 ]0; 1[3, such that under �, the drift is given

by the initial drift minus �r (as in CIR), and the variance remains unchanged (and given by
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�2r TN ). If j�j <
ap
2
; �2 � �2�r TN ; where �r = sup

�
r0;
�p

2�+
p
2�2+4a2lh2

2ah

�2�
, the solution is

given by �1 = 1
2

�
�2+�2Tr

N

2�2 � �
p
r

�
p
2

q
T
N

�
; �3 =

1
2

�
�2+�2Tr

N

2�2 + �
p
r

�
p
2

q
T
N

�
and �2 = 1 � �1 � �3:

Furthermore, we want our model to have an absorbing barrier under the risk-neutral probability

in order to generate the same prices as in Longsta¤ (1992). It su¢ ces then to take, for r = 0,

(�1; �2; �3) = (0; 0; 1) :

Letting � (r;n; n0) be given by

� (r;n; n0) = E�

"
1Qn0�1

s=n (1 + rs)
j r
#
;

we obtain an arbitrage-free (with ��xed costs�) term structure which satis�es � (0;n; n0) = 1 (as

in Longsta¤ (1992)) and the market price of interest-rate risk is � (as in CIR and in Longsta¤

(1992)).
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