
Tail behavior of a Threshold

Autoregressive Stochastic Volatility model

Aliou DIOP∗ Dominique GUEGAN†

October 21, 2007

Abstract

We consider a threshold autoregressive stochastic volatility model where

the driving noises are sequences of iid regularly random variables. We

prove that both the right and the left tails of the marginal distribution

of the log-volatility process (αt)t are regularly varying with tail exponent

−α with α > 0. We also determine the exact values of the coefficients in

the tail behaviour of the process (αt)t.

keywords : Tail Behavior, Heavy Tail, Stochastic Volatility Model, Thresh-

old Autoregressive Model.

1 Introduction

Modelling the volatility of financial returns has been the purpose of many in-

vestigations. See Clark (1973), Nelson (1991), Taylor (1986, 1994), Andersen

(1994), and others. There exists a lot of versions of stochastic volatility models

in the literature. Here we are interested in a discrete time version of volatility

model introduced first by Taylor (1986). This model appears as a particular

model of the Stochastic Autoregressive Volatility (SARV) model introduced by

Andersen (1994).

However the SARV model remains limited. This model does not take into

account the leverage effect and the heavy tail behavior often encountered in fi-

nancial returns. An alternative specification is to allow the log-volatility process
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to switch between two first-order autoregressive processes with heavy tailed in-

novations. The use of linear processes with heavy tailed innovations is not new

in time series modelling. Examples where such models appear to be appropri-

ate have been found by Stuck and Kleiner (1974), who considered telephone

signals, and Fama (1965), who modelled stock market prices. The Threshold

Autoregressive Stochastic Volatility (TARSV) is then an extension of the or-

dinary symmetric SARV model. The threshold specification in TARSV model

allows the mean and variance to response differently to the previous values of

the time series. See Breidt (1996) and Lam et al. (2002).

The object of this paper is the determination of the tail behavior of the log-

volatility process.

The exposition proceeds as follows. Section 2 describes the threshold autore-

gressive stochastic volatility (TARSV) model and specific conditions for strict

stationarity of the log-volatility process are provided. Section 3 contains the tail

behavior of the log-volatility process (αt)t. The marginal distribution of (αt)t

has Pareto-like tails.

2 The model

The threshold autoregressive stochastic volatility (TARSV) model introduced

by Breidt (1996) for Yt is defined by the following relation

Yt = σ exp(
αt

2
)εt (2.1)

where (αt)t is an open-loop threshold autoregressive process (Tong 1990, p.

101),

αt =

{

φ1αt−1 + Z
(1)
t , if Yt−1 ≤ 0,

φ2αt−1 + Z
(2)
t , if Yt−1 > 0,

(2.2)

where φi are non-random constants and with threshold variable Yt−1. In this

framework, σ is a positive constant and (εt)t is a sequence of independent and

identically distributed random variables with zero mean and its variance is taken

to be one. The log-volatility process has a piecewise linear structure. It switches

between two first-order autoregessive processes according to the sign of the

previous observation.

We will use the following assumptions
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• H1: (Z
(i)
t ) is a sequence of independent and identically distributed ran-

dom variables (i = 1, 2) and satisfies the following conditions :

E[log+ |Z
(i)
1 |] < +∞, (2.3)

where log+ x = max(0, log x).

• H2: For each i = 1, 2, the two sequences of random variables (Z
(i)
t )t and

(εt)t are independent and (Z
(1)
t )t and (Z

(2)
t )t are independent.

• H3 : The process (Z
(i)
t )t has a heavy tailed structure, that is

P{|Z
(i)
1 | > x} = x−αLi(x), α > 0, i = 1, 2 (2.4)

and

lim
x→∞

P{Z
(i)
1 > x}

P{|Z
(i)
1 | > x}

= p, lim
x→∞

P{Z
(i)
1 < −x}

P{|Z
(i)
1 | > x}

= 1 − p, (2.5)

where Li is a slowly varying function at ∞ and 0 ≤ p ≤ 1.

We define q = P{εt ≤ 0} and I1t = 1{Yt−1≤0}, I2t = 1 − I1t. Then the

equation (2.2) can be rewritten as :

αt = φ(t)αt−1 + Zt (2.6)

where

φ(t) = φ1I1t + φ2I2t and Zt = Z
(1)
t I1t + Z

(2)
t I2t.

The equation (2.6) is a stochastic difference equation where the pairs (φ(t), Zt)t

are sequences of independent identically distributed R
2-valued random variables

under H1-H2.

The next proposition gives the strict stationarity of the process (αt)t defined in

(2.6). This result follows from Theorem 1 of Brandt (1986).

Proposition 1 Assume that the assumptions H1 and H2 are specified and that

|φ1|
q|φ2|

1−q < 1. Then, for all t ∈ Z, the series (αt)t defined in (2.6) admits

the following expansion

αt =
∞
∑

j=0

(

j−1
∏

k=0

φ(t−k)

)

Zt−j (2.7)

which converges almost surely. Then the process (αt)t is the unique strictly

stationary solution of (2.6).
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From the equations (2.4) and (2.5), we check that the random variables Zk have

regularly varying tails; that is,

P{|Zk| > x} = x−αL(x), x > 0 (2.8)

where L = qL1 + (1 − q)L2 is a slowly varying function at ∞ and

lim
x→∞

P{Zk > x}

P{|Zk| > x}]
= p, lim

x→∞

P{Zk < −x}

P{|Zk| > x}
= 1 − p. (2.9)

An important class of distributions satisfying (2.8) and (2.9) consists of the

non-normal stable distributions. For an extensive discussion of stable random

variables see Feller (1971), pp. 568-583 and Samorodnitsky and Taqqu (1994).

3 Tail behavior of the stationary distribution of

the TAR model

In this section we study the tail behavior of the distribution of the process

(αt)t defined in (2.6). The tail behavior of the stationary solution of such equa-

tions has been widely studied in a variety of contexts. See for example Kesten

(1973), Grincevicius (1975), Vervaat (1979), Resnick and Willekens (1991). In

these papers, either the multiplier in the stochastic difference equation is a pos-

itive random coefficient or the noise term is an iid R
+-valued random variable.

Furthermore, in general, the coefficient and the noise are assumed to be in-

dependent. However the random coefficient model (2.6) does not necessarily

satisfy the positivity condition on the multiplier φ(t) and the noise term (Zt)t.

In our framework, the model (2.7) can be seen as a moving average with random

coefficients and driven by regularly varying noise according to (2.8) and (2.9).

Note that the coefficient and the noise term are dependent.

We prove in the following result that both the right and the left tails of the

marginal distribution of (αt)t are regularly varying with tail exponent −α with

α > 0. We also determine the exact values of the coefficients in the tail be-

haviour of the stationary solution of the stochastic difference equation (2.6).

Theorem 1 Let (αt)t be the stationary solution of the equation (2.6) and the

process (Zt)t satisfying (2.8) and (2.9). Suppose that the assumptions of Propo-

sition 1 hold. Furthermore, if q|φ1|
α + (1 − q)|φ2|

α < 1, then the tail behavior

of the stationary distribution of (αt)t is :

P{αt > x} ∼
(

∞
∑

k=0

Ck(p, α)
)

x−αL(x), as x→ ∞, (3.1)
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where

Ck(p, α) =











































pE|φ(1)|
kα if φ1 > 0, φ2 > 0,

(pδk + (1 − p)δk+1)E|φ(1)|
kα if φ1 < 0, φ2 < 0,

k
∑

i=0

(pδi + (1 − p)δi+1)C
i
k(q|φ1|

α)k−i((1 − q)|φ2|
α)i if φ1 > 0, φ2 < 0,

k
∑

i=0

(pδi + (1 − p)δi+1)C
i
k(q|φ1|

α)i((1 − q)|φ2|
α)k−i if φ1 < 0, φ2 > 0.

(3.2)

and

P{αt < −x} ∼
(

∞
∑

k=0

Ck(1 − p, α)
)

x−αL(x), as x→ ∞, (3.3)

with

δi =

{

1 if i even

0 if i odd.

In addition, we have,

P{|αt| > x} ∼
(

∞
∑

k=0

E|φ(1)|
kα
)

x−αL(x), as x→ ∞.

Before proving Theorem 1 we establish two lemmas.

Lemma 1 Let ψ1 a random variable independent of Z1 and φ(1) such that

lim
x→∞

P(ψ1 > x)

x−αL(x)
= C and lim

x→∞

P(ψ1 < −x)

x−αL(x)
= C ′, (3.4)

where C and C ′ are positive constants. Then

P(Z1 + φ(1)ψ1 > x) ∼ (p+K(α, C, C ′))x−αL(x), as x→ ∞ (3.5)

and

P(Z1 +φ(1)ψ1 < −x) ∼ (1− p+K(α, C ′, C))x−αL(x), as x→ ∞ (3.6)

where

K(α, C, C ′) =























CE|φ(1)|
α if φ1 > 0, φ2 > 0,

C ′E|φ(1)|
α if φ1 < 0, φ2 < 0,

qC|φ1|
α + (1 − q)C ′|φ2|

α if φ1 > 0, φ2 < 0,

qC ′|φ1|
α + (1 − q)C|φ2|

α if φ1 < 0, φ2 > 0.

(3.7)
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Proof :

From (3.4), it is easily checked that

lim
x→+∞

P(φ(1)ψ1 > x)

x−αL(x)
= K(α, C, C ′) (3.8)

and

lim
x→+∞

P(φ(1)ψ1 < −x)

x−αL(x)
= K(α, C ′, C). (3.9)

First we shall prove assertion (3.5). For 0 < ε < 1 and x > 1, we have

P{Z1 + φ(1)ψ1 > x} ≥ P{Z1 > x(1 + ε), |φ(1)ψ1| < xε} + P{|Z1| < xε, φ(1)ψ1 > x(1 + ε)}

≥ P{Z1 > x(1 + ε)} + P{φ(1)ψ1 > x(1 + ε)}

−P{Z1 > x(1 + ε), |φ(1)ψ1| ≥ xε} − P{|Z1| > xε, φ(1)ψ1 > x(1 + ε)}. (3.10)

For all β such that β − α > 0 the first term of (3.10) can be written as

P{Z1 > x(1+ε), |φ(1)ψ1| > xε} ≤ P{|φ(1)| > x
α+β

2β }+P{Z1 > x(1+ε)}P{|ψ1| > x
β−α

2β ε}.

By the Markov’s inequality it follows that

P{|φ(1)| > x
α+β

2β }

x−αL(x)
≤
E|φ(1)|

β

xβL(x)

which goes to 0 as x→ ∞. By (2.8) and (2.9), we get

lim
x→+∞

P{Z1 > x(1 + ε)}P{|ψ1| > x
β−α

2β ε}

x−αL(x)
= 0.

Hence
P{Z1 > x(1 + ε), |φ(1)ψ1| > xε}

x−αL(x)
→ 0 as x→ ∞. (3.11)

Analogously the second term of (3.10) is handled very similarly as the first one

P{|Z1| > xε, φ(1)ψ1 > x(1 + ε)}

x−αL(x)
→ 0 as x→ ∞. (3.12)

Finally by (2.8), (2.9), (3.8),(3.11) and (3.12), we have

lim inf
x→∞

P(Z1 + φ(1)ψ1 > x)

x−αL(x)
≥ p+K(α, C, C ′). (3.13)

On the other hand,

P{Z1+φ(1)ψ1 > x} ≤ P{Z1 > x(1−ε)}+P{φ(1)ψ1 > x(1−ε)}+P{Z1 > xε, φ(1)ψ1 > xε}.

(3.14)

Using the independence between the random variables ψ1 and Z1, the second

term of the right-hand side of (3.14) gives

P(Z1 > xε, φ(1)ψ1 > xε) = qP(Z1 > xε)P(φ1ψ1 > xε)+(1−q)P(Z1 > xε)P(φ2ψ1 > xε).
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Therefore

lim
x→∞

P(Z1 > xε, φ(1)ψ1 > xε)

x−αL(x)
= lim

x→∞

[

qpε−α
P(φ1ψ1 > xε) + (1 − q)pε−α

P(φ2ψ1 > xε)
]

= 0. (3.15)

Thus by (2.8), (2.9), (3.8) and (3.15), we have

lim sup
x→∞

P(Z1 + φ(1)ψ1 > x)

x−αL(x)
≤ p+K(α, C, C ′) (3.16)

Combining (3.13) and (3.16), we obtain (3.5).

The proof of (3.6) is achieved similarly and need (3.9).

Lemma 2 Suppose E|φ(1)|
α < 1. For all b such that 1 < bα <

1

E|φ(1)|α
and

for all n ≥ 1, we have

lim sup
x→∞

P

{

∞
∑

j=n+1

( j−1
∏

k=0

φ(t−k)

)

Zt−j > xε

}

x−αL(x)
≤

1

((b− 1)εbn)α

∞
∑

k=n+1

(E|φ(1)|
αbα)k.

(3.17)

Proof :

First observe that

P

{

∞
∑

j=n+1

( j−1
∏

k=0

φ(t−k)

)

Zt−j > xε

}

≤ P

{

∞
∑

j=n+1

∣

∣

∣

∣

j−1
∏

k=0

φ(t−k)

∣

∣

∣

∣

|Zt−j | > xε

}

≤
∞
∑

j=n+1

P

{

∣

∣φ(t)φ(t−1) . . . φ(t−j+1)

∣

∣|Zt−j | > bn−j(b− 1)xε

}

≤

∞
∑

j=n+1

j
∑

i=0

P

{

∣

∣φi
1φ

j−i
2

∣

∣|Zt−j | > bn−j(b− 1)xε

}

pi

where pi = Ci
jq

i(1 − q)j−i. From (2.8) and (2.9), we get

lim
x→+∞

j
∑

i=0

P

{

∣

∣φi
1φ

j−i
2

∣

∣|Zt−j | > bn−j(b− 1)xε

}

pi

x−αL(x)
≤ (εbn(b−1))−α(E|φ(1)|

αbα)j .

This implies the assertion.

Proof of Theorem 1:

By induction of the result stated in Lemma 1, we have

P

{

n
∑

j=0

( j−1
∏

k=0

φ(t−k)

)

Zt−j > x

}

∼
(

n
∑

k=0

Ck(p, α)
)

x−αL(x), (3.18)
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as x→ ∞.

First, we shall show that

lim inf
x→∞

P

{

∞
∑

j=0

( j−1
∏

k=0

φ(t−k)

)

Zt−j > x

}

x−αL(x)
≥

∞
∑

k=0

Ck(p, α). (3.19)

Set

Sn =
n
∑

j=0

( j−1
∏

k=0

φ(t−k)

)

Zt−j and Rn =
∞
∑

j=n+1

( j−1
∏

k=0

φ(t−k)

)

Zt−j .

Notice that

P{Sn +Rn > x} ≥ P{Sn > x(1 + ε), |Rn| < xε}

≥ P{Sn > x(1 + ε)} − P{|Rn| ≥ xε}.

Using lemma 2 and (3.18), we have for all n ≥ 1 and ε > 0,

lim inf
x→∞

P{Sn +Rn > x}

x−αL(x)
≥
(

n
∑

k=0

Ck(p, α)
)

(1+ε)−α−
1

((b− 1)εbn)α

∞
∑

k=n+1

(

E|φ(1)|
αbα
)k
,

and from this inequality, (3.19) follows.

On the other hand, we have

P{Sn +Rn > x} ≤ P{Sn > x(1 − ε)} + P{Rn > xε}.

Then using again lemma 2 and (3.18), we get

lim sup
x→∞

P{Sn +Rn > x}

x−αL(x)
≤

∞
∑

k=0

Ck(p, α). (3.20)

Combining (3.19) and (3.20), we obtain the desired result. The theorem is

entirely demonstrated.
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