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Abstract

In this paper we are interested in heteroskedastic regression models, for which
an appropriate bootstrap method is bootstrapping pairs, proposed by Freedman
(1981). We propose an ameliorate version of it, with better numerical performance.
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1 Introduction

Bootstrap methods can be of great use in econometrics. They provide reliable infer-
ence in small sample sizes, and permit the use of statistics with properties that cannot
be calculated analytically. Efron (1979) first introduced these statistical methods. In
econometrics, see Horowitz (1994, 1997), Hall and Horowitz (1996), Li and Maddala
(1996), and Davidson and MacKinnon (1996, 1999). Correctly used, the bootstrap can
often yield large asymptotic refinements.

Theoretical developments show that, if the test statistic is a pivot, the bootstrap
yields exact inference and, if it is an asymptotic pivot, bootstrap inference is more
reliable than asymptotic inference. If we consider an econometric model and a null
hypothesis, a statistic is said to be pivotal if its distribution is the same for all data gen-
erating processes (DGPs) that satisfy the null. It is an asymptotic pivot if its asymptotic
distribution is the same for all such DGPs. In econometrics, since the vast majority of
tests are asymptotically pivotal, the bootstrap has a wide range of potential application.

In this paper we are interested in heteroskedastic regression models, for which an
appropriate version of the bootstrap is bootstrapping pairs, proposed by Freedman
(1981). In theory, bootstrapping pairs seems to be preferable to other classical bootstrap
implementations, because this procedure is valid even if error terms are heteroskedastic.
In practice, Monte Carlo studies show that this method has poor numerical performance,
see Horowitz (1997).

We propose a better way to bootstrap pairs. In section 2, we present the classical
bootstrap. In section 3, we present bootstrapping pairs. In section 4, we present a new
implementation. Finally, in section 5, we investigate Monte Carlo simulations.

2 Classical bootstrap

Consider the non-linear regression model with independent and identically distributed
(IID) error terms,

yt = xt(β, γ) + ut ut ∼ F (0, σ2) (1)

where yt is the dependent variable, xt(β, γ) is a regression function that determines the
mean value of yt conditional on β, γ and on some exogenous regressors Zt, and ut is
an error term drawn from an unknown distribution F with mean zero and variance σ2.
The statistic τ , which tests the null hypothesis H0 : γ = 0, is supposed to be an
asymptotic pivot.

The bootstrap principle is to construct a data generating process, called the bootstrap
DGP, based on estimates of the unknown parameters and probability distribution. If
the DGP is completely specified up to unknown parameters, as is the case if we know
the function F , we use what is called a parametric bootstrap. If the function F is
unknown, we use the empirical distribution function (EDF) of the residuals, which is a
consistent estimator of the cumulative distribution function (CDF) of the error terms.
This is called a non-parametric bootstrap. The distribution of the test statistic under
this artificial DGP is called the bootstrap distribution, and a P -value based on it
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is called a bootstrap P -value. We can rarely calculate this distribution analytically,
and so we approximate it by simulations. That is why the bootstrap is often considered
a computer-intensive method. There are many ways to specify the bootstrap DGP. The
key requirement is that it should satisfy the restrictions of the null hypothesis.

A first refinement is ensured if the test statistic and the bootstrap DGP are asymp-
totically independent. Davidson and MacKinnon (1999) show that, in this case, the error
of the bootstrap P -value is in general of the same order as n−3/2, compared with the
asymptotic P -value, of which the error is of the same order as n−1/2. This state of
affairs is often achieved by using the fact that parameter estimates under the null are
asymptotically independent of the statistics associated with tests of that null. The proof
of Davidson and MacKinnon (1987) for the case of classical test statistics based on max-
imum likelihood estimation can be extended in regular cases to NLS, GMM and other
forms of extremum estimation. Thus, for the parametric bootstrap, the condition is al-
ways satisfied if the bootstrap DGP is constructed with parameter estimates under the
null. In the non-parametric case, the bootstrap statistic has to be asymptotically inde-
pendent of the regression parameters and of the resampling distribution too. Davidson
and MacKinnon (1999) show that we respect this hypothesis whether we use the EDF
of the residuals under the null or under the alternative. Monte-Carlo experiments show
that residuals under the null provide a substantial efficiency gain, see van Giersbergen
and Kiviet (1994).

A second refinement can be obtained, with the non-parametric bootstrap, if we
use modified residuals, such that variance of the resampling distribution is an unbiased
estimate of the variance of the error terms. We use the fact that, in the linear regression
model yt = Xtβ+ut with IID error terms, E(û2

t) = (1−ht)σ
2, where ût is a residual

and ht = Xt(X
⊤X)−1X⊤

t . To correct the implied bias, we transform the residuals as

ũ
(2)
t =

ût

(1 − ht)1/2
−

1

n

n∑

s=1

ûs

(1 − hs)1/2
(2)

We divide ût by a factor proportional to the square root of its variance. The raw
residuals ût do not all have the same variance: there is an artificial heteroskedasticity.
The modified residuals have the same variance and are centered. In the non-linear
case these developments are still valid asymptotically, and, to leading order, we use
ĥt ≡ X̂t(X̂

⊤

t X̂t)
−1X̂⊤

t , where X̂t = Xt(β̂) is the vector of partial derivatives of

xt(β) with respect of β, evaluated at β̂; see for example Davidson and MacKinnon(1993,
pp 167 et 179). Another way to make the variance of the resampling distribution equal
to the unbiased estimator of the variance of the error terms is to use the fact that
E(û⊤û) = σ2(n − k), where k is the number of regressors. We can correct the bias
by multiplying the residuals by the square root of n/(n − k) and recentering them. An
inconvenient aspect of this transformation is that, in a lot of cases, for example with
an F -statistic, this transformation has no effect, because the statistic is invariant with
respect to the scale of the variance of the error terms.

Finally, the classical bootstrap is based on the bootstrap DGP

y⋆
t = xt(β̃, 0) + u⋆

t (3)
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where β̃ is the vector of parameter estimates under the null, and u⋆
t a random drawing

from ũ
(2)
t , the residuals under the null transformed by (2).

3 Bootstrapping pairs

Consider the non-linear regression model with heteroskedastic error terms,

yt = xt(β, γ) + ut E(ut) = 0, E(u2
t) = σ2

t (4)

The difference with respect to the model (1) is just that the error terms may have differ-
ent variances in the model (4). If the heteroskedasticity is of unknown form, we cannot
use the classical bootstrap. The heteroskedasticity could depend on some elements of the
function xt, such as the exogenous variables Z, and so we cannot resample residuals in-
dependently of these elements. Freedman (1981) proposed to resample directly from the
original data: that is, to resample the couple dependent variable and regressors (y, Z),
this is called bootstrapping pairs. Note that this method is not valid if Z contains
lagged values of y. The original data set satisfied the relation yt = xt(β̂, γ̂) + ût

where β̂ and γ̂ are the non-linear least squares (NLS) parameter estimates, and ût the
residuals. Thus resampling (y, Z) is equivalent to resampling (Z, û) and then generat-
ing the dependent variable with the bootstrap DGP y⋆

t = x⋆
t(β̂, γ̂) + u⋆

t , where x⋆
t(·)

is defined using the resampled Z, and u⋆
t is the resampled û. The bootstrap statistic

has to test a true hypothesis, and so the null hypothesis has to be modified to become
H ′

0 : γ = γ̂. A detailed discussion can be found in the introduction of the book of Hall
(1992).

This method has two major drawbacks. The first is that the bootstrap DGP is not
constructed with parameter estimates under the null hypothesis: the extra refinement
from Davidson and MacKinnon (1999) is not ensured. We correct this in the new
implementation proposed in the next section. The second is that we draw the dependent
variable and the regressors at the same time: the regressors in the bootstrap DGP are
therefore not exogenous. This second drawback is intrinsic to the nature of this bootstrap
method, and if we wish to correct it, we should use another method proposed by Wu
(1986), called the wild bootstrap.

4 New implementation

We propose to use the bootstrap DGP

y⋆
t = x⋆

t(β̃, 0) + u⋆
t (5)

where β̃ is the vector of parameter estimates under the null. To generate the bootstrap
sample (y⋆, Z⋆), we first resample from the set of couples (Z, û(2)), where û(2) are the
residuals under the alternative, transformed by (2), and the dependent variable y⋆ is
calculated using (5). With this choice, we obtain the two refinements of the classical
bootstrap.
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The first refinement is obtained because the bootstrap DGP respects the null
hypothesis, and so the statistic is asymptotically independent of the bootstrap DGP.
The extra refinement from Davidson and MacKinnon (1999) is ensured.

The second refinement is due to the use of the transformed residuals û
(2)
t from

estimating the alternative hypothesis. Let us show that we cannot use residuals under
the null as in the classical bootstrap. Consider the linear regression model: y = Xγ+u
and the null hypothesis H0 : γ = 0. In this case, the bootstrap DGP we proposed is
y⋆ = X⋆γ0 + u⋆, where γ0 = 0 and (X⋆, u⋆) is drawn from (X, ü). The bootstrap
parameter estimate is equal to:

γ̂⋆ = (X⋆⊤X⋆)−1X⋆⊤y⋆ = γ0 + (X⋆⊤X⋆)−1X⋆⊤u⋆. (6)

It is a consistent estimator if

plim
n→∞

(γ̂⋆
− γ0) = plim

n→∞

1

n
(X⋆⊤X⋆)−1 plim

n→∞

1

n
(X⋆⊤u⋆) = 0 (7)

where

plim
n→∞

1

n
(X⋆⊤u⋆) = plim

n→∞

1

n
(X⊤ü) (8)

This expression is equal to 0 if ü and X are asymptotically orthogonal. The resid-
uals û computed under the alternative and X are orthogonal by construction, but
this is not true of the residuals under the null. Consequently, if ü = û, the boot-
strap parameter estimates are consistent, but not otherwise. When n tends to infinity,
ht = Xt(X

⊤X)−1Xt tends to 0. If ü corresponds to the residuals under the alter-
native transformed by (2), ü and X are asymptotically orthogonal and the bootstrap
estimate is consistent.

5 Simulations

We consider a small Monte Carlo experiment designed to study the performance of the
new implementation. The Monte Carlo design is the same as in Horowitz (1997). We
consider a linear regression model: y = α+xβ+u, with an intercept and one regressor
sampled from N(0, 1) with probability 0.9 and from N(2, 9) with probability 0.1. The
sample size is small n = 20 and the number of simulations large S = 20, 000, α = 1,
β = 0 and the null hypothesis is H0 : β = 0. The variance of error term t is either 1
or 1 + x2, according to whether the error terms are IID or heteroskedastic. We use a
t-test using the heteroskedasticity-consistent covariance matrix estimator (HCCME) of
Eicker (1963) and White (1980). In fact, we use two HCCMEs. The first is called the
naive HCCME, and is constructed with the residuals ût. The second is calculated with
the transformed residuals ût/(1 − ht)

−1. This transformation improves the numerical
performance of the t-test, being an approximation to the “jackknife” estimator, see
MacKinnon and White (1985) and Davidson and MacKinnon(1993, pp 554). We call it
jack-approx HCCME.
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naive HCCME jack-approx HCCME

asympt boot pairs boot new asympt boot pairs boot new

IID 0.173 0.115 0.093 0.082 0.087 0.073

HET 0.247 0.121 0.098 0.118 0.090 0.075

Table 1: Empirical level of t-test using HCCME, at nominal 0.05 level

In all the cases considered the new implementation improves the reliability of the
t-test. In the presence of heteroskedasticity, the empirical level of the asymptotic t-test
using the naive HCCME equals 0.247. The use of transformed residuals and of the new
implementation of the bootstrap by pairs, corrects the empirical level to 0.075.
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