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Abstract

In a classical risk model under constant interest force, we study the probability
that the surplus of an insurance company reaches an upper barrier before a lower
barrier. We define this probability as win-first probability. Borrowing ideas from
life-insurance theory, hazard rates of the maximum of the surplus before ruin, re-
garded as a remaining future lifetime random variable, are studied, and provide
an original derivation of the win-first probability. We propose an algorithm to effi-
ciently compute this risk-return indicator and its derivatives in the general case,
as well as bounds of these quantities. The efficiency of the proposed algorithm is
compared with adaptations of other existing methods, and its interest is illustrated
by the computation of the expected amount of dividends paid until ruin in a risk
model with a dividend barrier strategy.
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1 Introduction

In this paper, we propose a way to compute the probability that a risk process
reaches an upper barrier (representing a goal or a threshold for a dividend
policy) before crossing a lower barrier (representing the ruin of the company,
or a threshold for insolvency penalties). We define this probability as win-first
probability.

We consider the compound Poisson risk model with a constant instantaneous
interest force δ. The surplus of an insurance company at time t is modeled
by the process Rt, where R0 = u and Rt satisfies the stochastic differential
equation:

dRt = cdt− dSt + δRtdt.

Here, u is the initial surplus, c the premium income rate, and the cumulated
claims process St is a compound Poisson process given by the Poisson param-
eter λ and the distribution function FW of the individual claim amount W ,
with mean m. Assume that c > λm. Denote by Tu and T vu the respective times
to lower or upper barrier, with initial surplus u,

Tu = inf {t, Rt < 0} and T vu = inf {t, Rt ≥ u+ v} ,

with Tu = +∞ if ∀t ≥ 0, Rt ≥ 0 and T vu = +∞ if ∀t ≥ 0, Rt < u + v. The
non-ruin probability within finite time t is

ϕδ (u, t) = P (Tu > t) ,

and the eventual non-ruin probability and ruin probability are respectively

ϕδ (u) = P (Tu = +∞) and ψδ (u) = 1− ϕδ (u) .

As c > λm, ct − St
a.s.→ +∞ as t → ∞. If δ = 0 (no interest force), for any

(u, v) ∈ R2, T vu is an almost surely finite stopping time and one can determine
whether or not Tu > T vu . However, if δ > 0,

P(Rt → +∞ as t→ +∞) 6= 1,

because there exists a threshold y < 0 such that, if for some t > 0, Rt < y,
then surely ∀s > t, Rs < 0. This corresponds to the definition of ruin under
interest force of Gerber (1979). This phenomenon causes many generalizations
of the classical risk model to fail.
Nevertheless, if for all t ≥ 0, Rt ≥ 0, then Rt

a.s.→ +∞ as t→∞. This will be
very important to compute the win-first and the lose-first probabilities with
constant interest force, respectively defined as

WF (u, v) = P (T vu < Tu) ,

LF (u, v) = 1− WF (u, v) .
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These probabilities may provide risk and profit indicators with the same unit:
subjectivity is reduced to the choice of the lower bound u, which represents
the event ”lose”, and the upper bound v, which represents the event ”win”.
Without upper barrier, one drawback of the probability of ruin is that its
minimization often prescribes the cession of the whole activity by the insurer
to the reinsurer. Besides, it does not give any information about the possible
profit, even for very small ruin probabilities. It is interesting to combine it
with a return indicator, and one of the simplest compromises is to consider
the probability WF(u, v) to reach a level u + v from initial surplus u before
being ruined. It has the advantage not to require constrained optimization
techniques.
Risk and return indicators can be built from the win-first probability, such as
the initial surplus required to avoid a failure, uε(v) = inf {u, 1− WF (u, v) ≤ ε},
the objective level v and confidence level ε being given, or the maximal ob-
jective level that is reasonably achievable vε(u) = sup {v, WF (u, v) ≥ 1− ε}, u
and ε being given. The two barriers thus help to define synthetic risk-return
indicators having the same unit, like (uε(v), v) and (u, vε(u)), useful to com-
pare reinsurance or investment strategies. Other quantities involving win-first
probabilities can be considered, such as E ((Tu − T vu )+), E ((T vu − Tu)+) ...

Double barrier problems have been studied in the compound Poisson model
without interest force by Segerdahl (1970), Dickson and Gray (1984a,b), Wang
and Politis (2002). We first give properties of win-first probabilities in subsec-
tion 2.1, including a differential equation and a direct adaptation of a result of
Segerdahl (1942). We thus obtain the win-first probability as a quotient of two
non-ruin probabilities. A first way to tackle the problem of numerically com-
pute win-first probabilities would be to use existing methods (Brekelmans and
De Waegenaere (2001), Sundt and Teugels (1995, 1997), De Vylder (1999)) of
computing ruin probabilities for some particular claim amount distributions,
or for small δ, and to take the quotient. For exponentially distributed claim
amounts, the probability of ruin under constant interest force is well-known
(see Segerdahl (1942), or Sundt and Teugels (1995)). For general claim size
distribution, bounds and Lundberg coefficients have been derived by Sundt
and Teugels (1995, 1997), and several others.
Sundt and Teugels (1997) obtain bounds for the adjustment function. Kon-
stantinides et al. (2002) obtain an asymptotical two-sided bound for heavy-
tailed claim size distribution from generalizing results of the classical case
δ = 0 to the general case. It is possible to use these bounds to get a two-sided
bound for the win-first probability with interest force with heavy-tailed claim
size distribution. However, we do not need in our problem to compute ruin
probabilities, and we shall introduce an original method which is adapted to
the present framework and more suitable in the general case and for general
interest force δ than the method consisting in computing the two correspond-
ing ruin probabilities.
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The formulation of the problem, and the quotient of survival probabilities
suggest the possibility to study a ruin-related survival function of some de-
fective random variable θ, inspired from life-insurance theory. We study in
subsection 2.2 its hazard rate function and propose an algorithm to compute
the win-first probabilities and its derivatives, and a bound of the numerical
error. A particular property of the hazard rates of θ (see theorem 5) is the key
argument which makes the method so efficient. The algorithm and reasons for
someone to want to use it are detailed in section 3. In section 4, numerical
examples are given to demonstrate the accuracy of the algorithm and applica-
tions are proposed. In particular, computing expressions like E[WF(u−W,W )]
which involve win-first probabilities are of real interest in models with divi-
dends. For example, Frostig (2004) and Gerber and Shiu (1998), considered
risk models with a dividend barrier, and computed the expected amount of
dividends until time t and until ruin, or optimal dividend strategies. These
quantities are expressed in subsection 4.1 in terms of win-first probabilities,
which correspond in this framework to the probability that the dividends are
positive. We compare our method with the one using Sundt and Teugels (1995)
in subsection 4.3.

2 Win-first probability

In this section, we first adapt classical results of ruin theory to our framework.
There is no essentially new idea in subsection 2.1. This is the reason why we
only state the results we shall need later. The proofs are similar as in the case
δ = 0. We introduce in subsection 2.2 the new method we propose to compute
the win-first probabilities in the general case.

2.1 Adaptation of classical results and methods of ruin theory

Note that WF (u, v) is nondecreasing with respect to u, nonincreasing with
respect to v, and that

WF (u, v) = 0 for all u < 0, and

WF (u, v) = 1 for all u ≥ 0, v ≤ 0.

Remark 1 In the special case δ = 0, Rt = u + ct − St corresponds to the
classical risk process, and Rt−R0 does not depend on R0 = u. In this case, u
is not necessarily the initial reserve, and WF(u, v) corresponds to the probability
that the surplus process Rt reaches R0 + v before reaching the barrier R0 − u,
and does not depend on R0.
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Theorem 1 For v ≥ 0, w ≥ 0,

WF (u, v + w) = WF (u, v) · WF (u+ v, w) . (1)

Proof : For u ≥ 0, v > 0, w > 0, from stationarity and Markov property of
Rt, earning v + w before losing u may be decomposed into: earning v before
losing u and then earning w before losing u+ v. If v = 0 or w = 0 equality is
obvious. For u < 0, both terms are equal to 0.

Theorem 2 For u ≥ 0, v > 0,

∂

∂u
WF (u, v)− ∂

∂v
WF (u, v) =

λ

c+ δu
(WF (u, v)− E [WF (u−W, v +W ))] ,(2)

∂

∂u
WF (u, v)− ∂

∂v
WF (u, v) =

λ

c+ δu
WF (u, v) · (1− E [WF (u−W,W )]) . (3)

Proof : From Poisson process properties, we get

WF (u, v) = (1− λ∆t) · WF
(
ueδ∆t +

c

δ
(eδ∆t − 1), v −

(
u+

c

δ

)
(eδ∆t − 1)

)

+λ∆t·E
[
WF

(
ueδ∆t +

c

δ
(eδ∆t − 1)−W, v −

(
u+

c

δ

)
(eδ∆t − 1) +W

)]
+o (∆t) .

This heuristic argument shows that equation (2) may be derived with classical
ruin theory tools. For u = 0, we take the convention that ∂

∂u
WF (u, v) is the

right derivative of WF (u, v). Note that in this case, the last term of equation
(2) disappears. Starting from (2), a direct application of (1) leads to

WF (u−W, v +W ) = WF (u−W,W ) · WF (u, v) ,

which provides the second equation.
Inequalities between win-first probabilities and some finite-time ruin proba-
bilities may be derived.

Proposition 1 For any u ≥ 0, v ≥ 0, we have

ϕδ (u) ≤ WF (u, v) ≤ ϕδ (u, τδ(u, v)) , (4)

where τδ(u, v) =
1

δ
ln

(
1 +

v

u+ c/δ

)
if δ > 0 , and τ0(u, v) = v/c.

Proof : For u ≥ 0, v ≥ 0, if Tu = +∞ then the insurer earns almost surely
v before losing u, because Rt

a.s→ +∞ as t → ∞. It follows WF (u, v) ≥
P (Tu = +∞) = ϕδ (u). Now, if the insurer earns v before losing u, time needed
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to earn v is necessarily greater than the solution τδ(u, v) of equation in t:

ueδt +
c

δ

(
eδt − 1

)
= u+ v,

and Tu > τδ(u, v). So, WF (u, v) ≤ P[Tu > τδ(u, v)].
Finally, considering limv→∞ WF (u, v), enables us to express WF (u, v) as a quo-
tient of survival probabilities.

Theorem 3 For u ≥ 0, v ≥ 0,

WF (u, v) =
ϕδ (u)

ϕδ (u+ v)
. (5)

In the special case δ = 0, this result has been recently developed by Wang
and Politis (2002), and had also been treated previously by Dickson and Gray
(1984b) and Segerdahl (1970). The idea is here exactly the same, and we omit
the proof of the extension, which is rather direct.
From equation (5), it is possible to derive an exact formula for WF(u, v) in
the case of exponentially distributed claim amounts (see Segerdahl (1942),
or Sundt and Teugels (1995)), and asymptotical equivalents and bounds for
general claim size distribution, as mentioned in the introduction.

2.2 Hazard rates of θ and applications

In this section we present an interesting interpretation of WF (u, v). Let us
change our notation for an instant and write

vpu = WF (u, v) .

Property (1) can be written

v+wpu =v pu ·w pu+v,

and corresponds to a simple classical formula, expressed in International Actu-
arial Notation (see Actuarial Mathematics), stating that for a positive future
lifetime θ,

P (θ ≥ u+ v + w|θ ≥ u) = P (θ ≥ u+ v|θ ≥ u) · P (θ ≥ u+ v + w|θ ≥ u+ v) .

This formula, based on elementary conditioning, illustrates the fact that some-
one aged u survives v + w years, if he first survives v years, and, being then
aged u+ v, survives w more years. So, it seems logical to look for a nonnega-
tive random variable θ such that WF (u, v) = P (θ ≥ u+ v|θ ≥ u). Let θ be the
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θ

θu

T0

u

0

Figure 1. Sample path of Rt, with θ and θu = (θ − u)+ (δ = 20%).

positive, defective random variable

θ = sup {Rt, t ≤ T0 | R0 = 0} .

Define the survival function of θ by S (x) = P (θ ≥ x) , x ∈ R+, and its hazard
rate by

µx = −S
′(x)

S(x)
= − ∂

∂x
ln(S(x)).

Theorem 4 For u ≥ 0, v ≥ 0, the win-first probability can be written as

WF (u, v) = P (θ ≥ u+ v|θ ≥ u) = S (u+ v) /S (u) , (6)

with S (x) = P (θ ≥ x) = ϕδ (0) /ϕδ (x) , x ≥ 0 .

Proof : Let us first consider the case u = 0, v ≥ 0. If T0 = +∞, Rt
a.s.→ +∞

as t → ∞, and upper barrier v is reached after an almost surely finite time
T vu < T0. In this case, given that T0 = +∞, WF (0, v) = 1 = P (θ ≥ v). If
T0 < +∞, upper barrier v is reached if and only if θ ≥ v, and WF (0, v) =
P (θ ≥ v). In every case WF (0, v) = P (θ ≥ v), v ≥ 0. Consider now u ≥ 0,
v ≥ 0. We have seen that T0 = +∞ implies θ ≥ u. So P (θ ≥ u) ≥ ϕδ (0) >
0. Starting from property (1), we have WF (u, v) = WF(0, u + v)/WF (0, u) =
P (θ ≥ u+ v) /P (θ ≥ u). And the result is obvious since v ≥ 0.

For u ≥ 0, v ≥ 0, note that

µu+v = − ∂

∂v
ln WF (u, v) .

7



This rate is finite and only depends on the sum u+ v. In the case of integer-
valued claim amounts, we will see that µu is continuous and derivable at
each u ∈ R+ r N. For u ∈ N, µu will be only right-continuous and right-
differentiable, so that we will take the convention that each derivative of µ is
its right derivative. We will take the same convention for derivatives in u of
WF(u, v). Given that θ ≥ u, the conditional density of θ is

fθu (x) =
∂

∂x
P (θ < u+ x|θ ≥ u) = WF (u, v) · µu+v.

Hence, for example, LF (u, v) = P (θ < u+ v|θ ≥ u) =
∫ v

0 WF (u, s)µu+sds.
In the sequel, since we will use common actuarial tools, we will most often
preferably write probabilities with standard actuarial notations, using tpx in-
stead of WF(x, t), and will also write:

µ(i)
u =

∂i

∂ui
µu, S(i)

u =
∂i

∂ui
S(u), tp

(i)
x =

∂i

∂xi
tpx, wp

(i)
u−w =

∂i

∂ui
wpu−w.

Note that, due to these definitions, we do not have an equality between S(i)
u

and wp
(i)
u−w when w = u.

Let us denote by Ck
n the binomial coefficient for integers k and n, 0 ≤ k ≤ n.

Proposition 2 For u, v ≥ 0, we have

WF (u, v) = exp−
∫ u+v

u
µsds, (7)

tp
(1)
x = tpx(µx − µx+t),

tp
(k+1)
x =

k∑
i=0

Ci
ktp

(i)
x (µ(k−i)

x − µ(k−i)
x+t ), k ≥ 0. (8)

Proof : (7) holds directly from theorem 4. Differentiations are straightforward.

Proposition 3 A general link between unconditional survival function and
hazard rate is given for x ≥ 0, k ≥ 0 by

S(1)(x) =−µxS(x),

S(k+1)(x) =−
k∑
i=0

Ci
kµ

(i)
x S

(k−i)(x). (9)

Theorem 5 The hazard rate of θ and its right derivatives are as follows:
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µu = αu(1− E(Wpu−W )),

µ(k)
u = α(k)

u −
∑k
j=0C

j
kα

(k−j)
u E(Wp

(j)
u−W ),

with α(k)
u = k!λ(−δ)k(c+ δu)−(k+1), αu = α(0)

u .

for u ≥ 0, k ≥ 0. (10)

Proof : direct from (3) and from (7).

Note that first equation in previous relations could also be written:

µu =
λ

c+ δu

(
1− E

[
1W≤u exp−

∫ u

u−W
µsds

])
,

µu =
λ

c+ δu
((1− FW (u)) + E [ 1W≤u · LF (u−W,W )]) .

In particular, suppose W is a continuous random variable. It is clear that
WF (u−W,W ) = 0 if W > u. It follows from (5) that µ0 = λ

c
and that ∀u ≥ 0,

0 ≤ µu ≤ µ0. Since WF (0, v) = exp −
∫ v
0 µsds > 0 for each v > 0, µ+∞ =

limu→+∞ µu = 0. Furthermore, differentiation of µu follows immediately from
(7) and (5).
Hence, when W is a continuous random variable, the hazard rate µu is a
continuous, decreasing function of u, such that

µ0 =
λ

c
, lim

u→+∞
µu = 0, µ′0 = −λδ

c2
and lim

u→+∞
µ′u = 0 . (11)

Remark 2 For δ = 0, differentiation of WF (u, v) makes sense, and computing
µu, u > 0 in terms of ϕ0 (u) leads to

µu = ϕ′0 (u) /ϕ0 (u) .

We also check that, in the special case δ = 0, formula (5) is a version of the
classical risk theory formula

ϕ′0 (u) =
λ

c
ϕ0 (u)− λ

c
E [ϕ0 (u−W )] .

3 Algorithm

The recursive determination of hazard rate µu and its derivatives, for succes-
sive values of u, gives a set of values of S(u) and its derivatives up to a given
order. Despite the purpose is here to find values of win-first probabilities, this
will eventually give results on ψδ(u) when ψδ(0) is known.
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The proposed iterative algorithm allows to re-use previous computed quanti-
ties, and then reduce the complexity of the determination of the whole func-
tion S. It gives many derivatives of µu and S(u), and all numerical errors
will be bounded in a further section. No assumption is made neither on claim
amounts nor on the interest force δ, making the context different from studies
using small δ (see Sundt and Teugels (1995) and section 4.3), and from the
one using particular distributions for claim amounts (see Konstantinides et al.
(2002) and Brekelmans and De Waegenaere (2001))

3.1 Approximations

In the sequel, W is assumed to be a random variable taking values in the set
N∗ of positive integers. Define πi = P (W = i), i ∈ N.
This hypothesis is not so stringent: in practice, we may approach any contin-
uous random variable by a discrete one, and the discretization step may be
chosen as small as necessary. Instead of taking this step smaller than 1, we
choose this step equal to 1 and change the monetary unit.
The restriction π0 = 0 can be easily eliminated: if π0 > 0, one may re-
place π0, π1, π2... with 0, π1/ (1− π0) , π2/ (1− π0) ... and λ with λ (1− π0) (see
De Vylder, 1999).
The main assumption we shall use for approximations is :

Assumption Hε
r : µ is locally polynomial of order r on intervals [kε, kε+ ε[,

k ∈ N.

We shall see further that even a choice like r = 2 and ε = 0.5 gives numerically
quite good results (see section 4.2), and the precision of the algorithm increases
rapidly for a better choice of these two parameters. In section 3.3, we will derive
bounds for each approximated quantity in the algorithm, in order to ensure
the numerical validity of this assumption. Under Hε

r , we get from the r first
derivatives of µ:

∀s ∈ [0, ε[, µ(x+ s) =
r∑
i=0

µ(i)(x)

i!
si ,

For x ∈ εN, S(x+ ε) =S(x) exp

(
−
∫ ε

0

r∑
i=0

µ(i)(x)

i!
sids

)
,

S(x+ ε) =S(x) exp

(
−

r∑
i=0

µ(i)(x)

(i+ 1)!
εi+1

)
. (12)

We can also derive S(x+ε) from derivatives of S(x), but we choose to use the
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single hypothesis Hε
r . In life insurance, the hypothesis of constant hazard rate

is often considered for survival lifetimes, and corresponds here to the order
r = 0. In practice, it is possible to get higher order derivatives of µu since
computation of µ(r+1)

u may be replaced with an approximation like µ′left
u

(r) =(
µ(r)
u − µ

(r)
u−ε

)
/ε. However, one should keep in mind that, if W takes values in

N, each x ∈ N is a point of discontinuity for function µ (see figure 4). So, using
this approximation will give good results, except for u ∈ N. Nevertheless, since
numerical results are fine enough, and since the parameter r could be chosen,
we did not use this approximation.

Proposition 4 (approximation algorithm) Under hypothesis Hε
r , the fol-

lowing algorithm computes recursively the values of S(u), µu, E[Wpu−W ] and
all their derivatives up to a given order r. With S(0) = 1, and for u ∈ εN,
u ≤ umax, k ∈ N, k ≤ r,

wp
(k)
u−w = 1{k=0}

S(u)

S(u− w)
+ 1{k≥1}

k−1∑
i=0

Ci
k−1wp

(i)
u−w(µ

(k−1−i)
u−w − µ(k−1−i)

u ), w = 1..[u],

µ(k)
u =α(k)

u −
k∑
j=0

Cj
kα

(k−j)
u E(Wp

(j)
u−W ),

S(u+ ε) =S(u) exp

(
−

r∑
i=0

µ(i)(u)

(i+ 1)!
εi+1

)
.

From the second equation, quantities µ
(0)
0 = α

(0)
0 and µ

(k)
0 are given by the recur-

sion, as the E(Wp
(j)
u−W ), j ≤ k are derived from previously computed quantities

wp
(j)
u−w.

Note that α(k)
u = k!λ(−δ)k(c + δu)−(k+1), and that for w > u, wp

(j)
u−w = 0.

The previous algorithm gives derivatives of µ from order 0 to r. It also gives
for each u ≤ umax, u ∈ εN, S(u) and eventually ψδ(u) = 1 − ϕδ(0)/S(u). To

obtain derivatives of WF and S, we can use (8) for ∂k

∂uk
WF(u, v) and following

relations:

∂k

∂vk
WF(u, v) =S(k)(u+ v)/S(u),

S(k+1)(x) =−
k∑
i=0

Ci
kµ

(i)
x S

(k−i)(x) , k ≥ 0. (13)

Let i be a positive integer. We have seen that S (i) = ϕδ (0) /ϕδ (i). In the
special case δ = 0, it is known that ϕ0 (i) can be exactly computable by
classical formulae (see Picard and Lefèvre (1997) and De Vylder (1999)):
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ϕ0 (i) =

(
1− λm

c

)
i∑

j=0

hj (j − i) ,

with hj (τ) =
λτ

cj

j∑
k=1

kπkhj−k (τ) and hj (0) = e−
λτ
c .

This formula has the advantage to give exact values if W is integer-valued. Let
us compare the number of loops involved in the computation of S (i) , i = 1...x
by algorithm (4) and the number of loops involved in the computation of
ϕ0 (i) , i = 1...x by the Picard and Lefèvre (1997) algorithm. Computing
S (i) , i = 1...x implies r2/2 loops for i = 1..x/ε, j = 1...iε, so that complexity
of algorithm 4 is quite proportional to r2x2/ε. Computing ϕδ (i) , i = 1...x
requires loops for i = 1...x, j = 0...i, k = 1...j, so that complexity of Picard-
Lefèvre formula is quite proportional to x3. To approximate a continuous dis-
tribution W by Wd taking values in dN, time needed by algorithm (4) is
proportional to r2x2/ (d2ε) against x3/d3 for the Picard and Lefèvre (1997)
formula. Noting that hypothesis Hε

1 means that µ is linear on intervals of
length dε, one can use ε = 1 and r = 1 if d is small. As both formulae lead
to an approximation of values obtained for a continuous W , the algorithm
may be of a practical interest even in the case δ = 0. Moreover, we will see in
section 3.4 that the complexity of the algorithm can be reduced in this case.

3.2 Convergence for parameters r and n

The highest order of derivatives that are computed by the algorithm is r, and
n = 1/ε is an integer that represents the number of sub-periods in one unit of
time. The hypothesis in approximation algorithm is that, on each sub-period,
µu is locally polynomial of order r. The precision of the algorithm, at one step,
is given by η, which represents the number of decimal digits that one aims at
obtaining. More precisely, 10−η represents the error in the approximation of
µu+ε by the Taylor expansion of order r.
To improve the local precision of the algorithm, we can increase either n or
r; this may have different effects on the complexity of the algorithm. We only
give here informal considerations for the choice of the couple (n, r) to minimize
the complexity of the algorithm. It would be possible to get more rigorous re-
sults for that choice of parameters, but they are omitted here in the interest
of conciseness.
Note first that the remaining part in the Taylor expansion behaves like µ(r+1)

(r+1)!
εr+1.

To simplify further calculation, take u = 0, since µ(r+1)(0) is known, equal to
α(r+1)(0). In absolute value, the error is then comparable to λ( δ

cn
)r+1. If this

last quantity is set to be equal to 10−η, then a link appears between r and n:

r =
η ln(10) + ln(λ)

ln(cn/δ)
− 1, n =

δ

c
(λ10η)1/(r+1).

12



For a given u the local complexity of the algorithm is then proportional to

c(r) = nr2 =
δ

c
λ10η

1
r+1 r2.

Trying to find r0 that minimizes c(r), we find, in the case where ln(λ10η) ≥ 8

r0 =
1

4

(
(ln(λ10η)− 4 +

√
ln(λ10η)(ln(λ10η)− 8)

)
, n0 =

δ

c
λ10η

1
r0+1 .

Since n0 is here a real number, and should better be an integer greater than 1,
and since r must also be an integer, we may choose the following parameters
to ensure that required precision on µ is reached at the first point following
u = 0:

nopt = max(2, [n0] + (0 or 1)) and ropt =

[
η ln(10) + ln(λ)

ln(cnopt/δ)

]
+ (0 or 1).

As an example, take δ = 100%, so that we do not suppose that δ is close to 0.
For λ = 1, c = 1 and η = 12 decimal digits, we get nopt = 9 and ropt = 12. With
η = 16 decimal digits, we get nopt = 9 and ropt = 16, so that the complexity
is multiplied by something less than 1.8 to reach 4 more decimal digits.

3.3 Bounds for µu, WF(u, v) and their derivatives

The algorithm makes only one approximation by replacing µu+ε with its Taylor
expansion. Nevertheless, this approximation is used recursively, so that even
if the error is locally bounded, we cannot ensure that the global result will be
precise enough. For this reason, we must give exact bounds for the values we
approximate.

For a function fu of u, we will use the following notations: fu
[−1] and fu

[+1] will
be bounds of fu, such that fu ∈

[
fu

[−1], fu
[+1]

]
. We define by this way µ(k)

u
[σ],

S(u)[σ] and β(k)
u

[σ], with β(k)
u = E

[
Wp

(k)
u−W

]
, for σ ∈ {−1,+1}.

For two bounded quantities a and b, we will use following arithmetic, that
might be simplified when the signs of a and b are known.

(a+ b)[σ] = a[σ] + b[σ] ,

(a− b)[σ] = a[σ] − b[−σ],

(ab)[σ] = maxσ1,σ2∈{−σ,σ}{a[σ1]b[σ2]}, σ ≥ 0

(ab)[−σ] = minσ1,σ2∈{−σ,σ}{a[σ1]b[σ2]}, σ ≥ 0.

Note first that, when u = 0, S(0)[+1] = S(0)[−1] = 1. From (8), we can bound

wp
(k)
u−w from bounds of µ(j)

u and wp
(j)
u−w, j < k, w ≤ u. From (10), we can also

13



bound µ(k)
u from bounds of wp

(j)
u−w, j ≤ k. We get then wp

(k)
u−w

[σ] and µ(k)
u

[σ] for
σ ∈ {−1,+1}.

We will now use for a function fu of u the following notations: fu
[−2] and

fu
[+2] will be bounds of fu, such that ∀s < ε, fu+s ∈

[
fu

[−2], fu
[+2]

]
.

Note that, when u = 0, S(0)[+2] = 1, and since S is decreasing, S(0)[−2] ≤
S(ε)[−1]. The sign of α(k)

u is the same as the one of (−1)k. Since α(k)
u is thus

either increasing or decreasing in u, depending on kmod 2, we remark that

α(k)
u

[σ] = k!λ(−δ)k(c+ δu)−(k+1), σ = −1, 0,+1,

α(k)
u

[−2] = 1{kmod 2=0}α
(k)
u+ε + 1{kmod 2=1}α

(k)
u ,

α(k)
u

[+2] = 1{kmod 2=0}α
(k)
u + 1{kmod 2=1}α

(k)
u+ε.

Using such α(k)
u

[σ], we can easily check that (8) and (10) can be adapted to get

bounds wp
(k)
u−w

[σ] and µ(k)
u

[σ] for σ ∈ {−2,+2}.

The knowledge of bounds of µ
(k)
u+s, s < ε will allow us to derive bounds of the

derivative form of Taylor’s remainder, and then bounds of S(u). For s ∈ [0, ε[,
µu+s is a continuous and r + 1 times differentiable function of s. We have

µu+s =
r∑

k=0

µ(k)
u

k!
sk +R(r)

u,s, with R(r)
u,s =

µ
(r+1)
u∗

(r + 1)!
sr+1, u∗ ∈ [u, u+ ε[.

Since µ
(r+1)
u∗ is bounded, we can bound R(r)

u,s, and then S(u+ ε):

S(u+ε)[σ] = S(u)[σ] exp

(
−

r∑
k=0

µ(k)
u

[−σ]

(k + 1)!
εk+1 +

µ(r+1)
u

[−2σ]

(r + 2)!
εr+2

)
, σ ∈ {−1,+1}.

The only difficulty to build the bounding algorithm is the following: since
S(u) is decreasing in u, a good lower bound for S(x), x ∈ [u, u+ ε[ is given by
the lowest value of S(u + ε), so that we can propose S(u)[−2] = S(u + ε)[−1].
Nevertheless, the calculation of S(u+ ε)[−1] from S(u)[−1] uses µ(r+1)

u
[+2], that

is then calculated from S(u)[−2]. Using such a bound gives then S(u)[−2] as a
computable function of itself. We have built both a formal computation algo-
rithm, in order to get the root value of S(u)[−2], and also a fixed-point algo-
rithm, starting from S(u)[−2] = 0. Nevertheless, since the last term of Taylor
expansion becomes very small for large values of r, such precise bounds of
S(u)[−2] could be replaced with S(u)[−2] = 0. The great acceleration resulting
of this choice can be exploited to increase r or n = 1/ε, for example, and thus
the precision of the algorithm. We will see with numerical figures that this
approximation is sufficient to get very precise results. Indeed, it only changes
bounds for the r + 1th derivative order of µu and has an impact comparable to
µ(r+1)
u

[+2]εr+2/(r + 2)!. The problem does not hold for S(u)[+2] since the bet-
ter bound we can propose is S(u)[+2] = S(u)[+1]. Note that, by construction,
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S(u)[−1] and S(u)[+1] give bounds for S(u), not for its approximation S(u)[0],
which can be outside the interval.

Proposition 5 (bounding algorithm) Bounds for µu, E[Wpu−W ], S(u) and
their derivatives up to order r are given by following algorithm, with initializa-
tion values S(0)[−1] = S(0)[+1] = 1. For u = 0..umax by step ε, for k = 0..k+1,
and for σ0 = +1,+2,

S(u)[+2] = S(u)[+1], S(u)[−2] = 0

wp
(0)
u−w

[σ] =
S(u)[σ]

S(u− w)[−σ]
, σ = ±σ0

wp
(k)
u−w

[σ] =
k−1∑
j=0

Cj
k−1

(
wp

(k−1−j)
u−w (µ

(j)
u−w − µ(j)

u )
)

[σ], u ≥ 1, k ≥ 1, σ = ±σ0

µ(k)
u

[σ] = α(k)
u

[σ] − 1{u≥1}

k∑
j=0

Cj
k

(
α(k−j)
u E[Wp

(j)
u−W ]

)
[−σ], σ = ±σ0

S(u+ ε)[σ] = S(u)[σ] exp

(
−

r∑
k=0

µ(k)
u

[−σ]

(k + 1)!
εk+1 − µ(r+1)

u
[−2σ]

(r + 2)!
εr+2

)
, σ = ±1.

This algorithm is quite similar to the first one we proposed. Some remarks can
be done for its practical implementation.
First, we had better use only integer arguments, so that for n = 1/ε,n ∈ N,
we preferably replace u with an index i = 0..numax, where i denotes nu.
Second, for each value of u, we do not use previous values wp

(k)
u0−w and E[Wp

(k)
u0−W ],

u0 < u. In the algorithm, these quantities do not need to depend on u, and
that spares stocking memory.
Third, many quantities, like E[Wp

(k)
u−W ] or like Taylor integrated approxima-

tion in the exponential, can be computed in previous sums giving respectively

wp
(k)
u−w and µ(k)

u .
We may check at each step if the precision of the computer is high enough.
If not, it is possible to change lower and upper bounds in order to include, at
each step, the maximum numerical computer error.
At last, bounds for derivatives of S and WF(u, v) with respect to u and v are
given for σ ∈ {−2,−1, 1, 2} by:

S(k+1)[σ](x) =−
k∑
i=0

Ci
k

(
µ(i)
x S

(k−i)(x)
)

[σ].

∂k

∂vk
vpu

[σ] =S(k)(u+ v)[σ]/S(u)[−σ], k ≥ 0,

∂k

∂uk
vpu

[σ] =
k−1∑
i=0

Ci
k−1

(
vp

(k−1−i)
u (µ(i)

u − µ
(i)
u+v)

)
[σ], k ≥ 1.
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3.4 Further results and improved algorithm

We have seen that, given the survival function S(x) for x ∈ [0, u], it is possible
to deduce exactly as many derivatives of µu and wpu−w as wanted, and to get
then an approximation of S(u + ε). The previous algorithm was constructed
on this idea. For k varying from 0 to a given derivative order r, let us recall
here equations that are used in this exact differentiation step (w ≤ u):

wp
(k)
u−w = 1{k=0}

S(u)

S(u− w)
+ 1{k≥1}

k−1∑
i=0

Ci
k−1wp

(i)
u−w(µ

(k−1−i)
u−w − µ(k−1−i)

u ),(14)

µ(k)
u =α(k)

u −
k∑
j=0

Cj
kα

(k−j)
u E(Wp

(j)
u−W ), (15)

α(k)
u = k!

λ

c+ δu

(
−δ

c+ δu

)k
. (16)

This step was of complexity proportional to ur2. We will see here that it is
sometimes possible to reduce this complexity to something proportional to
ln(u)r2. To do so, we shall denote by Ων a random variable distributed as
W ∗2ν = W1 + ...+W2ν , with Ω0 = W . The law of Ων can be easily constructed
for integer claim amount W , since for k ∈ N,

P[Ω0 = k] = P[W = k],

P[Ων+1 = k] =
k∑
i=0

P[Ων = i]P[Ων = k − i], k ∈ N, ν ≥ 0.

Remark also that if S is given on [0, u], we can easily deduce Ωνpu−Ων from S.
We will see that since W ≥ 1 we will only need law of Ων when Ων ≤ u, i.e.
for ν ≤ ln(u)

ln(2)
.

We previously gave derivatives for almost all relations, except an important
one:

Proposition 6 By derivation of actuarial property of win-first probabilities,

s+tpx = spx · tpx+s,

s+tp
(k)
x =

k∑
j=0

Cj
ksp

(j)
x tp

(k−j)
x+s . (17)
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Consider first the case δ = 0. In this case, α(k)
u = λ

c
1{k=0}. As wpu−w = 0 when

w > u, injecting (15) into (14) gives

W1p
(k+1)
u−W1

=
λ

c

k∑
i=0

Ci
kW1p

(i)
u−W1

EW2 [W2p
(k−i)
u−W2

]−λ
c

k∑
i=0

EW2

[
Ci
kW2p

(k−i)
u−W1−W2W1p

(i)
u−W1

]
.

Using proposition 6, we get then the following theorem, reducing the complex-
ity of differentiation step to something proportional to ln(u)r2:

Theorem 6 When δ = 0, and if S(x) is given on x ∈ [0, u], then all deriva-
tives of Ωνpu−Ων are given by the following recursion: for ν from [lnu/ ln 2]
down to 0, for k from 0 to r,

β(k+1)
u,ν = 1{2ν≤u}

(
−λ
c
β

(k)
u,ν+1 +

λ

c

k∑
i=0

Ci
kβ

(i)
u,νβ

(k−i)
u,ν

)
, k ≥ 0, δ = 0

with β(k)
u,ν = E

[
Ωνp

(k)
u−Ων

]
.

Consider now the case δ > 0. In this case, note that

Cj
kα

(j)
u α(k−j)

u = α(0)
u α(k)

u , with α(0)
u =

λ

c+ δu
. (18)

Assume that u is given and define µ̃(k)
x = µ(k)

x /α(k)
u , tp̃x

(k) = tp
(k)
x /α(k)

u and
α̃(k)
x = α(k)

x /α(k)
u . Substituting (18) in (14) and (15) yields:

wp̃
(k+1)
x−w = γk

k∑
i=0

wp̃
(i)
x−w

(
µ̃

(k−i)
x−w − µ̃(k−i)

x

)
, with γk =

−λ
(k + 1)δ

, (19)

µ̃(k)
x = α̃(k)

x − α(0)
u

k∑
j=0

α̃(k−j)
x E(W p̃

(j)
x−W ), (20)

and from 17,

s+tp̃
(k)
x =

λ

c+ δu

k∑
j=0

sp̃
(j)
x tp̃

(k−j)
x+s . (21)

Equations (19) to (21) could be useful for computations and for further analy-
sis, since they avoid to compute binomial terms in the recurrence or factorials
in the Taylor’s expansion:

r∑
k=0

µ(k)
u

(k + 1)!
εk+1 =

λε

c+ δu

r∑
k=0

µ̃(k)
u

k + 1

(
−δε
c+ δu

)k
.

17



This improvement being quite simple, the resulting algorithms for approxima-
tion and bounds are omitted here.
Other extensions may be found for δ > 0 by similar arguments as in the case
δ = 0. Injecting (20) into (19), and using the actuarial property, we can get

an expression depending on quantities α̃
(k)
u−w, w ≤ u. Since these quantities

are bounded, with α̃
(k)
u−w ∈ [1, (1 + δ u

c
)k+1], we can derive recursive bounds for

β̃(k)
u,ν = E[Ων p̃

(k)
u−Ων ] as a function of β̃

(k)
u,ν+1, for k ≥ 0 and δ > 0. We can thus

construct bounds for β̃u = β
(k)
u,0, µ̃(k)

u and µ(k)
u . The complexity of the differen-

tiation step is then proportional to ln(u)r2 instead of ur2, but the obtained
bounds are less precise than in previous bounding algorithm. Nevertheless,
this approach might be useful when looking for analytic bounds of β̃(k)

u,ν .

4 Applications and numerical results

4.1 An example of application : payment of dividends

Let us now modify our process Rt with an horizontal dividend barrier strat-
egy. Starting from u, if the surplus reaches the upper barrier u + v, all the
premium income and the interests (at rate δ) are paid as dividends until the
next claim, i.e. during an exponentially distributed time ξ, with parameter λ.
We shall show here that it is possible to determine the total amount of divi-
dends that will be paid until the process reaches the lower barrier 0, and that
this cumulative amount of dividends depends on win-first probabilities and on
quantities which are computed in the previous algorithm. The total expected
amount of dividends is given here as a simple example, and depending on the
purpose of the study, one may introduce either a discounting factor or other
parameters. We shall keep in mind that the total dividend amount might be
here represented by a defective random variable. Denote by Di the cumulative
amount of dividends that is paid during the ith period of payment, distributed
as D =

∫ ξ
0 e

δsds, where is N the number of payment periods, and T is the
total amount of dividends T =

∑N
i=0Di. We also use N0 and T0, the random

variables distributed as N and T given that N > 0. For any random variable
X, we will denote respectively by FX and fX its distribution and density func-
tion. From the memoryless property of the modified risk process, N0 − 1 is a
geometric random variable with parameter βu+v = E[WF(u+ v −W,W )], and
it is easy to get the classical results :

P[N = 0] = 1− WF(u, v) and P[N = k] = WF(u, v)βk−1
u+v(1− βu+v), k ≥ 1,

and if λ > δ and βu+v < 1, supposing that u and v are fixed, with the
notation ω = WF(u, v) and β = βu+v, the distribution function and the mean
of the cumulated amount of dividends are as follows :

18



P[T ≤ x] = (1− ω) + ω(1− β)
∞∑
k=1

βk−1FD∗k (x) ,

E[T ] =
WF(u, v)

(1− βu+v)(λ− δ)
.

The expected value only depends on λ, δ, WF(u, v) and βu+v, which we are able
to compute with as much precision as necessary.

Proposition 7 If there exists R such that E[eRD] = 1/β, then we can get, by
application of Smith’s theorem,

lim
x→∞

P[T ≤ x] = (1− ω) + ω lim
x→∞

e−Rx
∫∞

0 ā(y)dy∫∞
0 (1− Ḡ(y))dy

,

with ā(y) = (1 − β)eRyFD(y), dḠ(y) = βeRyfD(y), FD(y) = 1 − (1 + δy)−
λ
δ ,

and fD(y) = λ(1 + δy)(−λ
δ
−1).

This simple example shows how quantities β = E[WF(u + v − W,W )] and
ω = WF(u, v) naturally appear in the computation of the expected dividends.

4.2 Numerical results

The results presented hereafter have been obtained for λ = 1 and c = 1.05. W
is first exponentially distributed with parameter 1, and then discretized with
Fd (id) defined on each interval [id, id+ d[, such that:

Fd (id) =
1

d

∫
[id,id+d[

FW (x) dx.

We have taken d = 1. As explained in section 3.1, in order to cancel π0 =
P(W = 0), the Poisson parameter λ has been modified into λ(1−π0), and the
πi have been changed too. This discretization procedure if fully described in
De Vylder (1999). This explains values for x = 0 in figures 2 and 3. The obser-
vation of the evolution of µx, x > 0 for integer-valued claim amounts confirm
that it is nonincreasing, but not continuous. This is a classical fact in ruin
theory, and it explains that we usually observe discontinuity points that really
exist, even if exact computations are carried out. Let us explain, for example,
that if δ = 0, µx = µ0 for each x < 1. Note that θ = sup {Rt, t ≤ T0 | R0 = 0}.
Starting from 0, the random variable θ keeps growing, as a survival lifetime,
until the first claim. If the claim occurs before θ reaches the value 1, then ruin
occurs since the claim amount is a positive integer. As long as θ < 1, for δ = 0,
the probability that θ stops growing is directly linked with the hazard rate of
the time of the first claim, which is constant and equal to the modified λ. If
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Figure 2. Aspect of µ for integer-valued W
and δ = 0.
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Figure 3. Aspect of µ for integer-valued W
and δ = 0.05.
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Figure 4. Aspect of derivative function of
hazard rate µ′x, x /∈ N and δ = 0.
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Figure 5. Aspect of derivative function of
hazard rate µ′x, x /∈ N and δ = 0.05.

θ has reached x > 1, situation is more complex, since the probability that θ
stops growing will also depend on the claim amount.
The analysis of derivatives of hazard rates (see figures 4 and 5) may be impor-
tant to understand approximations that are made in the proposed algorithm.
Replacing µ

(k+1)
iε with the approximation µ′left

iε
(k) =

(
µ

(k)
iε − µ

(k)
(i−1)ε

)
/ε gives

good results for iε /∈ N, but it must be done keeping in mind the disconti-
nuity of µx and of its derivatives on atoms of the distribution of the claim
amount (see tables 1 and 2). Despite discontinuities of hazard rates of θ
(see figures 2 and 3), survival function S (x) is continuous (see figure 6), and
tends to ϕδ (0) as x → +∞. This function is sufficient to obtain all values of
WF (u, v) = S (u+ v) /S (u) , u, v > 0. Of course, in the special case δ = 0,
computation of probabilities of ruin and non-ruin are already well-known, and
may be computed for example with classical formulae (see Picard and Lefèvre
(1997) or Rullière and Loisel (2004)). We retrieve S (u) by computing the ra-
tio ϕ0 (0) /ϕ0 (u) (see table 3). We shall remember that, for u > 0, although
the computation of ϕ0 (u) is exact, it does not use previous computations of
ϕ0 (x) , x = 1, ..u − 1. This implies, especially if discretization of W is really
accurate, a computation time that could be important. It is thus interesting
to propose another way to determine WF (u, v) that would help to understand
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iε µ
(1)
iε µ′leftiε

4.95 -0.02858 -0.02860

4.96 -0.02854 -0.02856

4.97 -0.02850 -0.02852

4.98 -0.02846 -0.02848

4.99 -0.02842 -0.02844

5 -0.02380 -0.17041

5.01 -0.02378 -0.02379

5.02 -0.02376 -0.02377

Table 1 Some values of derivatives of µ
for δ = 0 and ε = 0.01.

iε µ
(1)
iε µ′leftiε

4.95 -0.03185 -0.03188

4.96 -0.03179 -0.03182

4.97 -0.03173 -0.03176

4.98 -0.03166 -0.03169

4.99 -0.03160 -0.03163

5 -0.02763 -0.16936

5.01 -0.02758 -0.02761

5.02 -0.02753 -0.02756

Table 2 Some values of derivatives of µ
for δ = 0.05 and ε = 0.01.
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Figure 6. Aspect of survival function S(u) = WF(0, u) for δ = 0 and δ = 0.05.

the structure of θ. In table 3, we see that approximation algorithm gives quite
precise results for small values of convergence parameters n and r, and that
precision increases rapidly when r becomes larger.
To give an idea of the convergence of the bounding algorithm, we have taken
convergence parameters n = 2 and r = 100. Keeping c = 1.05, λ = 1, we
obtain quantities in tables 4, 5, 6, 7 and 8, in both cases δ = 0.05 or δ = 1.2.
Rather than proposing very near bounds for each quantity, we preferred show-
ing only decimals that were in common in lower and upper bounds. The great
number of correct digits shows that the algorithm gives very thin bounds when
r becomes large. It may help measuring quality of analytical approximations,
and also helps comparing precision of the algorithm with the existing one in
the literature. This last point will be developed in section 4.3. In table 6, we
gives bounds for the 10 first order derivatives of S and µ. When r is large
enough, bounds remain very thin also for these derivatives, and are far much
precise than the one that could be obtained by successive finite differences on
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u ϕ0(u) ϕ0(0)/ϕ0(u) S(u)(n=2,r=2) S(u)(n=2,r=7)

0 0.047619048 1 1 1

1 0.086942973 0.547704386 .5477043856 .5477043856

2 0.125654634 0.378967699 .3789347571 .3789676986

3 0.163135685 0.291898413 .2918589855 .2918984132

4 0.199174553 0.239081985 .2390475932 .2390819852

5 0.233726482 0.203738350 .2037113041 .2037383494

6 0.266813025 0.178473475 .1784528790 .1784734745

7 0.298480705 0.159538110 .1595224001 .1595381102

8 0.328784306 0.144833700 .1448214757 .1448336999

9 0.357780267 0.133095791 .1330859961 .1330957906

10 0.385524138 0.123517681 .1235095719 .1235176811

Table 3
Exact values of ϕ0(u) by the Picard-Lefèvre formula and approximations of S(u)

(δ = 0).

u S(u) µu

0 1. .60201957983672159848045355222718012624208463711260

1 .55536753143898948033704731623796351501937756358898 .37291709040266536547962244132582576831761412574029

2 .39571061661657290808739908681011144489297103305312 .25151862906429592201939126794787995307626601247085

3 .31717796643173124672644036387953769101531776076477 .17561721629275419932396285268627620586636125028427

4 .27241949864280665916591655760301981552636588391855 .12463074207617205987829396215227588738956312457840

5 .24475728269819191947606478608113230139779082228707 .088983882528775672523830328545016100434528133542912

6 .22684151014642003046567015318789865261680613384077 .063489602807296175860368607790255643020687513766155

7 .21492640570772406604762219996119093708403247013515 .045055660722929856034785799235531431265782502796578

8 .20689527993852467459282972172931079384070536660447 .031695402749427521457236730930928679745933711961554

9 .20145762751247551497216845937090037598532454531247 .022050837923035677891605896212785430522573468958071

10 .19778202146032724398088007977799747009305673079175 .015147834698460297368806746234185068943442859266538

Table 4
Exact decimal digits of S(u) and µu by bounding algorithm (δ = 0.05).

u S(u) µu

0 1. .60201957983672159848045355

1 .66933517879990261091566493 .16207556315205895533649587

2 .59730976442093773603118302 .05441722349579981821432819

3 .57494353077840354664777459 .01938689080540239232950103

4 .56725683117542653295887268 .00703790102742977713159014

5 .56452041446391119585445702 .00257056467920173233831039

6 .56353310298614385390522442 .00094069917249684588476497

7 .56317486756630610711255072 .00034444955377647221733089

8 .56304453577548005640595134 .00012614794861816208792551

9 .56299704696737238590046541 .00004620339806683924991726

10 .56297972609520189881409116 .00001692406622986125300514

Table 5
Exact decimal digits for S(u) and µu by bounding algorithm (δ = 1.2).
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k S(u)(k) µ
(k)
u

0 .244757282698191919476064786081132301397790822287 .088983882528775672523830328545016100434528133542

1 -.021779453291678248139853343964504022264773000051 -.027629483673356369324950664995212902914462559697

2 .008700537659492416889348321750556619101482134957 .004781759780650901141178540920815767739921848509

3 -.003148088249731182436118591683531570999288924430 .001184056174728555633066782660597992807695785290

4 .001023929174136961425000957228656082809071769453 .000079184281921029225092433587328484379390687953

5 -.000604885236309820279361901997938225188501618568 -.000402623545415252800623317732679845596127644524

6 .000349960969975695293643389220473108020035197533 -.000386370000451382731645846489531581540120338400

7 -.000098690210126223893537006123193270538997311567 -.000179180225484452079551481731074750159874505135

8 .000162013429988748369733435193279071491692638059 .000076722640836791688533098696105266989982210445

9 -.000075506148302808719759688754740222191140782554 .000264991262234335480487532290438883180373071878

10 -.000008701456970729554583982507829971722968348809 .000285704192102520471952411764658858649021463062

Table 6
Exact decimal digits of right derivatives S(u)(k) and µ

(k)
u (u = 5, δ = 0.05).

quantity value for u = 5, v = 4, δ = 0.05

WF(u, v) .8230914532618470298053719011486982427784142006271074...

∂
∂u

WF(u, v) .0550920169557785632478932959551552772017674284516602...

∂
∂v

WF(u, v) -.01814985623171288470150842179406380159358909721724867...

E[WF(u−W,W )] .816998441718484612223534760053005148559101965324086718334...

λ/(c+ δu) .486246583714275137234212484491183948118606822283255511917...

Table 7
Exact decimal digits of quantities in differential equation by bounding algorithm

(δ = 0.05).

quantity value for u = 5, v = 4, δ = 1.2

WF(u, v) .9973014837771890777610838...

∂
∂u

WF(u, v) .00251754925126551481612193...

∂
∂v

WF(u, v) -.000046078717447606893398087...

E[WF(u−W,W )] .97133065720571295060131280...

λ/(c+ δu) .08966249061397981253964201841681406...

Table 8
Exact decimal digits of quantities in differential equation by bounding algorithm

(δ = 1.2).

thin intervals of length ε. This result comes directly from the fact that (5)
gives at point x exact values of these derivatives, when S is given on [0, x].
Only approximations on S, that are numerically very precise, have an impact
on these derivatives. At last, we have bounded, for u = 5 and v = 4, terms
appearing in differential equation (3):

∂

∂u
WF (u, v)− ∂

∂v
WF (u, v) =

λ

c+ δu
WF (u, v) · (1− E [WF (u−W,W )]) .

Only decimals that are in common in lower and upper bounds are written in
tables 7 and 8. As λ was modified to eliminate the mass P [W = 0], we easily
verify this differential equation, in both cases δ = 0.05 and δ = 1.2. Conver-
gence parameters n = 2 and r = 100 give in both cases, for the equality, a
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Figure 7. Average cumulative dividends as a function of premium rate c (δ = 0.05).

better precision than the 120 decimal digits we used for calculations. An inter-
esting result of the algorithm is that it also gives all derivatives up to a given
order, with respect to u or in v, of WF(u, v). To give a concise illustration of
section 4.1, figure 7 draws the evolution of average cumulative dividends that
may be paid each time the process reaches the upper barrier without having
reached the lower one. This simple, natural example is based on quantities
computed in approximation or bounding algorithm. It is given here in a sim-
plified environment, and introduction of other economical parameters, such as
a discounting factor, would require further analysis.

4.3 Comparison with other methods

Sundt and Teugels (1995) proposed several methods to compute ψδ(u). Each
one is based on the value of ψδ(0). If these methods are used to compute

S(u) = WF(0, u) = 1−ψδ(0)
1−ψδ(u)

, then the result obtained depends on the value of

ψδ(0). Sundt and Teugels (1995) proposed for example a recursive algorithm
that we rewrite with our notations:

ϕδ(hk)[−1] = γ−

cϕδ(0) +
k∑
j=1

ϕδ(h(k − j))[−1]f+
j

 ,
ϕδ(hk)[+1] = γ+

cϕδ(0) +
k−1∑
j=1

ϕδ(h(k − j))[+1]f−j

 .
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with γ− = 1
c+δhk

, γ+ = 1
c+δhk−f+

1

, and, in the special case of integer-valued

claim amounts, f+
k = δh + λhP[W ≥ hk], f−k = f+

k+1, h ≤ 1. f1 = (λ + δ)h.
Note that the corresponding formulae for this quantities in Sundt and Teugels
(1995) (top of page 12) have to be switched. Let us try to minimize

∆ϕh
k

= ϕδ(hk)[+1] − ϕδ(hk)[−1]

under the (very) optimistic hypothesis that for j < k, ∆ϕh
k−j

= 0. Note that

ϕδ(u)F (u) > E [ϕδ(u−W ) 1W≤u] .

Hence, after some omitted computations, with u = hk,

∆ϕh
k
>

(ϕδ(hk)− ϕδ(0)) (λ(1− F (hk)) + δ)

c+ δhk
h, (22)

As an example, in the case δ = 0, we can get from table 3 values for the
right member of (22). With same numerical parameters, the minoration of
∆ϕh

k
changes from values 10−3 to 10−5 when hk ∈ [1, 10]. To get the same

precision level 10−η as in table 4, would require an h smaller than 10−η+5,
and a much higher complexity in 1/h2 than with our method. One must add
to this problem the error possibly made in ϕδ(0), which was supposed to be
avoided, and the propagation error due to ∆ϕh

k−j
, j ≤ k.

Other methods might not be more efficient, except in the case where ϕδ(0)
is precisely bounded, for as well small or large values of δ. Besides, the ad-
justment functions do not in general provide directly two-sided bounds for
ruin probabilities. They are particularly adapted to the case of large initial
reserve, which does not correspond to the assumption made here. This shows
that the method consisting in taking the quotient of two non-ruin probabili-
ties (computed with methods efficient for that problem) is not adapted to our
framework, and that the algorithm proposed in section 3 is more convenient
to this problem.
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