Transparency and control in engineering
integrated assessment models

Minh Ha-Duong
25th May 2001

Abstract

Better software engineering such as archiving releases with version control,
writing portable code, publishing documentation and results closely tied to the
code improves integrated assessment models’ transparency and control. A case
study of four climate change policy analysis models found that source code and
data was generally available, but for larger models licenses were more restrictive
with respect to modification and redistribution. It is suggested that Free software
licenses such as the GNU GPL would improve transparency and control. More-
over, opening the source allows opening the development process, a potentially
important tool to improve collaboration, data sharing and models integration.

1 Introduction

Discussing methodological challenges for integrated assessment models, Rotmans [11]
states that the evidence for integrity is transparency. Following Ravetz's suggestions
in [9], he stresses the need to formulate some guidelines for good practice.

Building upon these previous works, this paper formulates guidelines to improve
transparency and control in integrated assessment models. The originality is the soft-
ware engineering point of view.

Schneider discusses in [12] the vital challenge for the profession to communicate
transparently about the models’ limits. This is all the more delicate since models apply
to hot environmental issues. While social and political aspects of model use are impor-
tant, this paper will not deal with this type of external credibility questions. The focus
is on scientific transparency and control from within the community of peers.

Even in this restricted sense, transparency has several meanings. It can be under-
stood as the fact that all the variables, parameters and equations in a model are well
understood theoretically. Another meaning of transparency is that there is a simple and
direct correspondence between the model and the reality. These two goals are desirable

*$1d: transp.lyx,v 1.26 2001/05/25 14:45:37 haduong Exp $

TChargé de Recherche au CIRED-CNRS, Centre International de Recherche sur 'Environnement et le
Développement. Campus international du Jardin Tropical, 45bis avenue de la Belle Gabrielle, F94736 No-
gent sur Marne CEDEX, France. Correspondence to haduong@centre-cired.fr.

https://core.ac.uk/display/7308264?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

but conflicting, since increasing the size of the model to satisfy the latter reduces the
theoretical control.

Another aspect of this trade off between intelligibility and detail arises when one
follows Morgan and Dowlatabadi [7] guidelines and sets the central focus on uncer-
tainty analysis. Recognizing the multiplicity of future states of the world certainly
helps to capture key social dynamics related to anticipations and risk reduction atti-
tudes. Atthe same time, the need to use advanced mathematics to represent the relevant
aspects of ignorance theory may undermine the credibility and the understandability of
results.

Control also has different meanings. Some issues are related to numerical analysis,
for example the quality of optimization, integration and differentiation algorithms. A
second aspect of models is the stability of results and their robustness with respect to
small changes in parameters. Third, moral and legal controls restrict who can access,
disseminate and interpret the models and how. Through anonymous reviewing and
other institutions, there is an important peer control system over the scientific aspect
of modeling activities. How does this peer control system performs with respect to
engineering integrated assessment models? Is vastly improving transparency necessary
and sufficient to improve quality?

Section 2 discusses in more detail model transparency issues, in general and in a
case study of four climate policy models. This case study lays the groundwork for the
second part of this paper inspired by the contemporary free/open-source approach to
software licensing. Section 3 will discuss the question of open source, that is releasing
code after publication of results, and the question of open development, that is releasing
code before publication. Section 4 concludes by summarizing findings and discussing
practical implications.

2 A case study with climate-energy policy models

2.1 The problem with models: quality control

Control in science is done through many formal and informal institutions such as grant
selection comitees, awards, direct group interactions and so on. One important insti-
tution is the peer-reviewing system: when an author sends a manuscript to a scientific
journal, the editor asks independent and anonymous reviewers to give their advice on
the suitability of the work for publication. The editor and referees are peer researchers.

The referees’ precise mandate varies across scientific communities. For example
the editor of a mathematical journal could mandate the referees to check proofs step-
by-step, whereas an editor in economics could ask them to trust the authors on mathe-
matical details.

When it comes to model-based results, verifications could be led at different lev-
els. One could run the model again with similar hardware and software environment.
One could run the same program, but on a different machine or/and under a different
operating system. Ultimately, one could start from the model equations and re-code
it from scratch in a different programming language, thus gaining the most intimate
knowledge of the model.

One problem with integrated assessment is that referees are usually not asked to
verify the model-based results of submitted manuscripts, not even audit the source
code. They only assess papers against existing literature, their intuition and understand-
ing of the field. This reflects the judgment that, while the costs of formally reproducing
the results are presumed large, the additional benefits are presumed small.

This is not unique to integrated assessment modeling. It occurs in many experimen-
tal disciplines. But for scientific experiments, even if no reproduction is darente
insuring reproducibility is a fundamental design goal. Yet contrary to chemistry or op-
tics, integrated assessment papers usually do not contain enough details for a different
team to reproduce the published results.

To understand why reproduction is costly in terms of useless duplicated work and
publication delays, one has to consider that integrated assessment scientific and eco-
nomic models are specialized software products usually built in an academic research
context. They are not designed for repetitive, everyday use, but for unique though ex-
periments. They are often in a state of flux, because they need to evolve with the world
they describe, its scientific understandings and with the interests of stake-holders fi-
nancing them. All this explains why it would be a waste of resources and time to
code these research tools with the same stability and robustness levels as, for example,
commercial aircrafts control systems. It is not a critical failure when a model crashes
because the population number in the input datafile is negative.

Having only an informal check of the models is unsatisfactory for several reasons.
First, there is a risk of pure and simple error. Correctness of the model is often central
to the arguments being made. Yet correcting a small bug can often lead to significant
change in the results. Second, the quality and maturity of code underlying a model
can be highly variable. As long as code escapes peer review, there are no incentives to
reward the efforts involved in writing better code. Third, it is a matter of principle that
the deeper the independent review, the better.

Reproducibility is all the more important for virtual thought experiments have an
enormous legitimacy problem: models do not have the formal strength of mathematical
proofs, nor the legitimacy of real experiments. Little remains of integrated assessment
if the protocol, in fact the computer program, cannot be run again with the same results.

It is essential that published results are objective, that is independent of who runs
the model. Therefore, one cannot but ask for external reproducibility as part of an
ideal standard of scientific transparency and control. Yet reproducibility is not an all-
or-nothing concept. As said above, verification of model based results can be led at
different levels. This is also a matter of how much means and know-how are available.

In order to better grasp how to improve transparency, we need to address another
issue, that reproducibility is only a potential concept: it refers to what could be achieved
eventually, given reasonable means. This can be subject to very different subjective
interpretations. Let us outline four objective characteristics of models that imply better
transparency.

Internal reproducibility: Maintaining internal reproducibility requires that the source
code, complete with the data that was used to produce the results and enough
notes on the procedure followed should be archived. In order to do this, there
is a need to manage closely the evolution of the source code. A version control

system is useful to achieve this. Moreover, running the model should not depend
upon a single critical person in the research team.

Portability: A program is portable when it can be use on a different computer with
little or no modifications. For example, GAMS models are very portable, but
DOS batch files are not. Explicit consideration to this opens the possibility for
reproducibility and external reviewing of the model itself. Writing a portable
program requires much work, but the benefits are huge: it usually contains less
bugs and greatly extends the usefulness of the model.

Automation; One sure way to achieve consistency between the model and published
results is to do all the computations necessary for producing the paper’s tables
and figures automatically. This means having scripts that move along the bits
all the way from the input datasets into the model, and then feed the results
into the typesetting and plotting programs. Writing this kind of scripts is simple
compared to writing the substance of models.

Integrated documentation: The most practical way to achieve up to date documen-
tation is to integrate documentation and code in the same file. This is known as
literary programming. Most modern programming environment offer facilities
for this. For examplelMathematicaallows to write notebooks containing at the
same time active equations and formatted text. For Perl, C, C++ or Fortran, liter-
ary programming is done by including documentation within special comments
around the code. A simple tool extracts this documentation and typeset it into
human-readable technical manuals.

The model having several of the features outlined below will be more reproducible
in the sense that the cost of reproducing it decreases. Note that transparency is not a
measure of model usefulness. Whether others will actually reproduce the model does
not only depends upon the cost to do so, but also upon the benefits, that is, as R. Tol
remarks (pers. comm.), if the model has a better problem definition than competing
models.

Experience also warns that there is about an order of magnitude of cost increase
between a program designed to run once on a given system, and a software system
designed to be re-used by third parties in the future.

With respect to the four features above, it may seem that large-sized models cannot
afford as much transparency as small models. On the contrary, larger models do need
more transparency in order to be understandable and manageable. The illusion that a
model will be better documented later is dangerous. The idea that a small hack, that
is code quickly written and poorly documented, could ever evolve into a large model
without putting in transparency first is very risky.

There is not an absolute best transparency goal, but only appropriate levels ac-
cording to the ultimate model's objective. Authors strive for the different levels of
reproducibility according to their different publication goals. Manuscript notes in the
lab notebook may insure internal reproductibility and be satisfying for working papers
and research reports. Automation may suit some situations such as PhD thesis work or

class-A journal articles. Portable models can been found in many books such as [5],
[8].

This discussion hints that more articles founded on version-controlled, automated,
portable and literary programmed integrated assessment models would greatly improve
transparency and control in the field. To some extend incentives are needed, since
they require significantly much more discipline from the authors, but these software
engineering practice are also often worthwhile in themselves to the authors. At the very
least, editors should require the authors to disclose clearly and publicly the objective
reproducibility features of their model results.

Admittedly, there are many other aspects to transparency and control, and these are
only a few ideas aiming to tilt the playing-field in the right direction. Improvements
are needed because at the present time one may question whether most of the pub-
lished works are even internally reproducible. How many |IA models are under version
control? How many authors can easily reproduce their previously published results?
These questions should not be answered without serious empirical investigation. What
we will see next is that the highest reproducibility levels are not an unrealistic goal and
have indeed been achieved by several models.

2.2 lllustration on climate change integrated assessment models

Models discussed below are influential in the field of energy policy and climate change

analysis arena. These are MERGE [5], IMAGE [1], DICE [8] and MARKAL [3]. This

is a convenience sample illustrating the diversity of possible model sizes. Each model,
at its scale, can provide some type of informations about what happens to the climate
change issue if different energy policies are chosen.

Versions presented here are all outdated. This illustrates that these models are
under active development. However, obsolescence will not be an issue here because
the pointis not to judge these particular models. They are only used to illustrate general
limitations and potential areas of improvement in the field.

The top half of Table 1 summarizes features of the four models. All of these mod-
els are distributed as source code using the media indicated. They require a compiler
which, except for IMAGE 2.0, is the GAMS programming language, with an optimiza-
tion solver such as MINOS5 or CONOPT. Above all, putting these models to good use
requires significant human expertise.

Models in the table are arranged by increasing size. The larger the model, the more
it is a team effort. In order to give an idea of the nature of these models, the table
shows a “Difficulty” line. This line reflects the author’s personal judgment about what
constitutes the less transparent and hardest to control area for each particular model.
This mostly illustrate the diversity of issues involved in trying to improve on those
grounds.

The focus now switches away from the models themselves onto their license agree-
ments. Studying the license agreements is relevant in order to discuss transparency
and control because these texts are short, important, and comparable across all models.
License agreement is one of the few documents where the interests of all the parties
involved in scientific and economic models need to meet. Scientists need to publish in
learned journals. The modeling team can be expected to have a large emotional as well

A
) n
= =9 5
B 98T s @
c 800 R’}
_E:Eo O'é »
o|® oLt T = —)
<\15208% E‘)‘D‘U’)>—§
wexo«= o 235
o) 925 5¢£°3
< 52 O3
= Q.m (@)
g pd
O
= —
™ |2 o n ©
JE S o =0
<3 .98 S 5
[a) Q
X | Lo o Q
D:O%q_)cﬂ 80’)«50
<|O = =0 >> cc =
=g <o S £ £
w2 <SE =4
=0 = g >
2 =
<
—
o x o]
n
~E_2038 § 2
EECL_Q =0 =
w|= = © L popwmw © O
nlo g o> 50z
O] Q
cuwoc = o
x|— s=9 = q
LU NC§ Q <
S S © =
Pz
n >
.3 5.
#85828
o8 cta A
WS s8s <>=¢%
Blez2gEg < >
=0 ~ o
&) D_Ncg
= 3
Ll
(S
© (02% Q-
@ 8 ¢9>5a% 0
© U')U)QZ‘-{—'
8 o S QT3 3
s zE g-38%
222438 £4¢:i
SSSNES R2S5:>gT37
=S 0O0nn0= <a0=c

Table 1: Characteristics and license schemes for four integrated assessment models.
Source: Agreements signed with respective model owners. Nbtasiate of writing,

a common international technology database is in preparatiGan use the Propri-
etary Information to analyze carbon dioxide abatement costs for countries other than
USA. 2*Can not use the model for the benefit of third parties, for Dutch or European
policy applications or for international organizations. Can use the model for domestic
national policy analysis, provided RIVM has full access tdMust report applica-

tions which are in the public domain, and a letter report documenting the overall ex-
perience in applying the model, including suggestions to improve portability and user-
friendliness*User must report problems and make modifications available for RIVM
use.

as intellectual investment in the model. The sponsoring institution may be interested to
sell something. The stake-holders want independent expertise such as nationally estab-
lished databases and models, they are interested in official quality results based upon
well-established practices.

This is not the place to reproduce in full or in part the text of licenses agreements
themselves, so Table 1 summarizes. To read the bottom half of Table 1, it is funda-
mental to have in mind that intellectual property rights can be finely subdivided. For
example, buying a videotape at the supermarket carries the right to play it at home, but
not to broadcast it on a public network. In this respect, intellectual property is differ-
ent from most other consumer goods or with real estate, where ownership is usually
associated with full property rights. Each line represents a particular usage right that
the license does or does not grant. As shown, all licenses provide the right to use the
model and publish results with only minor restrictions.

But beyond this, differences are large. Most may be explained by considering the
ultimate goal of the license:

e W.D. Nordhaus states that the DICE 94 code is “made freely available to users
and is not proprietary”. He explicitly uses for software the license scheme im-
plicitly used for scientific ideas: everyone can use a published work or mathe-
matical formula. DICE has been extensively re-used and modified by many third
party researchers.

e On the paper, the MERGE license is more restrictive than DICE’s. In fact, the
wording of this license seems caricatural of the silicon valley Non-Disclosure
Agreements (NDA). However, the apparent rigor of this NDA is compensated
by its narrow scope: it applies only to model-related information “not generally
known to the public”. Since MERGE is described in a book ; most of the code
and data is available from the authors’ web site ; and its updates are regularly
published, it can be argued that most of it is publicly known. As a result, for
all practical rights except redistribution MERGE is not restricted. It has been
widely re-used externally for both academic research and policy analysis.

e The ANSWER MARKAL 3 license is the only one with “payment” in it. A
bare academic version might be obtained at no cost. But since using this model
(as any other) requires significant financial investment in hardware, compiler,
solvers, and human training, it makes sense to pay for a graphical interface shell
(MUSS or ANSWER). The funds for MARKAL go to an international consor-
tium (ETSAP) hosted by the International Energy Agency which offers technical
support and other services to the model-using community. The main purpose of
the license seems to be protecting the viability of the consortium. As with the
above two models, dozens of teams have used MARKAL and many different
versions have been contributed

e Finally, the IMAGE 2.0 license is the least permissive. | contend here that the
main barrier to IMAGE transparency and control is the practical complexity in-
volved with independently running the model. There are few running versions
of the model outside RIVM, most of them implemented by the original team.

IMAGE 2.1 has been independently run at the Laboratoire de Météorologie Dy-
namique (Université de Paris VI), in collaboration with CIRED and RIVM. Orig-
inally compiled on HP-UX machines using some Fortran extensions, the model
received modifications to be ported on Appolo, Sun or Linux machines, with
standard and more strict compilers. Results have not been integrally reproduced
yet.

This review shows that the license under which integrated assessment models are dis-
tributed generally, except for DICE, do set significant limits to their use and redistribu-
tion. This has not precluded successful academic work, but one could wonder to which
extent it slowed the general progress in the field.

This comparison also suggests that presently, the bigger the model, the more closed
is its license. This can be understood in a competitive business logic, where models
are regarded as production tools, and licenses are here to protect the intellectual invest-
ment. This is in conflict with the common academic research logic regarding models
as scientific tools.

Conceptually, transparency and peer control would greatly improve if all models
followed the DICE license scheme. But are such open licenses practical for large mod-
els? The sequel of this paper discusses under which situations large software projects
can thrive under the most open license schemes.

3 Ideas from Free/Open source software

3.1 Ultimate transparency ?

The highest standards of software transparency and control are defined in license schemes
used by the free software/open source movement. In particular, the most convenient
and widespread way to guarantee the ultimate transparency of source code is to use
Richard Stallman’s General Public License, also called the GNU GPL. Part of this
seminal document on transparency and control is reproduced in the annex.

The GPL was written in 1992 as the cornerstone of an effort to build a Free clone
of the Unix operating system. This effort is known as the GNU project, the acronym
standing recursively for “GNU is Not Unix”. In short, the GPL states that the program
code can always be used, modified, compiled and redistributed by anyone. Moreover,
it states that if modifications to the code are distributed, either free or for a fee, then
they must also be under the GPL.

In that last clause, it is more radical than the DICE license, which does not impose
any further obligations to anyone re-using the code. The question of whether or not to
impose obligations to re-used code is a controversial issue. But that controversy is not
fundamental with respect to transparency and control of integrated assessment models.
In the sequel of this paper, a free/open source model will mean either a model under
the open academic DICE-style license, or a model under the Free Software-style GPL.

Note that in this expression, the word Free does not refer to the price of software,
but stands for not restricted. Another way to make this point is to note that the appro-
priate French translation i#re, notgratuit. Colloquially, this is also referred to as the
difference between Free (as in Speech) and free (as in beer).

Three out of the four integrated assessment models examined above were not li-
censed as free/open source. One reason for this is that the GPL is relatively new: the
first versions of these models discussed were written well before 1992. That is why
this paper aims to increase the general awareness about its utility. Wide use of open
source licenses would be a low-cost but significant improvement in transparency and
control.

Some factors governing the choice of the license model are beyond modelers con-
trol: The public or private nature of funding is important. Parts of the model and some
data from external sources may carry their own license. And the institution where the
model is developed usually owns the intellectual property and may have a pre-defined
licensing policy.

In the latter case it must be clearly conveyed to the bureaucracy that the quality of
IAM depends essentially in its transparency. In order to facilitate that communication,
the modelers need to grasp the implications for themselves of a free/open source model.

It cannot be under-emphasized that sharing the code of the model is absolutely
separated from giving the right to use the name of the model. Using the name is an
issue of trade mark, whereas using the code is an issue of laws protecting inventions.
The soft drink market illustrates the situation where the product can be copied, but
firms defend their brand name as their main asset. For de-materialized goods such as
models, this separation between substance and image may not be as easy to understand
and implement. One of the reasons for this is the heterogeneity of legal culture around
the world.

Consequently, each time a model's code is made public, the author must remind
the readers that the model’s name remains the strict property of the owners. While the
code is public, it remains that the name DICE cannot be used to designate anything else
than the original DICE model. The use of thev) sign is a common business practice
to acknowledge ownership every time a trade mark is used, but not a legal obligation
in most countries. The common and accepted scientific practice is not to use that sign,
but simply to cite the author.

It may be to the owners interest to grant liberally the right to use the name and
fame of their model. Doing so helps to disseminate it widely and ultimately lead to a
better understanding by the community of peers. But this is an indirect effect. At heart,
transparency and peer control regard the models actual code, not reputation. To open
the source code, it is not necessary to weaken controls upon the model name in any
way.

One problem that could arise from public release of the code and data is that it
implies no ex-post control of the finished product. More specifically, publicly available
model code can be used to find politically different results that displease the original
team or sponsoring institution. | think that this risk should be discounted on the ground
that criticism is a normal, desirable part of science. Constructive use of models, if used
correctly and not purely as advocacy tools, lead to interesting research questions about
the models and the real problem at hand.

In summary, | believe it will be consensual that once results are published in a peer-
reviewed journal, the source code and data cannot be kept secret but should be open
for examination as a matter of principle. There are many practical ways to achieve this.
The most straightforward way to achieve transparency is to place all files under the

GPL and archive them to a public, anonymously accessible repository online.

3.2 Control and collaboration

After having discussed the release of published models, we discuss the idea of opening
the source code even before the work is finished. This takes transparency and control
to a higher degree. Opening the source before publication is important for two reasons.

First, when integrated assessment models become complicated, understanding the
code is impossible. At that point, the model is often criticized as a useless arbitrary
black-box. Improving transparency and control in the process of model-making is a
way to avoid this pitfall.

The second reason has to do with software engineering and regards Free/open
source as a key to a more collaborative way of writing models. The central idea is that
releasing publicly the code of projects induces other people to use the program, and
these users will report useful feedback on how the code should be improved. When the
coordinator releases source code early and often, it allows detection of errors by peer-
reviewing at an early stage of the product life-cycle, when they are cheaper to correct.
Eric S. Raymond [10] used the term “bazaar” to describe this development method, as
opposed to “cathedral” building which describe well-ordered and pre-planned devel-
opment method.

Interestingly, this transparency does not come at the cost of losing control over
model development. It may be feared that, when anyone is encouraged to modify the
code, this may lead to a profusion of different, incompatible versions and inefficiencies
due to duplication of work. Experience shows that this variant of the tragedy of the
unmanaged commons does not happen even for very large, complex software projects.
The control of Linux, for example, clearly belongs to Linus Torvalds.

Various theoretical reasons have been set forward, see for example Lerner and Ti-
role [4], Moen [6] or Raymond [10], to explain why people contribute and why project
leaders usually keep control of open-source programs development. This is not the
place to summarize that literature, but to note that in practice it seems that people with
the skills to make modifications to open source code understand the value of preserving
design integrity in software architecture.

Of course, control is not guaranteed forever. If the project leaders are doing a bad
job, a competing team can start developing the same code base in a different direction.
This is called “forking” the project. But the contrary also happens: parallel projects
will merge and pool their resources much more easily if both are under a free/open
license.

On top of that, from a management point of view, openness of source code is a key
element for control by sponsoring institutions and peers. It's always true that control
requires transparency, for example governments require firms to publish their accounts.
This is especially true about programming, where lack of communication and a propri-
etary behavior about code is a recipe for failure.

Still, the fact remains that making unfinished models externally available is even
less common than making the published ones available. Two sets of reasons may help
to explain this fact: concerns for potential mis-use beyond those discussed previously,
and doubts about the efficiency of an open collaborative development method.

10

The problem with the open development process is that the risk of a competing
team publishing sooner cannot be eliminated. Indeed, it exists even when presenting
informal ideas at a scientific workshop. In some cases, it is unclear to what extent this
concern is legitimate. For example, some publicly-funded atmospheric composition
data is made available immediately, that is, as soon as the plane lands even before the
collecting team analyzes it.

And paradoxically, with respect to this concern, publicly releasing early work may
be better than trying to keep it secret, because releasing is a way to positively assert
authorship and anteriority. A necessary condition for this, however, is the existence of
a public archival system trusted to authenticate the authorship and the date of model
releases. To our knowledge such a place does not exists today for integrated assessment
models.

A second serious concern is that preliminary results could leak to the media before
peer-reviewing validation. Scientists genuinely change opinions with new findings,
whereas mass-media have different motivations and time schedules. | believe that pre-
liminary results could be distributed under restricted diffusion without hurting trans-
parency too much, since the validity of models should be assessed primarily on their
structure and on their input data, rather than on their results.

Turning to doubts about efficiency, the objection is that opening the source of in-
tegrated assessments models at an early stage before publication would not help in
ultimately developing a better code.

This objection may be based upon the idea that the potential pool of contributors
may be too small. Indeed there are not many integrated assessment experts to construc-
tively comment on the overall structure of the model. But there are many disciplinary
experts that could provide useful insight about the model within their field. In fact, to
show that the expected contribution from users is non negligible, we notice that in all
four models discussed above the authors explicitly ask for feedback. According to our
personal communications, they received some and found it useful.

That said, these models are successful and widely known. Not all new open-source
projects succeed in attracting a critical mass of users to sustain interest in themselves.
With respect to this risk, integrated assessment models are not different. However, it
does not detract much effort from the core programming team to make ongoing work
available. After all, once a file version control system is in place, it's only a matter of
allowing external read-only access.

Regularly releasing ongoing work is also beneficial from a software construction
control point of view. In large projects spanning several months, it is useful to have
checkpoints at which the model is running, even if it does not has all the bells and
whistles yet.

Whether it is a good idea or not to open the source before publication also depends
upon the particular kind of model being built. Raymond [10] identified a set of criteria
that makes opening the source more attractive.

1. Opening the source is a necessary condition for independent peer review. This
criteria is very compelling in the context of integrated assessment models, since
for most of them, independent peer reviewing is necessary to support correctness
of design and implementation.

11

2. According to Raymond, software engineering history shows that peer review
(therefore open source) is the only scalable method of achieving high reliability
and quality. Reliability is not crucially important for some integrated assessment
models which are use-once software. But the situation would be different for a
meteorological model run everyday, or for an integrated model so large it had to
run for months, as some climate models do. And while scalability may not have
been a primary design goal for models in the past, recent development of DICE,
MARKAL and MERGE have relied upon running in parallel one version of the
model for each world region.

3. When software is critical to the user’s control of his/her business, the user does
not want to be locked-in with an outside supplier. To explain this intuition, con-
sider for example that energy policy tends to rely a lot on models. In this sit-
uation, one can expect analysts and policymakers to ask for public models if
they want to encourage a variety of opinions, instead of receiving a small num-
ber of specific modeling teams point of views. This may be one of the reasons
explaining the recent interest in MARKAL by the US EPA.

4. When key methods (or the functional equivalent of these) are part of common
engineering knowledge, there is not much to lose by opening the code. Some
models may be structurally innovative. For example, the ICLIPS model [13]
is governed by differential inclusions, which belong to the mathematically ad-
vanced field of non-smooth analysis [2]. This is not to suggest that ICLIPS is or
should be less open than other models, but to illustrate a situation in which the
core algorithms used may have a significant business value. On the other hand,
many models use well-known key methods, as it is much easier to communicate
about the results. MARKAL for example relies on linear programming.

5. Open source is useful to propagate open standards. Consequently, it is used
for software that establishes or enables a common computing framework. The
primary purpose of most integrated assessment models is not to build communi-
cation infrastructure for the Internet. But models can be seen as data-processing
boxes using common data repositories. Not only do they need present and past
observations, they also input elements of future scenarios such as those produced
by the IPCC or the WEC.

Some of these repositories have kept data behind a proprietary, closed interface
such as an MS-Access database. This clearly goes against providing a trans-
parent standard to make data generally accessible. In any disciplinary field it is
useful to have common standards to exchange data to facilitate inter model com-
parisons and data re-use. This is all the more important in integrated assessment
where managing the input and output data is an important and time-consuming
part of modeling work.

A complicating factor is that integrated assessment models, by nature, tend to integrate
different modules. Actually, it may be a common situation that parts of a model rely

on re-using existing code or data for which the modeling team can not change the
license. In this case, not all modules need to be ruled by the same license. While the

12

compatibility between license across modules is a tricky question, theagoai@i no
reason to go for the lowest denominator.

In particular, within a given model, the data files are often worth to open. Also,
the code that realize integration between different sub-models may be a good candi-
date to early public release. This is because it needs review from other researchers, it
needs high reliability and scalability, it does not involve commercially valuable algo-
rithms and it establish a common computing framework. The latter criteria means that
publishing the coupling code allows other researchers to understand the interface and
eventually replace, or plug-in, a sub-model with another.

While not all integrated assessment projects would find an interest in open source
modeling, the criteria discussed in this section may suggest situations in which the
payoffs of managing an ongoing software project as open source will be large.

4 Concluding remarks

4.1 Summary of findings

Engineers, experts and scientists involved in integrated assessment modeling have es-
tablished a small community with its journals and scientific society. This paper dis-
cussed how modern software engineering practices would remove some unnecessary
barriers against transparency and control within the community.

Transparency and control are fuzzy and ambiguous notions. Reproductibility is a
must for scientific experiments, yetitis rarely done for scientific and economic models,
because they are evolving and one-of-a kind software products. This is the fundamental
problem since these models do not have the legitimacy of real-world experiments.

Reproductibility, that is the cost of reproducing results, is an approximate measure
of transparency. These four model features help reproducibility: 1/ Using version con-
trol tools' allow to archive the source code and data files. 2/ Automation of all compu-
tations, tables and plots, which practically requires the use of para-modeling tools such
as script languages: Bash, Perl or the MS-DOS batch files. 3/ Literate programming,
as the key to facilitate up to date documentation. 4/ Portability, using only high-level,
platform and operating system-independent languages, such as standard Fortran, Perl
or GAMS.

This paper highlighted the difference of status between the model nhame and the
model code. The name is a trademark that can be protected without decreasing trans-
parency, even when the code is published. Moreover, letting someone have a thorough
look at a model does not necessarily imply that this person is allowed to use it, modify
it or redistribute it.

A case study explored the license of four climate policy integrated assessment mod-
els. It found that presently, the peer-reviewing system achieves less transparency and
control than the free software/open source development model in which programs are
reproduced before final release by a large number of anonymous external peers.

In the study, the smaller model had an academic open license, while the larger
model had a more competitive-oriented business, restricted license. Potential trans-

1See for example the Concurrent Version System at <http://cvshome.org>.

13

parency remains, since anybody can get the model simply by asking. However, | find
no reason to be satisfied with potential transparency when models source code can be
published at low cost with today’s information technology.

The second part of the paper discussed publishing the source code and data. The
GNU GPL was presented as a convenient way to enable the source code to be freely
used, modified and redistributed. The most straightforward way to achieve trans-
parency is to place all files under the GPL and archive them to a public, anonymously
accessible repository.

In practice, it may not be possible or judicious to place all files under the same li-
cense. Files re-used from other projects may be copyrighted by their respective owner.
Diffusion of preliminary results may be restricted so that they don't leak outside the
peer-reviewing system before publication. Finally, as discussed in this paper, the pay-
offs of opening the source may not be the same for different parts of a model.

4.2 Practical implications and future directions

Many journals such aScienceor Nature now offer electronic online supplements to
their paper edition. There is clearly an opportunity here to improve transparency and
control of integrated assessment models. Scientific journals review, disseminate and
archive the text of articles. How to extend these functions to the model code and data
files? The social and technical infrastructure of a specific publication structure can be
outlined. Researchers’ networks such as the EFJEMF or the CISHDGC will

have the leading role, in collaboration with commercial scientific publishers such as
Baltzer and its ESIAM series.

Accepting manuscripts submitted along with an archive of the code and data is a
simple first step. The archive does not need to be online. But an online archive has
the advantage that it enables authors to upload directly their files without the need for
editor’s attention. Many automated systems for sharing files online already exist.

Dissemination is more delicate than archival. For convenience, it could be the
authors’ own responsibility to upload the archived files into the journal’s repository
and to define to whom they allow access rights. Clearly, it needs to be possible to
set different access rights for Author, Co-Authors, Editor, Referees, Members of the
journal’'s Scientific Association, and the rest of the world. And some differentiation
between data, code and output files may be important.

Establishing trust in the dissemination system allows a third step, that is model
reviewing. This could be organized as book reviewing. Book reviews are contributed
to a dedicated section of the journal, on a less formal basis than for articles. If authors
of a submitted manuscript have reached the point where the model is portable, that is
they claim that an anonymous referee could easily reproduce their results, then they
would certainly be very happy to have this claim tested. In this situation, it is probably

2The European Forum on Integrated Environmental Assessment is at <http://www.efiea.org.>

3The Energy Modeling Forum is at <http://www.stanford.edu/group/EMF>

4The Center for Integrated Study of the Human Dimensions of Global Change URL is at
<http://hdgc.epp.cmu.edu/>

5The Electronic Series on Integrated Assessment Modeling is at <http://www.baltzer.nl/esiam/esiam.asp>

14

better to publish the referee’s notes on their experience with the model alongside the
paper.

The fourth step would be to establish some common infrastrictofacilitate the
open-source development of scientific models.

All of this would insure a huge improvement of transparency and control in inte-
grated assessment models.

Acknowledgements

| thank Jean-Charles Hourcade, Richard Tol, David Keith, Barbara Bugosh, Richard
Richels, Pierre Matarasso, Philippe Quirion, Tarik Tadzait and Abigail Fallot for useful
advice on this work. All errors and opinions remain mine.

This research has benefited from a visit at the Center for Integrated Study of the
Human Dimensions of Global Change, Departement of Engineering and Public Policy
at Carnegie Mellon University.

References

[1] Joseph Alcamo, editor.IMAGE 2.0: Integrated Modeling of Global Climate
Change, with papers by The IMAGE Projesiuwer Academic Publisher, 1994.
Reprinted from Water, Air, and Soil Pollution 76(1-2).

[2] Franck H. ClarkeOptimization and nonsmooth analysisniversité de Montréal,
Centre de Recherche Mathématiques (CRM), complete and unrevised reprinting
of the original text first published in 1983 by john wiley and sons, as the initial
volume in the canadian mathematical society series of monographs and advanced
texts edition, 1989. 310 pages.

[3] Tom Kram. The energy technology systems analysis programme: History, the ET-
SAP Kyoto statement and post-Kyoto analysisEkperts Workshop on Climate
Change and Economic Modelling: Background Analysis for the Kyoto Pratocol
OCDE, September 17-18 1998.

[4] Josh Lerner and Jean Tirole. The simple economics of open source. Technical
report, Harvard Business School, February 25 2000.

[5] Alan S. Manne and Richard Richel8uying Greenhouse Insurance: The Eco-
nomic Cost of O, Emissions LimitsMIT Press, 1992.

[6] Rick Moen. Fear of forking. Linuxcare Featured Article published online,
November 17 1999.

[7] M. Granger Morgan and Hadi Dowlatabadi. Learning from integrated assessment
of climate changeClimatic Change34:337—-368, 1996.

6See for example Sourceforge <http://sourceforge.net>.

15

[8] William D. Nordhaus.Managing the Global CommonMIT Press, 1994.

[9] Jerome R. Ravetz. Integrated environmental assessment forum: develop-
ing guidelines for good practice. Technical Report WP-97-1, ULYSSES
project, Darmstadt University of Technology, Germany, EAWAG, Human Ecol-
ogy Division, Ueberlandstr. 133, CH-8600 Duebendorf, Switzerland, 1997.
http://www.zit.tu-darmstadt.de/ulysses/eWP97-1.pdf.

[10] Eric S. Raymond. La cathédrale et le bazate Micro Bulletin 75:81—
112, 1998. Traduction de Sébastien Blondeel. Also published online at
<http://lwww.tuxedo.org/ esr/writings/cathedral-bazaar/cathedral-bazaar.html>.

[11] Jan Rotmans. Methods for IA: The challenges and opportunities akeaiion-
mental Modeling and Assessmegitl55—-179, 1998.

[12] Stephen H. Schneider. Integrated assessment modeling of global climate change:
Transparent rational tool for policy making or opaque screen hiding value-laden
assumptionsEnvironmental Modeling and Assessme&{l):229-249, 1997.

[13] Ferenc L. Toth, Thomas Bruckner, Hans-Martin Flssel, Marian Leimbach, and
Gerhard Petschel-Held. The tolerable window approach to integrated assess-
ments. In O. K. Cameron, K. Fukuwatari, and T. Morita, editdPZC Asia-
Pacific Workshop on Integrated Assessment ModdIES.CGER, 10-12 March
1997.

Annex: Articles 1-3 of GNU General
Public License v2.

Preamble. The licenses for most software are designed to take away your freedom to share and
change it. By contrast, the GNU General Public License is intended to guarantee your freedom
to share and change free software—to make sure the software is free for all its users. This General
Public License applies to most of the Free Software Foundation’s software and to any other
program whose authors commit to using it. (Some other Free Software Foundation software is
covered by the GNU Library General Public License instead.) You can apply it to your programs,
too.

When we speak of free software, we are referring to freedom, not price. Our General Public
Licenses are designed to make sure that you have the freedom to distribute copies of free software
(and charge for this service if you wish), that you receive source code or can get it if you want
it, that you can change the software or use pieces of it in new free programs; and that you know
you can do these things.

To protect your rights, we need to make restrictions that forbid anyone to deny you these
rights or to ask you to surrender the rights. These restrictions translate to certain responsibilities
for you if you distribute copies of the software, or if you modify it.

For example, if you distribute copies of such a program, whether gratis or for a fee, you must
give the recipients all the rights that you have. You must make sure that they, too, receive or can
get the source code. And you must show them these terms so they know their rights.

16

We protect your rights with two steps: (1) copyright the software, and (2) offer you this
license which gives you legal permission to copy, distribute and/or modify the software.

Also, for each author’s protection and ours, we want to make certain that everyone under-
stands that there is no warranty for this free software. If the software is modified by someone
else and passed on, we want its recipients to know that what they have is not the original, so that
any problems introduced by others will not reflect on the original authors’ reputations.

Finally, any free program is threatened constantly by software patents. We wish to avoid
the danger that redistributors of a free program will individually obtain patent licenses, in effect
making the program proprietary. To prevent this, we have made it clear that any patent must be
licensed for everyone’s free use or not licensed at all.

Scope (article 0.) This License applies to any program or other work which contains a notice
placed by the copyright holder saying it may be distributed under the terms of this General Public
License. The "Program", below, refers to any such program or work, and a "work based on the
Program™" means either the Program or any derivative work under copyright law: that is to say,
a work containing the Program or a portion of it, either verbatim or with modifications and/or
translated into another language. (Hereinafter, translation is included without limitation in the
term "modification".) Each licensee is addressed as "you".

Activities other than copying, distribution and modification are not covered by this License;
they are outside its scope. The act of running the Program is not restricted, and the output from
the Program is covered only if its contents constitute a work based on the Program (independent
of having been made by running the Program). Whether that is true depends on what the Program
does.

Articles 1 to 3.

1. You may copy and distribute verbatim copies of the Program’s source code as you re-
ceive it, in any medium, provided that you conspicuously and appropriately publish on
each copy an appropriate copyright notice and disclaimer of warranty; keep intact all the
notices that refer to this License and to the absence of any warranty; and give any other
recipients of the Program a copy of this License along with the Program.

You may charge a fee for the physical act of transferring a copy, and you may at your
option offer warranty protection in exchange for a fee.

2. You may modify your copy or copies of the Program or any portion of it, thus forming
a work based on the Program, and copy and distribute such modifications or work under
the terms of Section 1 above, provided that you also meet all of these conditions:

(a) You must cause the modified files to carry prominent notices stating that you changed
the files and the date of any change.

(b) You must cause any work that you distribute or publish, that in whole or in part
contains or is derived from the Program or any part thereof, to be licensed as a
whole at no charge to all third parties under the terms of this License.

(c) If the modified program normally reads commands interactively when run, you
must cause it, when started running for such interactive use in the most ordinary
way, to print or display an announcement including an appropriate copyright notice
and a notice that there is no warranty (or else, saying that you provide a warranty)
and that users may redistribute the program under these conditions, and telling the

17

user how to view a copy of this License. (Exception: if the Program itself is inter-
active but does not normally print such an announcement, your work based on the
Program is not required to print an announcement.)

These requirements apply to the modified work as a whole. If identifiable sections of that
work are not derived from the Program, and can be reasonably considered independent
and separate works in themselves, then this License, and its terms, do not apply to those
sections when you distribute them as separate works. But when you distribute the same
sections as part of a whole which is a work based on the Program, the distribution of the
whole must be on the terms of this License, whose permissions for other licensees extend
to the entire whole, and thus to each and every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your rights to work
written entirely by you; rather, the intent is to exercise the right to control the distribution
of derivative or collective works based on the Program.

In addition, mere aggregation of another work not based on the Program with the Program
(or with a work based on the Program) on a volume of a storage or distribution medium
does not bring the other work under the scope of this License.

. You may copy and distribute the Program (or a work based on it, under Section 2) in
object code or executable form under the terms of Sections 1 and 2 above provided that
you also do one of the following:

(a) Accompany it with the complete corresponding machine-readable source code,
which must be distributed under the terms of Sections 1 and 2 above on a medium
customarily used for software interchange; or,

(b) Accompany it with a written offer, valid for at least three years, to give any third
party, for a charge no more than your cost of physically performing source distri-
bution, a complete machine-readable copy of the corresponding source code, to be
distributed under the terms of Sections 1 and 2 above on a medium customarily
used for software interchange; or,

(c) Accompany it with the information you received as to the offer to distribute corre-
sponding source code. (This alternative is allowed only for noncommercial distri-
bution and only if you received the program in object code or executable form with
such an offer, in accord with Subsection b above.)

The source code for a work means the preferred form of the work for making modifica-
tions to it. For an executable work, complete source code means all the source code for
all modules it contains, plus any associated interface definition files, plus the scripts used
to control compilation and installation of the executable. However, as a special excep-
tion, the source code distributed need not include anything that is normally distributed
(in either source or binary form) with the major components (compiler, kernel, and so
on) of the operating system on which the executable runs, unless that component itself
accompanies the executable.

If distribution of executable or object code is made by offering access to copy from a
designated place, then offering equivalent access to copy the source code from the same
place counts as distribution of the source code, even though third parties are not compelled
to copy the source along with the object code.

18

