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Repeated games with asymmetric information and random price fluctuations at
finance markets: the case of countable state space 1

Victor C. Domansky1, Victoria L. Kreps1

1St.Petersburg Institute for Economics and Mathematics,
Russian Academy of Sciences,

Tchaikovskogo st. 1, St.Petersburg, 191187 Russia,
E-mail: doman@emi.nw.ru

Abstract. This paper is concerned with multistage bidding models introduced by De Meyer and Moussa
Saley (2002) to analyze the evolution of the price system at finance markets with asymmetric information.
The zero-sum repeated games with incomplete information are considered modeling the bidding with
countable sets of possible prices and admissible bids.
It is shown that, if the liquidation price of a share has a finite variance, then the sequence of values of n-step
games is bounded and converges to the value of the game with infinite number of steps. We construct
explicitly the optimal strategies for this game.
The optimal strategy of Player 1 (the insider) generates a symmetric random walk of posterior mathematical
expectations of liquidation price with absorption. The expected duration of this random walk is equal to
the initial variance of liquidation price. The guaranteed total gain of Player 1 (the value of the game) is
equal to this expected duration multiplied with the fixed gain per step.

Keywords: multistage bidding, asymmetric information, repeated games, optimal strategy.

1. Introduction

Random fluctuations of stock market prices are usually explained by the effect of multiple exogenous factors
subjected to accidental variations. The work of De Meyer and Saley (2002) proposes a different strategic
motivation for these phenomena. The authors assert that the Brownian component in the evolution of prices
on the stock market may originate from asymmetric information of stockbrokers on events determining market
prices. ”Insiders” are not interested in immediate revelation of their private information. This forces them to
randomize their actions and results in the appearance of the oscillatory component in price evolution.

De Meyer and Saley demonstrate this idea on a model of multistage bidding between two agents for risky
assets (shares). A liquidation price of shares depends on a random ”state of nature”. Before the bidding starts
a chance move determines the ”state of nature” and therefore the liquidation value of shares once for all. Player
1 is informed on the ”state of nature”, Player 2 is not. Both players know probabilities of chance move. Player
2 knows that Player 1 is an insider.

At each subsequent step t = 1, 2, ..., n both players simultaneously propose their prices for one share. The
maximal bid wins and one share is transacted at this price. If the bids are equal, no transaction occurs. Each
player aims to maximize the value of his final portfolio (money plus liquidation value of obtained shares).

In this model the uninformed Player 2 should use the history of the informed Player 1 moves to update
his beliefs about the state of nature. In fact, at each step Player 2 may use the Bayes rule to re-estimate
the posterior probabilities of chance move outcome, or, at least, the posterior mathematical expectations of
liquidation value of a share. Player 1 could control these posterior probabilities.

Thus Player 1 faces a problem of how best to use his private information without revealing it to Player 2.
Using a myopic policy – bid the high price if the liquidation value is high, the low price if this value is low –
is not optimal for Player 1, as it fully reveals the state of nature to Player 2. On the other hand, a strategy
that does not depend on the state of nature reveals no information to Player 2, but does not allow Player 1 to
take any advantage of his superior knowledge. Thus Player 1 must maintain a delicate balance between taking
advantage of his private information and concealing it from Player 2.

De Meyer and Saley consider the model where a liquidation price of a share takes only two values and players
may make arbitrary bids. They reduce this model to a zero-sum repeated game with lack of information on one
side, as introduced by Aumann, Maschler (1995), but with continual action sets. De Meyer and Saley show that
these n-stage games have the values (i.e. the guaranteed gains of Player 1 are equal to the guaranteed losses
of Player 2). They find these values and the optimal strategies of players. As n tends to infinity, the values
infinitely grow up with rate

√
n. It is shown that Brownian Motion appears in the asymptotics of transaction

prices generated by these strategies.
1 This study was partially supported by the grant 07-06-00174a of Russian Foundation of Basic Research. The authors thank

Bernard De Meyer for useful discussions especially during the stay at the university Paris-1, November-December 2008.
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It is more natural to assume that players may assign only discrete bids proportional to a minimal currency
unit. In our previous papers (Domansky, 2007), (Domansky and Kreps, 2007) we investigate the model with
two possible values of liquidation price and discrete admissible bids. We show that, unlike the model (De
Meyer and Saley, 2002), as n tends to ∞, the sequence of guaranteed gains of insider is bounded from above
and converges. It makes reasonable to consider the bidding with infinite number of steps. We construct the
optimal strategies for corresponding infinite games. We write out explicitly the random process formed by the
prices of transactions at sequential steps. The transaction prices perform a symmetric random walk over the
admissible bids between two possible values of liquidation price with absorbing extreme points. The absorption
of transaction prices means revealing of the true value of share by Player 2.

Here we consider the model where any integer non-negative bids are admissible. The liquidation price of
a share Cp may take any nonnegative integer values k = 0, 1, 2, . . . according to a probability distribution
p = (p0, p1, p2, . . .). This n-stage model is described by a zero-sum repeated game Gn(p) with incomplete
information of Player 2 and with countable state and action spaces. The games considered in (Domansky,
2007), (Domansky and Kreps, 2007) represent a particular case of these games corresponding to probability
distributions with two-point supports.

We show that if the random variable Cp, determining the liquidation price of a share has a finite mathematical
expectation E[Cp], then the values Vn(p) of n-stage games Gn(p) exist (i.e. the guaranteed gain of Player 1 is
equal to the guaranteed loss of Player 2). If the variance D[Cp] is infinite, then, as n tends to ∞, the sequence
Vn(p) diverges.

On the contrary, if the variance D[Cp] is finite, then, as n tends to ∞, the sequence of values Vn(p) of the
games Gn(p) is bounded from above and converges. The limit H(p) is a continuous, concave, piecewise linear
function with countable number of domains of linearity. The sets Θ(k), k = 1, 2, . . . of distributions p with
integer mathematical expectation E[C(p)] = k form its domains of non-smoothness. If E[Cp̄] is an integer, then
H(p) = D[Cp]/2. If E[Cp] = k + α, where k is an integer, α ∈ [0, 1], then H(p) = (D[Cp]− α(1− α))/2.

As the sequence Vn(p) is bounded from above, it is reasonable to consider the games G∞(p) with infinite
number of steps. We show that the value V∞(p) is equal to H(p). We construct explicitly the optimal strategies
for these games.

Let p ∈ Θ(k). If the random variable Cp takes the value k, then the ”approximate” information of Player 2
turns to be the exact one and in fact the information advantage of Player 1 disappears. The gain of Player 1 is
equal to zero and he can stop the game without any loss for himself. Otherwise, the first optimal move of Player
1 makes use of actions k − 1 and k with equal total probabilities and with posteriors p(·|k − 1) ∈ Θ(k − 1),
p(·|k) ∈ Θ(k + 1). For these posteriors the equalities p(k|k − 1) = p(k|k) = 0 hold.

Thus the insider optimal strategy generates a symmetric random walk of posterior mathematical expectations
over Z+ with absorption. For p ∈ Θ(k) the expected duration of this random walk is equal to the variance of
the liquidation price of a share. The value of infinite game is equal to the expected duration of this random
walk multiplied by the constant one-step gain 1/2 of informed Player 1.

2. Repeated games with one-sided information modeling multistage bidding

We consider the repeated games Gn(p) with incomplete information on one side (Aumann and Maschler, 1995)
modeling the bidding described in introduction.

Two players with opposite interests have money and single-type shares. The liquidation price of a share
may take any nonnegative integer values s ∈ S = Z+ = {0, 1, 2, . . .}.

At stage 0 a chance move determines the liquidation value of a share for the whole period of bidding n
according to the probability distribution p = (p0, p1, p2, . . .) over S known to both Players. Player 1 is informed
about the result of chance move s, Player 2 is not. Player 2 knows that Player 1 is an insider.

At each subsequent stage t = 1, . . . , n both Players simultaneously propose their prices for one share,
it ∈ I = Z+ for Player 1 and jt ∈ J = Z+ for Player 2. The pair (it, jt) is announced to both Players before
proceeding to the next stage. The maximal bid wins and one share is transacted at this price. Therefore, if
it > jt, Player 1 gets one share from Player 2 and Player 2 receives the sum of money it from Player 1. If
it < jt, Player 2 gets one share from Player 1 and Player 1 receives the sum jt from Player 2. If it = jt, then no
transaction occurs. Each player aims to maximize the value of his final portfolio (money plus liquidation value
of obtained shares).

This n-stage model is described by a zero-sum repeated game Gn(p) with incomplete information of Player
2 and with countable state space S = Z+ and with countable action spaces I = Z+ and J = Z+. One-step
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gains of Player 1 are given with the matrices As = [as(i, j)]i∈I,j∈J , s ∈ S,

as(i, j) =

{
j − s, for i < j ;
0, for i = j ;
−i + s, for i > j .

At the end of the game Player 2 pays to Player 1 the sum

n∑
t=1

as(it, jt).

This description is common knowledge to both Players.
At step t it is enough for both Players to take into account the sequence (i1, . . . , it−1) of Player 1’s previous

actions only. Thus a strategy σ for Player 1 informed on the state is a sequence of moves

σ = (σ1, . . . , σt, . . .),

where the move σt = (σt(s))s∈S and σt(s) : It−1 → ∆(I) is the probability distribution used by Player 1 to
select his action at stage t, given the state k and previous observations. Here ∆(·) is the set of probability
distributions over (·).

A strategy τ for uninformed Player 2 is a sequence of moves

τ = (τ1, . . . , τt, . . .),

where τt : It−1 → ∆(J).
Observe that here we define infinite strategies fitting for games of arbitrary duration. A pair of strategies

(σ, τ) induces a probability distribution Π(σ,τ) over (I × J)∞. The payoff function of the game Gn(p) is

Kn(p, σ, τ) =
∑
s∈S

psh
s
n(σ, τ),

where

hs
n(σ, τ) = E(σ,τ)[

n∑
t=1

as(it, jt)]

is the s-component of the n-step vector payoff hn(σ, τ) for the pair of strategies (σ, τ). Here the expectation is
taken with respect to the probability distribution Π(σ,τ).

For the initial probability p, the strategy σ ensures the n-step payoff

wn(p, σ) = inf
τ

Kn(p, σ, τ).

The strategy τ ensures the n-step vector payoff hn(τ) with the components

hs
n(τ) = sup

σ(s)

hs
n(σ(s), τ).

Now we describe the recursive structure of Gn+1(p). A strategy σ may be regarded as a pair (σ1, (σ(i))i∈I),
where σ1(i|s) is a probability on I depending on s, and σ(i) is a strategy depending on the first action i1 = i.

Analogously, a strategy τ may be regarded as a pair (τ1, (τ(i))i∈I), where τ1 is a probability on J .
A pair (p, σ1) induces the probability distribution π over S × I, π(s, i) = p(s)σ1(i|s). Let

q ∈ ∆(I), qi =
∑
S

psσ1(i|s),

be the marginal distribution of π on I (total probabilities of actions), and let

p(i) ∈ ∆(S), ps(i) = psσ1(i|s)/qi,

be the conditional probability on S given i1 = i (a posterior probability).
Conversely, any set of total probabilities of actions q ∈ ∆(I) and posterior probabilities (p(i) ∈ ∆(S))i∈I ,

satisfying the equality ∑
i∈I

qip(i) = p,
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define a certain random move of Player 1 for the current probability p. The posterior probabilities contain the
whole of essential for Player 1 information about the previous history of the game. Thus to define a strategy of
Player 1 it is sufficient to define the random move of Player 1 for any current posterior probability.

The following recursive representation for the payoff function corresponds to the recursive representation of
strategies:

Kn+1(p, σ, τ) = K1(p, σ1, τ1) +
∑
i∈I

qiKn(p(i), σ(i), τ(i)).

Let, for all i ∈ I, the strategy σ(i) ensure the payoff wn(p(i), σ(i)) in the game Gn(p(i)). Then the strategy
σ = (σ1, (σ(i))i∈I) ensures the payoff

wn+1(p, σ) = min
j∈J

∑
i∈I

[
∑
s∈S

psσ1(i|s)a(s, i, j) + qiwn(p(i), σ(i))]. (1)

Let, for all i ∈ I, the strategy τ(i) ensure the vector payoff hn(τ(i)). Then the strategy τ = (τ1, (τn(i))i∈I)
ensures the vector payoff hn+1(τ) with the components

hs
n+1(τ) = max

i∈I

∑
j∈J

τ1(j)(a(s, i, j) + hs
n(τ(i)) ∀s ∈ S. (2)

The game Gn(p) has a value Vn(p) if

inf
τ

sup
σ

Kn(p, σ, τ) = sup
σ

inf
τ

Kn(p, σ, τ) = Vn(p).

Players have optimal strategies σ∗ and τ∗ if

Vn(p) = inf
τ

Kn(p, σ∗, τ) = sup
σ

Kn(p, σ, τ∗),

or, in above introduced notation,
Vn(p) = wn(p, σ∗) =

∑
s∈S

psh
s
n(τ∗).

For probability distributions p with finite supports, the games Gn(p), as games with finite state and action
spaces, have values Vn(p). The functions Vn are continuous and concave in p. Both players have optimal
strategies σ∗ and τ∗.

Consider the set M1 of probability distributions p with finite first moment m1[p] =
∑∞

s=0 ps · s < ∞.
For p ∈ M1, the random variable Cp, determining the liquidation price of a share, has a finite mathematical
expectation E[Cp] = m1[p]. The set M1 is a convex subset of Banach space L1({s}) of sequences l = (ls) with
a norm

||l||1s =
∞∑

s=0

|ls| · s.

Let p1,p2 ∈ M1. Then, for ”reasonable” strategies σ and τ ,

|Kn(p1, σ, τ)−Kn(p2, σ, τ)| < n||p1 − p2||1s.

Therefore, the payoff of game Gn(p) with p ∈ M1 can be approximated by the payoffs of games Gn(pk) with
probability distributions pk having finite support. Next theorem follows immediately from this fact.

Theorem 1. If p ∈ M1, then games Gn(p) have values Vn(p). The values Vn(p) are positive and do not
decrease, as the number of steps n increases.

Remark 1. If the random variable Cp does not belong to L2, then, as n tends to ∞, the sequence Vn(p)
diverges.

3. Upper bound for values Vn(p)

Here we consider the set M2 of probability distributions p with finite second moment

m2[p] =
∞∑

s=0

ps · s2 < ∞.
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For p ∈ M2, the random variable Cp, determining the liquidation price of a share, belongs to L2 and has a
finite variance D[Cp] = m2[p]− (m1[p])2.

The set M2 is a closed convex subset of Banach space L1({s2}) of mappings l : Z+ → R with a norm

||l||1s =
∞∑

s=0

|ls| · s2.

The main result of this section is that, for p ∈ M2, as n → ∞, the sequence Vn(p) of values remains
bounded.

To prove this we define recursively the set of infinite ”reasonable” strategies τm,m = 0, 1, . . . of Player 2,
suitable for the games Gn(p) with arbitrary n.

Definition 1. The first move τm
1 is the action m ∈ J . The moves τm

t for t > 1 depend on the last observed
pair of actions (it−1, jt−1) only:

τm
t (it−1, jt−1) =

{ jt−1 − 1, for it−1 < jt−1 ;
jt−1, for it−1 = jt−1 ;
jt−1 + 1, for it−1 > jt−1 .

Remark 2. The definition of strategies τm includes the previous actions of both players. In fact, these strategies
can be implemented on the basis of Player 1’s previous actions only.

Proposition 1. The strategies τm ensure the vector payoffs hn(τm) ∈ RS
+ with components given by

hs
n(τm) =

n−1∑
l=0

(m− s− l)+, (3)

for s ≤ m,

hs
n(τm) =

n−1∑
l=0

(s−m− 1− l)+, (4)

for s > m, where (a)+ := max{0, a}.

Proof. The proof is by induction on the number of steps n.
n = 1. For s < m, Player 1’s best reply is any action k < m and

hs
1(τ

m) = max
i

as
i,m = as

k,m = m− s.

For s = m, Player 1’s best reply is any action k ≤ m and

hm
1 (τm) = max

i
am

i,m = am
k,m = 0.

For s = m + 1, Player 1’s best replies are actions m and m + 1 and

hm+1
1 (τm) = max

i
am+1

i,m = am+1
m,m = am+1

m+1,m = 0.

For s > m + 1, Player 1’s best reply is action m + 1 and

hs
1(τ

m) = max
i

as
i,m = as

m+1,m = (s−m− 1).

Therefore,
h1(τk) = (k, k − 1, . . . , 1, 0, 0, 1, . . .).

This proves Proposition 1 for n = 1.
n → n + 1. Assume that the vector payoffs hn(τk) are given with (3) and (4). We have according to (2)

hs
n+1(τ

m) = max
i


as

i,m + hs
n(τm−1), for i < m ;

as
i,m + hs

n(τm), for i = m ;
as

i,m + hs
n(τm+1), for i > m .
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For s < m, the first move of Player 1’s best reply is any action i < m. It results in

hs
n+1(τ

m) = as
i,m + hs

n(τm−1) = (m− s) +
n−1∑
l=0

(m− s− 1− l)+ =
n∑

l=0

(m− s− l)+.

For s = m, the first move of Player 1’s best reply is any action i < m and i = m. It results in

hm
n+1(τ

m) = am
i,m + hm

n (τm−1) = am
m,m + hm

n (τm) = 0.

For s = m + 1, the first moves of Player 1’s best replies are actions m and m + 1. It results in

hm+1
n+1 (τm) = am+1

m,m + hm+1
n (τm) = am+1

m+1,m + hm+1
n (τm+1) = 0.

For s > m + 1, the first move of Player 1’s best reply is action m + 1. It results in

hs
n+1(τ

m) = as
m+1,m + hs

n(τm+1) = (s−m− 1) +
n−1∑
l=0

(s−m− 2− l)+ =
n∑

l=0

(s−m− 1− l)+.

This proves Proposition 1 for n + 1.

Theorem 2. For p ∈ M2, the values Vn(p) are bounded from above by a continuous, concave, and piecewise
linear function H(p) over M2. Its domains of linearity are

L(k) = {p : E[p] ∈ [k, k + 1]}, k = 0, 1, . . . .

Its domains of non-smoothness are
Θ(k) = {p : E[p] = k}.

The equality holds
H(p) = (D[p]− α(p)(1− α(p)))/2, (5)

where α(p) = E[p]− ent[E[p]] and ent[x], x ∈ R1 is the integer part of x.

Proof. It is easy to see that

lim
n→∞

hs
n(τm) = h∞(τm) = (s−m)(s−m− 1)/2.

Thus there is the following not depending on n upper bound for Vn(p):

Vn(p) ≤ min
m

∞∑
s=0

ps(s−m)(s−m− 1)/2, m = 0, 1, . . . . (6)

Observe that, for E[p] = m + α,

∞∑
s=0

ps(s−m)(s−m− 1)/2 = [(m2 + m)− (2m + 1)
∞∑

s=0

pss +
∞∑

s=0

pss
2]/2

= [
∞∑

s=0

pss
2 − (m + α)2 − α + α2]/2 = [D[p]− α(1− α)]/2.

Consequently, for E[p] ∈ [k, k + 1] the minimum in formula (6) is attained on the k-th vector payoff, and the
equality (5) holds. In particular, for p ∈ Θ(k) (E[p] = k),

H(p) =
∞∑

s=0

ps(s− k)(s− k − 1)/2 =
∞∑

s=0

ps(s− k)(s− k + 1)/2 = D[p]/2.

Corollary 1. The strategies τm,m = 0, 1, . . . guarantee the same upper bound H(p) for the upper value of the
infinite game G∞(p).
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4. Structure of convex sets Θ(r) and linear functions over them

The sets Θ(r), r = 1, 2, . . . are closed convex subsets of Banach space L1({s2}). In this section we give a
representation of the set Θ(r) as a convex hull of its extreme points and a decomposition of linear functions
over this set corresponding to this representation.

The extreme points of the set Θ(r) are distributions pr(k, l) ∈ Θ(r) with two-point supports {r − l, r + k}

pr
r−l(k, l) =

k

k + l
, pr

r+k(k, l) =
l

k + l
, (7)

k = 0, 1, 2, . . ., l = 0, 1, . . . , r, k + l > 0. Note that pr(0, l) = pr(k, 0) = er, where er is the degenerate
distribution with one-point support er

r = 1.

Proposition 2. Any p ∈ Θ(r) has the following representation as a convex combination of extreme points (7):

p = pr · er +
∞∑

k=1

r∑
l=1

αkl(p) · pr(k, l), (8)

with the coefficients

αkl(p) =
k + l∑r

t=1 tpr−t
pr−lpr+k. (9)

Corollary 2. Any linear function f over Θ(r) has the following representation as a convex combination of its
values at extreme points.

f(p) = pr · f(er) +
∞∑

k=1

r∑
l=1

αkl(p) · f(pr(k, l)), (10)

with the coefficients αkl(p) given by (9).
In particular, the continuous linear function D over Θ(r), equal to zero at er, has the following representation

as a convex combination of values at extreme points D[pr(k, l)] = k · l corresponding to decomposition (8):

D[p] =
∞∑

k=1

r∑
l=1

k + l∑r
t=1 tpr−t

pr−lpr+k · k · l.

Consequently, we obtain another representation for the function H(p) over Θ(r).

H(p) =
∞∑

k=1

r∑
l=1

k + l∑r
t=1 tpr−t

pr−lpr+k · k · l/2. (11)

Observe that there exist the following ”canonical” decompositions of extreme points pr(k, l) with k, l > 0,
that generate ”quasi-optimal” strategies of Player 1 for games Gn(pr(k, l)) (see [3]):

pr(k, l) = (pr+1(k − 1, l + 1) + pr−1(k + 1, l − 1))/2.

These ”canonical” decompositions can be expanded to the whole set Θ(r) by formulas

p = pr · er + (1− pr)/2 · p− + (1− pr)/2 · p+,

where

p− =
1

1− pr

∞∑
k=1

r∑
l=1

αkl(p) · pr−1(k + 1, l − 1) ∈ Θ(r − 1),

p+ =
1

1− pr

∞∑
k=1

r∑
l=1

αkl(p) · pr+1(k − 1, l + 1) ∈ Θ(r + 1),

or component-wise

p−s =


ps

∑r−1
j=0(r − 1− j)pj∑r−1

j=0(r − j)pj

, for s > r ;

0, for s = r ;

ps

∑∞
j=r+1(j − r + 1)pj∑r−1

j=0(r − j)pj

, for s < r ,

(12)
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p+
s =


ps

∑r−1
j=0(r + 1− j)pj∑r−1

j=0(r − j)pj

, for s > r ;

0, for s = r ;

ps

∑∞
j=r+1(j − r − 1)pj∑r−1

j=0(r − j)pj

, for s < r .

(13)

In the next section we show that these ”canonical” decompositions also generate ”quasi-optimal” strategies of
Player 1 for general games Gn(p).

Further, making use of representation (10) we construct a sequence of continuous, piecewise linear functions
Bn over M2 of the same form as the function H. Their domains of linearity are L(r) and domains of non-
smoothness are Θ(r). Such functions are completely defined by their values over the set ∪∞r=1Θ(r). Observe
that the functions Bn(p) are continuous linear functions over each set Θ(r), r = 1, 2, . . ..

Definition 2. a) For the distributions pr(k, l) given by (7) the values Bn(pr(k, l)) are given with the recurrent
equalities

Bn(pr(k, l)) = [1 + Bn−1(pr+1(k − 1, l + 1)) + Bn−1(pr−1(k + 1, l − 1))]/2, (14)

with the boundary conditions

Bn−1(pr+k(0, l + k)) = Bn−1(pr−l(k + l, 0)) = 0,

and with the initial condition B0(pr(k, l)) = 0.
b) For the interior points p ∈ Θ(r), the values Bn(p) are convex combinations of its values at extreme points

Bn(p) =
∞∑

k=1

r∑
l=1

k + l∑r
t=1 tpr−t

pr−lpr+k ·Bn(pr(k, l)).

In the next section we show that functions Bn are lower bounds for the values Vn(p) over M2, being the gains
of Player 1 corresponding to his ”quasi-optimal” strategies.

5. Asymptotics of values Vn(p)

In this section we show that, for p ∈ M2, as n tends to ∞, the sequence of values Vn(p) of the games Gn(p)
converges to H(p). To prove this, we construct Player 1’s strategy σp that ensure lower bounds Bn(p) converging
to H(p), for any p ∈ M2.

The strategy σp is a stationary strategy (does not depend on the step number). Such strategy is given by
its first move for any p ∈ M2.

Definition 3. Let p ∈ Θ(r).
If the state s = r, then the strategy σp stops the game.
Otherwise, the first move of the strategy σp makes use of two actions r − 1 and r with probabilities

σp
1(r − 1|s) =



∑r−1
j=0(r − j − 1)pj

2
∑r−1

j=0(r − j)pj

, for s > r ;∑∞
j=r+1(j − r + 1)pj

2
∑r−1

j=0(r − j)pj

, for s < r ;

σp
1(r|s) =



∑r−1
j=0(r − j + 1)pj

2
∑r−1

j=0(r − j)pj

, for s > r ;∑∞
j=r+1(j − r − 1)pj

2
∑r−1

j=0(r − j)pj

, for s < r .

Thus these actions occur with total probabilities qr−1 = qr = (1− pr)/2. The posterior probability distributions
are

p(·|r − 1) = p− ∈ Θ(r − 1), p(·|r) = p+ ∈ Θ(r + 1),

where p− and p+ are given by (12) and (13).
For interior points p ∈ L(r) with E[p] = r + α, first moves of strategies σp are convex combinations of the

first moves at boundary points pr ∈ Θ(r) and pr+1 ∈ Θ(r + 1) such that p = αpr+1 + (1− α)pr.
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Remark 3. It follows from Theorem 2. that, for p ∈ Θ(r), if the random variable Cp takes the value r, then
the gain of Player 1 is equal to zero and he can stop the game without any loss for himself.

Proposition 3. For p ∈ ∪∞r=1Θ(r), the strategy σp ensures the payoff

wn(p, σp) = Bn(p).

in the game Gn(p).
Proof. It is sufficient to prove Proposition for the games Gn(pr(k, l)) corresponding to extreme points pr(k, l)
of the sets Θ(r), r = 1, 2, . . .. The proof is by induction on n.
n = 1 . The best answer of Player 2 to the first move of the strategy σp with p = pr(k, l) is any action l with
l ≤ r. The resulting immediate gain of Player 1 is equal to 1/2. Thus, for p = pr(k, l), the strategy σp ensures
the payoff B1(pr(k, l)) = 1/2 in the one-step game G1(pr(k, l)).
n → n + 1 . Assume that the strategies σp with p = pr(k, l)) ensure the payoffs Bn(pr(k, l)) in the games
Gn(pr(k, l)).

For p = pr(k, l), the first move of the strategy σp has the immediate gain equal to 1/2. Its posterior
probability distributions are pr−1(k+1, l−1)) and pr+1(k−1, l+1)), and both of them occur with probabilities
1/2.

According to the induction assumption and formulas (1), (6), the resulting total gain of Player 1 is equal to

[1 + Bn(pr−1(k + 1, l − 1)) + Bn(pr+1(k − 1, l + 1))]/2 = Bn+1(p).

Thus, the strategy σp ensures the payoff Bn+1(p) in the games Gn+1(p) with p = pr(k, l). It is easy to extend
this result to all p ∈ ∪∞r=1Θ(r).

Theorem 3. For p ∈ M2, the following equalities hold:

lim
n→∞

Vn(p) = H(p).

Proof. According to Theorem 2 and Proposition 2 the following inequalities hold:

Bn(p) ≤ Vn(p) ≤ H(p), ∀p ∈ M2.

The functions Bn and H are continuous, concave, and piecewise linear with the same domains of linearity
L(r), r = 0, 1, . . .. Such functions are completely determined with its values at the domains of non-smoothness
Θ(r), r = 1, 2, . . ..

Because of continuity and concavity of the functions Bn and H, to prove that the sequence Bn converges to
H as n tends to ∞, it is enough to show this for p ∈ Θ(r), r = 1, 2, . . ..

The increasing sequence of continuous linear functions Bn over Θ(r) is bounded from above with the con-
tinuous linear function H. Consequently, it has a continuous linear limit function B∞. To prove Theorem 3 for
p ∈ Θ(r) it is enough to show that

lim
n→∞

Bn(pr(k, l)) = B∞(pr(k, l)) = H(pr(k, l)) = k · l/2, ∀k, l.

It follows from (14) that the limits B∞(pr(k, l)) should satisfy the equalities

B∞(pr(k, l)) = [1 + B∞(pr+1(k − 1, l + 1)) + B∞(pr−1(k + 1, l − 1))]/2.

with the boundary conditions B∞(pr+k(0, l + k)) = B∞(pr−l(k + l, 0)) = 0.
Solving the system of these k + l− 1 linear equations connecting k + l− 1 values B∞(pr+m(k −m, l + m)),

m = −l + 1,−l + 2, . . . , k − 1, for distributions with the same two-point support {r − l, r + k}, we obtain that

B∞(pr(k, l)) = k · l/2 = H(pr(k, l)).

According to (10) this proves Theorem 3 for p ∈ Θ(r), r = 0, 1, . . .. Because of the continuity and concavity of
the functions Vn it is true for all p ∈ M2.

Corollary 2. It follows from the proof that the strategy σ(p) ensures the payoff H(p) in the infinite game
G∞(p).

The strategy σ(p) is not optimal in any finite game Gn(p) with n < ∞.
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5. Solutions for the games G∞(p) and random walks

For p ∈ M2, as the values Vn(p) are bounded from above, the consideration of games G∞(p) with infinite
number of steps becomes reasonable.

We restrict the set of Player 1’s admissible strategies in these games to the set Σ+ of strategies employing
only the moves ensuring him a nonnegative one-step gain against any action of Player 2. Consequently, the
payoff functions K∞(p, σ, τ) of the games G∞(p) become definite (may be infinite) at all cases.

We show that the infinite game G∞(p) has a value and this value is equal to H(p).
The existence of values for these games does not follow from common considerations and has to be proved.

We prove it by providing the optimal strategies explicitly.

Theorem 4. For p ∈ M2, the game G∞(p) has a value V∞(p) = H(p). Both Players have optimal strategies.
The optimal strategy of Player 1 is the strategy σp, given by Definition 3.
For p ∈ L(r), r = 0, 1 . . ., the optimal strategy of Player 2 is the strategy τ r, given by Definition 1. For

p ∈ Θ(r), r = 1, 2, . . ., any convex combination of the strategies τ r−1 and τ r is optimal.

Proof. According to Corollary 2, the strategy σp ∈ Σ+ ensures the payoff H(p) in the game G∞(p). Thus, for
any p ∈ M2,

sup
Σ+

inf
T

K∞(p, σ, τ) ≥ H(p), (15)

and the function H is the lower bound for the lower value of the game G∞.
On the other hand, according to Corollary 1, the strategies τ r, r = 0, 1, . . ., ensure the payoff H(p) in the

infinite game G∞(p). Thus, for any p ∈ M2,

inf
T

sup
Σ+

K∞(p, σ, τ) ≤ H(p), (16)

and the function H is the upper bound for the upper value of the game G∞.
As the lower value is always less or equal to the upper value, it follows from (15) and (16) that

sup
Σ+

inf
T

K∞(p, σ, τ) = inf
T

sup
Σ+

K∞(p, σ, τ) = H(p) = V∞(p).

The strategies σp ∈ Σ+ and τ r, r = 0, 1, . . . ensure the value H(p) = V∞(p) in the infinite game G∞(p).

For the initial probability distribution p ∈ Θ(r), r = 1, 2, . . ., the random sequence of posterior probability
distributions, generated with the optimal strategy σp of Player 1, is the symmetric random walk (pt)∞t=1 over
domains Θ(l). Probabilities of jumps to each of adjacent domains Θ(l− 1) and Θ(l + 1) are equal to (1− pl)/2
and probability of absorption is equal to pl. This is the Markov chain with the state space ∪∞l=0Θ(l), and with
the transition probabilities, for p ∈ Θ(l),

Pr(p, el) = pl; Pr(p,p−) = Pr(p,p+) = (1− pl)/2,

where p− and p+ are given with (12) and (13).
Next arising posterior probability distributions p− and p+ have pl = 0 and thus, for any subsequent visit

to the domain Θ(l), the probability of absorption becomes equal to zero.
For the random walk (pt)∞t=1 with the initial probability distribution p ∈ Θ(r), let θ(p) be the random

Markov time of absorption, i.e.
θ(p) = min{t : pt = el} − 1.

The Markov time θ(p) of absorption of posterior probabilities represents the time of revelation the ”true”
value of share by Player 2 and, generally speaking, the time of bidding termination.

Proposition 4. For the random walk (pt)∞t=1 with the initial probability distribution p ∈ Θ(r), the expected
duration E[θ(p)] of this random walk is equal to the variance D[p] of the liquidation price of a share.

Proof. For the random walk (pt)∞t=1 with the initial probability distribution p ∈ Θ(r), the transition probabilities
are linear functions over Θ(r). Consequently, the expected duration E[θ(p)] of this random walk is a linear
function over Θ(r) as well.

The continuous linear function E[θ(p)] over Θ(r), equal to zero at er, has the following ”canonical” repre-
sentation as a convex combination of values at extreme points E[θ(pr(k, l))]:

E[θ(p)] =
∞∑

k=1

r∑
l=1

αkl(p) ·E[θ(pr(k, l))],

Document de Travail du Centre d'Economie de la Sorbonne - 2009.40

ha
ls

hs
-0

03
90

70
1,

 v
er

si
on

 1
 - 

2 
Ju

n 
20

09



with the coefficients αkl(p) given by (9).
It is well known that

E[θ(pr(k, l))] = k · l = D[pr(k, l)].

As the variance D[p] is a linear function over Θ(r), we obtain the assertion of Proposition 4.

Remark 4. The result of Theorem 4 turns to be rather intuitive. The value of infinite game is equal to the
expected duration of random walk of posterior probability distributions, multiplied by the constant one-step
gain 1/2 of informed Player 1.

7. Conclusion

The obtained results on the biddings with countable sets of possible prices and admissible bids demonstrate
that the Brownian component in the evolution of prices on the stock market may originate from asymmetric
information of stockbrokers on events determining market prices.
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