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Abstract

We consider in this paper two Markovian processes X and Y; solutions
of a stochastic di¤erential equation with jumps, that are comonotonic,
i.e., that are such that for all t, almost surely, Xt is greater in one state
of the world than in another if and only if the same is true for Yt. This
notion of comonotonicity can be of great use for �nance, insurance and
actuarial issues.
We show here that the assumption of comonotonicity imposes strong con-
straints on the coe¢ cients of the di¤usion part of X and Y .

1 Introduction

We want to show that the assumption of comonotonicity for two processes im-
poses strong constraints on the coe¢ cients of the di¤usion part of the processes.
This result is to be used for instance in �nance, insurance or actuarial apppli-
cations where the notion of comonotonicity appears quite naturally (see Yaari
(1987) for decision theory applications, Dybvig (1988) for �nance applications,
and Dhaene et al. (2002 a and b) for a review of the actuarial literature).
We start by introducing the notion of comonotonicity. We shall �rst recall

its de�nition for random variables and we extend it for stochastic processes.

De�nition 1 Two real-valued random variables x1 and x2 de�ned on the same
probability space (
; F; P ) are comonotonic if there exists A in F , with proba-
bility one, and such that

[x1 (!)� x1 (!0)] [x2 (!)� x2 (!0)] � 0 for all (!; !0) 2 A�A

or equivalently if the cumulative distribution function F(x1;x2) of the pair (x1; x2)
is given by

Fx1;x2 (�1; �2) = min (Fx1 (�1) ; Fx2 (�2)) :
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Other characterizations of comonotonic random variables can be found in Den-
neberg (1994) : In particular, if two random variables x1 and x2 are such that
there exists a nondecreasing function ' for which x1 can be written in the form
x1 = ' (x2) (or if x2 can be written in the form x2 = ' (x1)), then x1 and x2
are comonotonic. In fact, x1 and x2 are comonotonic if and only if they are
nondecreasing functions of the same third random variable x3, which can be
chosen to be equal to x1+x2 (Denneberg (1994), Proposition 4.5, p.54). Hence,
as underlined by Wang and Dhaene (1998) comonotonic risks can be considered
as �common monotonic�.
This concept of comonotonicity emerges naturally in insurance issues since

most risk sharing schemes between insurer and reinsurer or between insured
and insurer lead to partial risks that are comonotonic. Furthermore, as proved
by Landsberger and Meilijson (1994) ; all Pareto optimal risk allocations are
comonotonic. It is also particularly useful in actuarial science since, as under-
lined by Dhaene et al. (2002 a), the concept of comonotonicity is closely related
to Fréchet bounds for multivariate distribution functions and permits approxi-
mations for sums of random variables when the distributions of the terms are
known, but the stochastic dependence structure between them is unknown, or
too cumbersome to work with. Applications of such approximations to for in-
stance the evaluation of insurance portfolios or cash �ows, or to the determi-
nation of bounds for the price of an arithmetic asian option can be found in
Dhaene et al. (2002 b).

De�nition 2 Two real-valued adapted processes X1 and X2 de�ned on the

same �ltered probability space
�

; F; (Ft)t�0 ; P

�
are comonotonic if for all

t � 0, the random variables X1
t and X

2
t are comonotonic.

Notice that if two processes X1 and X2 are such that for all t, X1
t = d

�
t;X2

t

�
where for all t, d (t; �) : R! R is some nondecreasing function, then X1 and X2

are comonotonic.
Besides, if d is of class C1;2 and X =

�
X1; X2

�
is a di¤usion process of the form

dXt = btdt+ �tdWt

where the R2-valued process b �
�
bX

1

; bX
2
��
, as well as the matrix-valued

process � �
�
�X

1

; �X
2
��
, where �X

1 � (�1; �2) and �X
2 � (�3; �4), satisfy the

usual regularity conditions, then the use of Itô�s lemma enables us to get that

dX1
t =

�
dt
�
t;X2

t

�
+ dx

�
t;X2

t

�
bX

2

t + 1=2dxx
�
t;X2

t

� ����X2

t

���2� dt
+dx

�
t;X2

t

�
�X

2

t dWt.

Identifying the di¤usion parts, we immediately obtain that for all t,

�X
1

t = �X
2

t dx
�
t;X2

t

�
(1)
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so that for all t,

det� (t) = �1 (t)�4 (t)� �3 (t)�2 (t) = 0 P a.s .

In the general di¤usion case1 , remark that if X1 and X2 are comonotonic, then
the law of

�
X1; X2

�
is singular with respect to the Lebesgue measure. The

problem can be treated as follows. Let Ta � inf ft;det�t��t > ag : The pair�
X1
t ; X

2
t

�
is a non-homogeneous di¤usion process with transition kernels Ps;t

and as soon as det�t��t 6= 0 and � is continuous, then Ps;t (x; �) admits a density
with respect to the Lebesgue measure for all t in an interval [s; s+ "]. Since
E [f (Xt)] � E

�
PTa;t�Taf (XTa) 1fTa<tg

�
for any nonnegative f , it follows that

the joint law of
�
X1
t ; X

2
t

�
is not singular with respect to the Lebesgue measure

for some t, as soon as P (Ta <1) > 0. Hence, if X1 and X2 are comonotonic,
then P (Ta =1) = 1 for all a > 0; that is det�t��t = 0 for all t.
We want to get an analogous result in the general case of two processes

which are solutions of a stochastic di¤erential equation with jumps. Notice
that such jump processes are particularly relevant for insurance applications.
Remark that in the case where one of the considered processes can be written
as a regular function of the other, then, as above, Itô�s Lemma concludes.
Let (
; F; P ) be a given probability space and (Ft)t�0 denote a right-continuous,

complete �ltration. Let W =
n�
W 1
t ; :::;W

d
t

��
; t � 0

o
denote a d-dimensional

Brownian motion for (Ft)t�0. Let M denote the set of real valued (2� d)-
matrices.
Let n be a �nite measure on Rk. Let � : R2 ! M and b : R2 ! R2 and
f : R2 � Rk ! R2 be Borel measurable, bounded and uniformly continuous
functions such that for some positive constants A and K,

j� (x)� � (y)j2+ jb (x)� b (y)j2+
Z
B(0;1)

jf (x; u)� f (y; u)j2 n (du) � K jx� yj2

(2)
j� (x)j2 + jb (x)j2 + jf (x; u)j2 � A2 (3)

for x; y in R2 and u in Rk where as usual, form 2M given bym =

�
m11 ::: m1d

m21 ::: m2d

�
,

we let jmj �
qP

i;j (mij)
2 and for x 2 RN given by x = (x1; :::; xN )

�, jxj �qPN
i=1 (xi)

2.

Let � be the Poisson measure on R+ � Rk with intensity ds 
 n (du) ande� = ��ds
n (du) its compensated measure. We suppose that � is independent
of the Brownian motionW: Let p be the (Ft)-stationary Poisson point process as-
sociated with the counting measure � (see e.g. Ikeda-Watanabe (1981), Section
II-3). Under our conditions, we know that the following stochastic di¤erential

1We are grateful to an anonymous referee for providing this short proof in the di¤usion
case.
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equation

Xt = X0 +

Z t

0

b (Xs) ds+

Z t

0

� (Xs) dWs +

Z t

0

Z
juj>1

f (Xs�; u)� (ds; du)

+

Z t

0

Z
juj�1

f (Xs�; u) e� (ds; du) (4)

with given initial condition X0 =
�
X1
0 ; X

2
0

�
, whereX0 is supposed to be a square

integrable R2-valued F0 -measurable random variable, admits a unique (Ft)t�0-
adapted, càdlàg 2-dimensional solution process. We shall in the remainder of
the paper write indi¤erently � (Xt) (resp. b (Xt)) or �t (resp. bt).
In such a framework, we shall prove the following:

Theorem 1 If the two-dimensional solution process X of Equation (4) has
comonotonic components X1 and X2, then for all t � 0, its dispersion ma-
trix �t almost surely does not have full rank.

2 Proof of Theorem 1

To prove Theorem 1, we shall assume that there exists t0 � 0 such that the
dispersion matrix has full rank with a positive probability and show that the
two processes X1 and X2 cannot be comonotonic. The rough idea is that if the
dispersion matrix has full rank at date t = t0, then according to the fact that
W =

�
W 1; :::;W d

��
is a d-dimensional Brownian motion, the processes �X1

and �X2 do not necessarily have a �parallel�evolution2 and as long as we take
X1
t0 and X

2
t0 in a small enough interval, we will be able to �nd �t � t� t0 � 0

such that the two random variables X1
t0+�t

and X2
t0+�t

are not comonotonic.
In Section 2.1, we exhibit an event Bt0 in Ft0 on which the dispersion matrix

has full rank and each of the random variables X1
t0 , X

2
t0 and �ij (t0) for i = 1; 2

and j = 1; :::; d is stuck in an interval of given length. In Section 2.2, we show
that on some subevents, the problem can be reduced to the one with constant
coe¢ cients and a di¤usion process. In Section 2.3, we prove that these events
have a positive probability and we conclude.

2.1 A Speci�c Set at t = t0
Suppose that at t = t0, det�t��t 6= 0 with a positive probability. Without
loss of generality, we can assume that �11 (t0)�22 (t0) � �21 (t0)�12 (t0) 6= 0
with a positive probability. We show that there exists an event Bt0 in Ft0 , with
positive probability, on which each of the random variables X1

t0 , X
2
t0 and �ij (t0)

for i = 1; 2 and j = 1; :::; d is stuck in an interval of given length and on which
�11 (t0)�22 (t0)� �21 (t0)�12 (t0) 6= 0.

2For any process Y = fYt; t � t0g, let �Y denote the stochastic process fYt � Yt0 ; t � t0g.
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To do so, consider �rst B � f�11 (t0)�22 (t0)� �21 (t0)�12 (t0) 6= 0g. By as-
sumption, we have P (B) 6= 0. Then there exists a positive real number denoted
by ` such that the event B0 given by

B0 � fj�11 (t0)�22 (t0)� �21 (t0)�12 (t0)j � `g

is of positive probability. Moreover, we can assume that the sign of the expres-
sion �11 (t0)�22 (t0)� �21 (t0)�12 (t0) remains constant on B0.
Let n denote any given integer. Let for all k in Z, for i = 1; 2 and j = 1; :::; d

and l = 1; 2,

Ci;jk �
�
�ij (t0) 2

�
k

2n
;
k + 1

2n

��
Dl
k �

�
X l
t0 2

�
k

2n
;
k + 1

2n

��
As

B0 = [ki;j2Z
k0l2Z

�
B0 \

i=1;2;j=1;:::;d
Ci;jki;j \

l=1;2
Dl
k0l

�
there exist ki;j for i = 1; 2; j = 1; :::; d and k01, k

0
2 in Z such that the event

Bt0 given by Bt0 � B0 \
i=1;2;j=1;:::;d

Ci;jki;j \
l=1;2

Dl
k0l
has positive probability. It

is immediate that Bt0 satis�es the conditions mentioned above, the length of
the intervals being equal to 1=2n. We consider a decreasing sequence of such
nested sets Bt0 (n). Since (�ij (t0))i=1;2;j=1;:::;d is stuck in a compact set and
j�11 (t0)�22 (t0)� �21 (t0)�12 (t0)j � `, there exists some n0, such that for all n
greater than n0, a11a22 � a21a12 6= 0 holds true for any aij in

h
kij
2n ;

kij+1
2n

h
. For

such an n0, we let ��i � kij+1
2n0 and �i �

kij
2n0 .

2.2 An Intermediary Lemma

We shall denote by ~X the stochastic process
n
~Xt =

�
~X1
t ; ~X

2
t

��
; t � t0

o
given

by eXt = Xt0 + �t0�Wt

and by Z the stochastic process
n
Zt =

�
Z1t ; Z

2
t

��
; t � t0

o
given by

Zt =

Z t

t0

bsds+

Z t

t0

(�s � �t0) dWs +

Z t

t0

Z
juj>1

f (Xs�; u)� (ds; du)

+

Z t

t0

Z
juj�1

f (Xs�; u) e� (ds; du)
Then for all t � t0, Xt = ~Xt + Zt and �X = � ~X +�Z.
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Finally, for a given � 2 R�+, let Z� be given by

Z�t =

Z t

t0

bsds+

Z t

t0

'� (�s � �t0) dWs +

Z t

t0

Z
juj>1

f (Xs�; u)� (ds; du)

+

Z t

t0

Z
juj�1

f (Xs�; u) e� (ds; du)
where '� (x) stands for x1jxj�� +

x
jxj1jxj>�:

Using the Lipschitz condition on �, we know that for all given � 2 R�+, there
exists a positive real number " (�) such that for all x and y in R2 satisfying
jx� yj � " (�),

j� (x)� � (y)j � �

For all (�;�t; �; n) 2
�
R�+
�3 � N, we let B1�;�t;�;n denote the set

����Z�t0+�t�� � �	 \
(

sup
s2[t0;t0+�t]

j�Xsj � " (�)
)
\
(
� ~X1

t0+�t
� 1

2n + �

� ~X2
t0+�t

� ��

)

and B2�;�t;�;n denote the set

����Z�t0+�t�� � �	 \
(

sup
s2[t0;t0+�t]

j�Xsj � " (�)
)
\
(

� ~X1
t0+�t

� ��
� ~X2

t0+�t
� 1

2n + �

)

For l = 1; 2, we let Al�;�t;�;n � Bl�;�t;�;n \Bt0 (n) and we prove the following

Lemma 1 If there exist [(�1; �1) ; (�2; �2)] 2
�
R�+
�2 � �R�+�2, �t 2 R�+, and

n 2 N for which P
h
Al�i;�t;�i;n

i
> 0 for l = 1; 2, then the two processes X1 and

X2 cannot be comonotonic.

Proof Let us see �rst what happens onA1�;�t;�;n: we have sups2[t0;t0+�t] j�Xsj �
" (�) hence for all s 2 [t0; t0 +�t]

j�s � �t0 j � �

so that for all s 2 [t0; t0 +�t], Zs = Z�s and j�Zt0+�tj =
���Z�t0+�t�� � �.

As�X = � ~X+�Z, we get on A1�;�t;�;n that�X
1
t0+�t

= � ~X1
t0+�t

+�Z1t0+�t �
1
2n and �X

2
t0+�t

� 0.

Now, using the same method, we get that for all (�;�t; �; n) 2
�
R�+
�3 � N, we

have �X1
t0+�t

� 0 and �X2
t0+�t

� 1
2n on A

2
�;�t;�;n.

As X1
t0 and X

2
t0 both belong to a (semi-open) interval of given length equal

to 1
2n on Al�l;�t;�l;n, we get that for all (!; !

0) 2 A1�1;�t;�1;n � A
2
�2;�t;�2;n

,
X1
t0+�t

(!) > X1
t0+�t

(!0) whereas X2
t0+�t

(!) < X2
t0+�t

(!0) so that�
X1
t0+�t (!)�X

1
t0+�t (!

0)
�
�
�
X2
t0+�t (!)�X

2
t0+�t (!

0)
�
< 0
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for all (!; !0) 2 A1�1;�t;�1;n �A
2
�2;�t;�2;n

, and the two random variables X1
t0+�t

and X2
t0+�t

cannot be comonotonic, which completes the proof of the lemma.�

So the lemma reduces the proof of our theorem to the �nding of [(�l; �l)]l=1;2 2�
R�+
�2 � �R�+�2, n 2 N and �t 2 R�+ for which the two events A1�1;�t;�1;n and

A2�2;�t;�2;n have positive probability.

2.3 End of the Proof of Theorem 1

We consider �rst the set A1�;�t;�;n and we only need to show that there exist

(�;�t; �; n) 2
�
R�+
�3 � N for which

P
�����Z�t0+�t�� � �� \Bt0	+ P

( 
sup

s2[t0;t0+�t]
j�Xsj � " (�)

!
\Bt0

)

+P

( 
� ~X1

t0+�t
� 1

2n + �

� ~X2
t0+�t

� ��

!
\Bt0

)
> 2P (Bt0) : (5)

We �rst consider the set
��

� ~X1
t0+�t

� 1
2n+�

� ~X2
t0+�t

���

�
\Bt0

�
. We shall denote by X̂ the

stochastic process
n
X̂t =

�
X̂1
t ; X̂

2
t

��
; t � t0

o
given by

X̂t = Xt0 + a
0�Wt

where a0 �
�
a011 a012 0 ::: 0
a021 a021 0 ::: 0

�
for some real numbers a0ij 2

h
kij
2n ;

(kij+1)
2n

h
for i; j = 1; 2. Then

� ~Xt0+�t = �X̂t0+�t +
�
�t0 � a0

�
�Wt0+�t

On Bt0 (n), �ij (t0) 2
h
kij
2n ;

kij+1
2n

h
, so that

���ij (t0)� a0ij�� < 1
2n . It is easy to see

that for a given positive real number �, if�X̂1
t0+�t

� 2�+�, �X̂2
t0+�t

� �2���,����W j
t0+�t

��� � �2n�1
2 for j = 1; 2,

����W j
t0+�t

��� � �
(d�2)A for j = 3; :::; d, then

� ~X1
t0+�t

� 1
2n + � and �

~X2
t0+�t

� ��. So

P

�
Bt0 \

�
� ~X1

t0+�t �
1

2n
+ �;� ~X2

t0+�t � ��
��

� P

24Bt0 \
8<: �X̂1

t0+�t
� 2�+ �

�X̂2
t0+�t

� �2�� �
;

����W j
t0+�t

��� � �2n�1
2 , j = 1; 2����W j

t0+�t

��� � �
(d�2)A , j = 3; :::; d

;

9=;
35

�
P (Bt0)P

�
B�
�

2��t

Z
a011x+a

0
12y�2�+�

a021x+a
0
22y��2���

jxj��2n�1
2 ;jyj��2n�1

2

e�
x2+y2

2�t dxdy
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where B� =
n����W j

t0+�t

��� � �
(d�2)A ; j = 3; :::; d

o
because � and W are indepen-

dent and independent of Ft0 .

Let us now consider the other sets involved in Inequality (5), i.e., the sets

Bt0 \
����Z�t0+�t�� � �	 and Bt0 \ nsups2[t0;t0+�t] j�Xsj � " (�)o.

As for Z�, we have

P
�����Z�t0+�t�� � �	� � 1� P

�����Z t

t0

bsds

���� > �

4

�
� P

�����Z t

t0

'� (�s � �t0) dWs

���� > �

4

�
�P

"�����
Z t

t0

Z
juj>1

f (Xs; u)� (ds; du)

����� > �

4

#

�P
"�����
Z t

t0

Z
juj�1

f (Xs; u) e� (ds; du)
����� > �

4

#

By Itô�s isometry, we get

P

�����Z t

t0

'� (�s � �t0) dWs

���� > �

4

�
� 16

�2
E

"����Z t

t0

'� (�s � �t0) dWs

����2
#

� 32�2 (�t)

�2
:

It is immediate that

P

�����Z t

t0

bsds

���� > �

4

�
� 4A (�t)

�
:

Now,

P

"�����
Z t

t0

Z
juj>1

f (Xs; u)� (ds; du)

����� > �

4

#
� P

�
A� ([t0; t]� fjzj > 1g) >

�

4

�
� 4

�
E [A� ([t0; t]� fjzj > 1g)]

� 4A (�t)n fjzj > 1g
�

and

P

"�����
Z t

t0

Z
juj�1

f (Xs; u) e� (ds; du)
����� > �

4

#
� 16

�2
E

24�����
Z t

t0

Z
juj�1

f (Xs; u) e� (ds; du)
�����
2
35

� 16

�2

Z t

t0

ds

Z
juj�1

E
h
jf (Xs; u)j2

i
n (du)

� 16A2 (�t)n fjzj � 1g
�2
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On the other hand,

P

(
sup

s2[t0;t0+�t]
j�Xsj � " (�)

)
� 1� P

(
sup

s2[t0;t0+�t]

����Z s

t0

budu

���� > " (�)

4

)

�P
(

sup
s2[t0;t0+�t]

����Z s

t0

�udWu

���� > " (�)

4

)

�P
(

sup
s2[t0;t0+�t]

�����
Z s

t0

Z
juj>1

f (Xs�; u)� (ds; du)

����� > " (�)

4

)

�P
(

sup
s2[t0;t0+�t]

�����
Z s

t0

Z
juj�1

f (Xs�; u) e� (ds; du)
����� > " (�)

4

)
We easily get

P

(
sup

s2[t0;t0+�t]

����Z s

t0

�udWu

���� > " (�)

4

)
� 128 (�t)A2

[" (�)]
2 :

P

(
sup

s2[t0;t0+�t]

����Z s

t0

budu

���� > " (�)

4

)
� 16 (�t)

2
A2

[" (�)]
2

P

(
sup

s2[t0;t0+�t]

�����
Z s

t0

Z
juj>1

f (Xs�; u)� (ds; du)

����� > " (�)

4

)

� P

�
A� ([t0; t0 +�t]� fjzj > 1g) >

" (�)

4

�
� 4A

" (�)
E [� ([t0; t0 +�t]� fjzj > 1g)]

� 4A (�t)n (fjzj > 1g)
" (�)

P

(
sup

s2[t0;t0+�t]

�����
Z s

t0

Z
juj�1

f (Xs�; u) e� (ds; du)
����� > " (�)

4

)
(6)

� 16

" (�)
2E

24 sup
s2[t0;t0+�t]

�����
Z s

t0

Z
juj�1

f (Xs�; u) e� (ds; du)
�����
2
35 (7)

� 4� 16
" (�)

2 E

24�����
Z t0+�t

t0

Z
juj�1

f (Xs�; u) e� (ds; du)
�����
2
35 (8)

� 64

" (�)
2

Z t0+�t

t0

ds

Z
juj�1

E
h
jf (Xs�; u)j2

i
n (du)

� 64A2 (�t)n (fjzj � 1g)
" (�)

2

9



where (8) is obtained by Doob�s inequality and the fact that
R s
t0

R
juj�1 f (Xs�; u) e� (ds; du)

is a martingale (Ikeda Watanabe, p62).
Then, as mentioned at the beginning of the subsection, if there exist t� �

� (�) and (�; �; n) 2 (R+)2 � N for which for all �t � t� the condition

2P (Bt0)�
32�2 (�t)

�2
� 4A (�t)

�
� 4A (�t)n fjzj > 1g

�
� 16A

2 (�t)n fjzj � 1g
�2

�128 (�t)A
2

[" (�)]
2 � 16 (�t)

2
A2

[" (�)]
2 � 4A (�t)n (fjzj > 1g)

" (�)
� 64A

2 (�t)n (fjzj � 1g)
" (�)

2

+
P
�
B�
�
P (Bt0)

2��t

Z
a011x+a

0
12y�2�+�

a021x+a
0
22y��2���

jxj��2n�1
2 ;jyj��2n�1

2

e�
x2+y2

2�t dxdy

> 2P (Bt0) (9)

holds, then our problem is solved. Inequality (9) is equivalent to

P
�
B�
�

2��t

Z
a011x+a

0
12y�2�+�

a021x+a
0
22y��2���

jxj��2n�1
2 ;jyj��2n�1

2

e�
x2+y2

2�t dxdy

>
32�2 (�t)

�2
+
4A (�t)

�
+
4A (�t)n fjzj > 1g

�
+
16A2 (�t)n fjzj � 1g

�2
(10)

+
128 (�t)A2

[" (�)]
2 +

16 (�t)
2
A2

[" (�)]
2 +

4A (�t)n (fjzj > 1g)
" (�)

+
64A2 (�t)n (fjzj � 1g)

" (�)
2 (11)

Letting � = �; u = xp
�t
, v = yp

�t
and � = �p

�t
, the inequality is equivalent to

L1 �
P
�
B�
�

2�

Z
M(uv)�(

3�
3�)

juj��2n�1
2
p
�t

;jvj��2n�1
2
p
�t

e�
1
2 (u

2+v2)dudv > L2

for

L2 � 32�2

�2
+
4A
p
(�t)

�
+
4A
p
(�t)n fjzj > 1g

�
+
16A2n fjzj � 1g

�2

+
128 (�t)A2

[" (�)]
2 +

16 (�t)
2
A2

[" (�)]
2 +

4A (�t)n (fjzj > 1g)
" (�)

+
64A2 (�t)n (fjzj � 1g)

" (�)
2

where M �
�
a011 a012
�a021 �a022

�
. As we have seen in Section 3.1, for n � n0, we

know that for i; j = 1; 2; a0ij 2
�
�ij ; �ij

�
on Bt0 and for all a 2

Q2
i;j=1

�
�ij ; �ij

�
,

a11a22 � a21a12 6= 0. Then there exist real numbers �ij�s for which, letting

�M �
�
�11 �12
�21 �22

�
, �M is invertible and

�M

�
u

v

�
�
�
3�

3�

�
)M

�
u

v

�
�
�
3�

3�

�
.
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Then,

L1 �
P
�
B�
�

2�

Z
(uv)2 �M�1([3�;+1[2)
juj��2n�1

2
p
�t

;jvj��2n�1
2
p
�t

e�
1
2 (u

2+v2)dudv

Since �M�1
�
[3�; +1[2

�
is independent of n and since we can choose n as large

as we want (greater than n0), we only need to solve

P
�
B�
�

2�

Z
(uv)2 �M�1([3�;+1[2)

e�
1
2 (u

2+v2)dudv > L2:

As for P
�
B�
�
; we have

P
�
B�
�
= P

�����W j
t0+�t

��� � �

2 (d� 2)A; j = 3; :::; d
�

�
dY
j=3

(
1� 4 (d� 2)

2
A2

�2
E

��
�W j

t0+�t

�2�)

�
"
1� 4 (d� 2)

2
A2

�2
�t

#d�2
:

Let ' (�) � 1
2�

R
(uv)2 �M�1([3�;+1[2) e

� 1
2 (u

2+v2)dudv . We �x then � such that

4A

�
+
4An fjzj > 1g

�
+
16A2n fjzj � 1g

�2
<
1

6
' (�)

and
h
1� 4(d�2)2A2

�2
�t
id�2

> 1
2 , we �nd � such that

32�2

�2 < 1
6' (�), then (�t) < 1

such that 128(�t)A2

["(�)]2
+ 16(�t)2A2

["(�)]2
+ 4A(�t)n(fjzj>1g)

"(�) + 64A2(�t)n(fjzj�1g)
"(�)2

< 1
6' (�)

and � � �
p
�t. This enables us to get

P
�
B�
�
' (�) >

1

2
' (�)

>
32�2

�2
+
4A

�
+
4An fjzj > 1g

�
+
16A2n fjzj � 1g

�2

128 (�t)A2

[" (�)]
2 +

16 (�t)
2
A2

[" (�)]
2 +

4A (�t)n (fjzj > 1g)
" (�)

+
64A2 (�t)n (fjzj � 1g)

" (�)
2 :

>
32�2

�2
+
4A
p
(�t)

�
+
4A
p
(�t)n fjzj > 1g

�
+
16A2n fjzj � 1g

�2

128 (�t)A2

[" (�)]
2 +

16 (�t)
2
A2

[" (�)]
2 +

4A (�t)n (fjzj > 1g)
" (�)

+
64A2 (�t)n (fjzj � 1g)

" (�)
2 :

We have then the existence of (�1; (�t)1 ; �1; n1) 2
�
R�+
�3�N such that Inequa-

tion (5) holds.
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Proceding in the exact same way for the set A2�;�t;�;n, we get the exis-

tence of (�2; (�t)2 ; �2; n2) 2
�
R�+
�3 �N such that P hA2�2;(�t)2;�2;n2i > 0; now,

taking n = sup (n1; n2) and �t = inf [(�t)1 ; (�t)2], we obtain that there exist

[(�i; �i)]i=1;2 2 (R�+)2�(R�+)2, n 2 N and�t 2 R�+ for which P
h
Ai�i;�t;�i;n

i
> 0

for i = 1; 2, which, using Lemma 1, completes the proof.

2.4 m-dimensional Processes

We now assume that the process X is an m-dimensional Markov process, so-
lution of a stochastic di¤erential equation with jumps, for m possibly greater

than 2. As in the preceding subsection, let W =
n�
W 1
t ; :::;W

d
t

��
; t � 0

o
de-

note a d -dimensional Brownian motion for (Ft)t�0. Let Mm;d denote the set
of real valued (m� d) -matrices. Let � : Rm ! Mm;d and b : Rm ! Rm and
f : Rm�Rk ! Rm be Borel measurable and uniformly continuous functions such
that for some positive constants A and K, Inequations(2) and (3) are satis�ed.
Under these conditions, we know that the stochastic di¤erential equation (4)
with given initial condition X0 =

�
X1
0 ; :::; X

m
0

�
, where X0 is supposed to be a

square integrable Rm-valued F0 -measurable random variable, admits a unique

continuous, (Ft)t�0-adaptedm -dimensional solution processX =
n�
X1; :::; Xm

��o
.

We shall prove the following

Theorem 2 If the real-valued solution processes X1 and X2 of Equation (4)
are comonotonic, then for all t, their dispersion coe¢ cients are linked by the
following relation

�1j (t)�2j0 (t)� �2j (t)�1j0 (t) = 0 P a.s. for all 1 � j; j0 � d.

Proof The proof is similar to the one made in the case m = 2. We consider
the same speci�c set Bt0 at time t0 and the same sets B

1
�;�t;�;n and B

2
�;�t;�;n for

all (�;�t; �; n) 2 (R+)3 � N. Lemma 1 remains valid. Then, we show exactly
like in the preceding section that there exist (�;�t; �; n) 2

�
R�+
�3 �N for which

the condition of Lemma 1 holds.�
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