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1. Introduction

In the absence of arbitrage, two assets providing identical future payoffs must trade at the same

price. In an efficient market, any deviation from no arbitrage values must trigger an immedi-

ate reaction from market participants, and the rapid disappearance of the mispricing. However,

empirical evidence shows that assets can sustain prices that deviate from no arbitrage values

for protracted periods of time, suggesting that traders are constrained in their arbitrage activity.

Hence, the persistence over time of an arbitrage opportunity should be related to the difficul-

ties that traders confront when they seek to exploit mispricing. In this paper, we investigate

this conjecture by analyzing the relationship between the intradaily persistence of deviations

from put-call parity on the French index options market and the constraints induced by market

liquidity.

The literature on limits to arbitrage identifies various factors that are likely to impede the

arbitrage process. First, some deviations may be impossible to arbitrage due to short sales

restrictions (Lamont and Thaler, 2003; Ofek et al., 2004). Second, arbitrage may not be riskless:

the risks associated with arbitrage include fundamental risk (Campbell and Kyle, 1993), noise-

trader risk (DeLong et al., 1990) as well as synchronization risk (Abreu and Brunnermeier,

2002). Finally, transaction costs and holding costs may be sufficiently large to preclude apparent

arbitrage opportunities (Tuckman and Vila, 1992; Mitchell and Pulvino, 2001).

Liquidity is another limit to arbitrage that is increasingly attracting attention. Liquidity is a

major determinant of arbitrageurs’ activity because illiquid markets complicate the completion

of trades and make arbitrage both more risky and more costly. The fact that we focus on index

derivatives makes liquidity all the more critical because the underlying asset is a basket of

many stocks. On index futures markets, Roll, Schwartz and Subrahmanyam (2007) show that

the basis mean-reverts faster when the market is more liquid. On index options markets, Kamara

and Miller (1995) provide evidence that deviations from put-call parity are related to proxies

for liquidity risk.

ha
ls

hs
-0

01
62

22
1,

 v
er

si
on

 1
 - 

12
 J

ul
 2

00
7



In this paper, we develop a structural approach that allows us to relate the duration of arbi-

trage opportunities to liquidity factors. The speed with which the market reverts to no arbitrage

is computed as the time it takes for arbitrage profits to revert to zero after a deviation from put-

call parity. We term this measure the time to no arbitrage (TTNA) after Deville (2004). The

effect of liquidity factors on this length of time is modelled through survival analysis using an

accelerated failure time specification.

Using a sample that comprises the entire set of transactions recorded for the French CAC

40 index options from August 1, 2000 through July 31, 2001, we establish several properties

of the TTNA. First, we find that TTNA durations exhibit a decreasing hazard rate. The longer

an arbitrage opportunity persists, the lower is the probability that it will disappear in the next

instant. Hence, deviations that are not quickly exploited may last for a substantial period of

time, implying that these opportunities are not valuable enough to trigger reactions from market

participants. Second, after controlling for conventional limits to arbitrage (short sales restric-

tions, trading costs), we show that liquidity-linked variables, such as the volume in the index

constituent stocks and in the options market, the imbalance between put and call options vol-

ume and the time to maturity are critical for the speed of reversion of arbitrage profits. Third,

our sample also allows us to study how the market reacts to the relaxation of a limit to arbitrage

through a natural experiment, namely the inception of the first Exchange Traded Fund (ETF)

that replicates the evolution of the CAC 40 index. In a controlled environment, we find that the

existence of the ETF is associated with a faster reversion to a state of no arbitrage, but that the

major effect of the ETF is to lower the size of initial arbitrage profits.

Our paper is related to the extensive literature on options market efficiency that is based

on tests of arbitrage relationships, among which put-call parity has been the most extensively

studied.1 A major limitation of these tests is that they focus on one dimension of the arbitrage

issue, namely the size of arbitrage profits. Although such profits are important when charac-

terizing failures of the no arbitrage relationship, we think that an even more important – and
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complementary – dimension with respect to this issue is the speed at which the market reacts

when a deviation occurs. The approach that we use combines both these two dimensions and

thus captures more precisely the effects of the limits to arbitrage. Ex ante tests can be viewed as

an attempt to introduce a dynamic perspective in the computation of arbitrage profits. Kamara

and Miller (1995), for the S&P 500 index options, Mittnik and Rieken (2000) for the German

DAX 30 index options and Deville (2004) for the French CAC 40 index options show that ex

ante profits decrease with the length of the no-trade window. Yet, such tests provide at most

snapshots of the arbitrage process, and so lack the dynamic analysis provided by our study. In

an attempt to introduce a dynamic perspective, Roll, Schwartz and Subrahmanyam (2007) in-

vestigate the relationship between the basis and a measure of aggregate liquidity. They provide

evidence that the reversion of the basis on S&P 500 futures contracts occurs faster when aggre-

gate NYSE liquidity is high. Assuming that the basis is governed by an Ornstein-Uhlenbeck

process, they infer the speed of reversion from the value of the mean-reverting parameter. One

advantage of our approach over theirs, is that it allows to compute the actual reversion time and

to model directly the effect of the trading environment on this duration.

Our paper is also related to the growing literature on ETFs. ETFs aim at replicating the

performance of their benchmark indices as closely as possible, but unlike conventional mutual

funds they are listed on stock exchanges and can be traded intradaily. Therefore, the advent of

ETFs removes some of the obstacles that prevented arbitrage trades in index derivatives markets.

On index futures markets, consistent with this hypothesis, Park and Switzer (1995), Switzer,

Varson and Zghidi (2000) and Kurov and Lasser (2002) show that the size and frequency of

deviations decrease once ETFs are traded. On options markets, Ackert and Tian (1998, 2001)

find no significant relationship between the occurrence and size of arbitrage profits and the ex-

istence of ETFs either on the Toronto Stock Exchange or on the CBOE. However, their analysis

relies on closing data and is essentially based on pre-/ post-introduction comparisons, whereas

our work uses intraday data and controls for differences in market conditions.

3
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The remainder of the paper is as follows. Section 2 details how we measure the persistence

of arbitrage opportunities and briefly reviews survival analysis methodology. Section 3 de-

scribes the data. Section 4 presents the empirical results of our analysis of the arbitrage process.

Section 5 analyzes the implications of our results through a sensitivity analysis. We conclude

in Section 6.

2. The survival time of put-call parity deviations

We consider deviations from put-call parity (PCP). By focusing on periods when PCP is vio-

lated, we can identify forces that drive prices back to no arbitrage values without resorting to

an option pricing model. We briefly present the well-known put-call parity relationship and our

time to no arbitrage measure. Next, we review the specification of survival analysis, which we

employ to identify variables that affect the elapsed time to no arbitrage.

2.1. PUT-CALL PARITY RELATIONSHIP AND ARBITRAGE PROFITS

Under no arbitrage, whenever put and call options with the same characteristics (exercise price

and maturity) exist, their premia must satisfy the put-call parity relationship2. Define Ct and Pt,

the premium at date t of European call and put options on one index share expiring at date T

with an exercise price of K; It, the index value at date t; r, the risk-free interest rate from date

t to date T and D, the present value of dividends paid by the index constituent shares from date

t to date T , expressed in index points for one index share. The put-call parity is:

Ct − Pt = It −D −Ke−r (1)

If equation (1) does not hold, the call option is either under- or over-valued with respect to

the put option and an arbitrage portfolio can be constructed by taking opposite positions in the

‘real’ and the synthetic call option. These strategies are termed ‘long hedge’ and ‘short hedge’,

4
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respectively, depending on the position that is held on the underlying asset. The initial positive

flow, πi,t, generated by the arbitrage strategy i is:

πi,t = qi[Ct − Pt − It + D + Ke−r] (2)

where qi takes on the value +1 for long hedge deviations and the value −1 for short hedge

deviations. This initial flow represents the ex post arbitrage profit that is obtained from the

construction of the portfolio at time t. The portfolio is held until expiration, at which time in-

the-money options are exercised and the index position closed out, leading to a zero terminal

payoff. Conventional arbitrage-efficiency tests on options markets are based on the level of

potential profits that can be earned from the exploitation of such opportunities.

2.2. TTNA AS A MEASURE OF MARKET (IN)EFFICIENCY

The measure of arbitrage efficiency of derivatives markets that we use is the time to no arbitrage,

developed in Deville (2004). We use the term TTNA to measure the elapsed time required for

market prices to revert to no arbitrage values, once a deviation has been identified. We compute

TTNA as follows. We first match pairs of synchronous transactions of calls and puts having

the same characteristics. We compute the initial (ex post) arbitrage profit using equation (2)

as a function of prices Pt, Ct and It at pairing time, t. If the long hedge (short hedge) profit

is positive, the pair is classified as a long hedge (short hedge) deviation to put-call parity. We

update the value of the three components of the arbitrage portfolio (put, call and index) each

time a new transaction occurs3 and/or the index value changes. The profit resulting from the

construction of the arbitrage portfolio is then re-computed with the new set of prevailing prices

using equation (2). The updating process terminates when the profit reaches or drops below

zero, at which point prices are compatible with no arbitrage. The time to no arbitrage is thus

the elapsed time for the arbitrage profit to go to zero prior to the market close.

Given a profit value πi,t greater than zero4 at pairing time t, TTNAi is thus defined as:

5
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TTNAi = min {s |πi,t+s ≤ 0} (3)

The set of options transactions prices and index values recorded before the market close does

not necessarily induce a return to no arbitrage prices. After the close, no information regarding

the index value or options prices is disseminated until the opening of the market on the following

trading day. Rather than use opening prices to continue the computation of TTNA on the next

trading day, we terminate our calculations just before the close and refer to this time as the time

to censoring. The motivation for this choice is threefold. First, the mechanism by which stock

prices, and therefore index values, are determined at the market opening and close (call auction)

differs from the one that prevails during the trading session (continuous market). Second, an

arbitrary addition of 15.5 hours (the duration of the overnight market closure) to the calculated

TTNA would imply that prices did not revert to no arbitrage values in the interim. Third, none of

the factors that might explain the persistence of arbitrage opportunities are observable over this

period. However, to take into account the possibility that prices may not have converged by the

market close, we work with a right-censored distribution of TTNA. For censored observations,

the censoring time provides a lower bound for actual duration of deviations, a feature that is

explicitly accounted for in our estimations.

2.3. THE USE OF SURVIVAL ANALYSIS

Survival analysis provides a means both to model the influence of explanatory variables on times

to event and to accommodate censored observations in an efficient way. We briefly review the

relevant econometrics.

Let T be a continuous random variable that represents the duration of an arbitrage opportu-

nity. The associated p.d.f. and c.d.f. are denoted f(t) and F (t), respectively. Throughout the

analysis, we consider an observation to be ‘alive’ as long as the profit resulting from an arbi-

trage portfolio remains strictly positive. An observation is considered ‘dead’ when the portfolio

6
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leads to a profit that is less than or equal to zero.

Our study relies on three basic quantities. The survival function, S(t) = 1 − F (t), gives

the probability that an event – that is, an arbitrage opportunity – survives beyond time t. The

hazard function, h(t) = f(t)/S(t), expresses the probability that an event that has persisted

up to time t will terminate in the interval [t, t + dt). We use the integrated hazard function

Λ(t) = − log[S(t)] to perform graphical checks of model adequacy, as discussed in section 4.3.

We assume a parametric form for the distribution f(·) of the TTNA, which allows direct

computation of the likelihood function for the data. Uncensored observations provide informa-

tion about the probability that an arbitrage opportunity i has survived to its associated time to

no arbitrage, which is equal to the density of T at that time, ti. For right-censored observations,

we know only that the true time to no arbitrage is greater than the censoring time Ci. Under

the assumption that the censoring time Ci is independent from the true time Ti,5 we obtain the

likelihood function as:

L =
n∏

i=1

f(ti)
δiS(ti)

(1−δi) (4)

where ti = min(Ti, Ci), and δi = 1{Ti≤Ci} is a dummy variable that takes on the value one for

uncensored observations and zero otherwise.

Among the alternative structures for the distribution that T may be assumed to be drawn

from, we focus on the Weibull distribution since it is both fairly general and mathematically

tractable. The Weibull distribution is a two-parameter distribution whose p.d.f. is:

fW (t) = αλtα−1 exp
(−λtα

)
, t > 0 (5)

with α > 0 the shape parameter and λ > 0 the scale parameter.

Since we are interested in analyzing the effects of the trading environment on the persistence

time of deviations, we incorporate variables into the likelihood function to explain time to no

arbitrage. As in Lo et al. (2002), we assume a linear relationship between the log of survival

7
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time and the covariates (explanatory variables) values, namely:

Y = log(T ) = µ + γ′Z + σU (6)

where γ′ = (γ1, . . . , γp) is a vector of regression coefficients and U is the error distribution.

This approach is the classical accelerated failure time (AFT) approach, where the effect of the

explanatory variables in the original time scale is to accelerate (decelerate) time by a constant

factor exp(−γ′Z) when γ is negative (positive). Combining the AFT specification with the

Weibull for the baseline distribution, the likelihood function in the presence of right-censoring

is given by:

L =
n∏

i=1

[
1

σ
fU

(
log ti − µ− γ′Zi

σ

)]δi
[
SU

(
log ti − µ− γ′Zi

σ

)](1−δi)

(7)

where σ = 1/α, and fU(·) and SU(·) denote the p.d.f. and the survival function of the standard

extreme value distribution, respectively.

3. Time to no arbitrage statistics

We investigate the determinants of TTNA for the CAC 40 index options contract for the 12-

month period from August 2000 to July 2001. Derivative contracts on CAC 40 are the most

actively traded options on the Marché des Options Négociables de Paris (MONEP), the French

market for equity and index derivatives.6

3.1. CAC 40 INDEX OPTIONS AND ETFS CONTRACTS7

The CAC 40 index consists of 40 stocks selected from the most actively traded French firms

quoted on the Paris “Premier Marché”. Its value is calculated continuously as the weighted

average market capitalization of the 40 stock prices, and is disseminated every 30 seconds by

8
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Euronext Paris. The index is managed by an independent committee, the “Conseil Scientifique

des Indices”, which amends the index to reflect changes in the market or in the market capital-

ization of constituent stocks.

The CAC 40 index option (ticker PXL) is the MONEP’s most active contract. In 2000,

PXL contracts accounted for one third of the total open interest and one half of the number of

trades on the French options market. From August 2000 through July 2001, on average more

than 7 millions contracts traded each month, which represents a 1 billion Euros premium. On

the MONEP, orders are sent to a Central Order Book by members and executed according to

price/time priority. Committed market-makers continuously compete for the order flow. Market

makers have an obligation to maintain a permanent bid-ask spread for option series near the

money and must publicly reply to any investor’s price demand within 30 seconds by sending bid

and offer prices that are binding for two minutes. Transactions on the MONEP are carried out

by matching buy and sell orders. Orders offering best execution are given priority, with priority

for orders at the same price determined by their time-stamp in the central order book. As is the

case for stock trading on Euronext Paris, after a call-auction, binding quotes are continuously

issued from 9:02 am to 5:30 pm on the automated system NSC until the closing call-auction at

5:35 pm.8

The size of PXL contracts is equal to the value of the CAC 40 index multiplied by one Euro

and the tick size is 0.1 index point. This contract is cash-settled9 and is composed exclusively of

European-style options. Trading covers eight rolling open maturities: three spot months, three

quarterly maturities, and two half-yearly maturities. The same expiration months are opened

for the futures contract on the CAC 40 index, which is also traded on the MONEP. Strike prices

are set at standard intervals of 50, 100 or 200 points depending on the expiration date. The

series that are opened to trading are not necessarily the same for call and put options. At every

moment in time, at least three strike prices are listed: one “at the money” and two “out of the

money”. New series are created depending on the price changes of the CAC 40 index.

9
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The CAC 40 Master Unit (the first ETF introduced on Euronext Paris) has traded since

January 22, 2001, and in essence replicates the price and performance of the CAC 40 index. Its

initial value was 1/100th of the index value. Cumulated dividends minus management expenses

of 0.30% are paid on an annual basis. ETFs shares are traded on two parallel markets, each

governed by its own set of rules. The primary market is the issuing market, where the creation

and redemption of parts of the fund can be carried out. ETFs listed on Euronext can also be

traded on its secondary market, NextTrack.

As an open-ended fund, with a net asset value priced daily, the assets under management

vary over time, through the creation and redemption of full multiples of 50,000 tradable shares,

representing 500 times the CAC 40 index euro-denominated value. ETFs are traded continu-

ously through an electronic order book accessible to both issuers and investors from 9:05 am

to 5:25 pm. A closing auction takes place at 5:35 pm. In contrast to the usual French stock

market, the presence of committed market participants is mandatory. These provide liquidity

by continuously posting quotes in the order book for a minimum order size, with a maximum

spread of 0.40% up to five million Euros for the CAC 40 Master Unit.

3.2. DATA AND TTNA STATISTICS

Intraday CAC 40 index values and transactions data on the PXL contract are obtained from the

Euronext Paris Market Database from August 2000 to July 2001. This database reports the strike

price and the expiration month, as well as time-stamped information such as the premium and

the number of traded contracts of all options transactions that occur on the MONEP. Dividends

on French stocks are typically paid on an annual basis with a high concentration of payments in

May and June. Discrete dividends, obtained from Thomson Financial Datastream, are expressed

in terms of CAC 40 index points on a daily basis. For each matching pair, the present value of

the dividends paid between the trade and the expiration date is calculated with Euribor used

as a proxy for the risk-free interest rate. The source for one week to one year Euribor rates

10

ha
ls

hs
-0

01
62

22
1,

 v
er

si
on

 1
 - 

12
 J

ul
 2

00
7



is Thomson Financial Datastream. The interest rate used in our computations is the linear

interpolation of the nearest Euribor rates.

A matching pair is defined as a call and a put that have the same characteristics (strike price

and expiration month) and are traded within a one minute interval. Each pairing is associated

with the index value prevailing at the same time, thus avoiding asynchronous bias. We impose

the usual exclusion criteria to remove unreliable and/or uninformative quotes from our sample.

Options with less than two days and more than one year to expiration as well as trades recorded

with a premium less than two index points are excluded from the sample. These observations

account for 7.55% of the 170,946 recorded transactions (78,887 call and 92,059 put options).

We also exclude from the initial sample 216 pairings for which at least one of the index con-

stituent stocks is subject to a trading halt or suspension. The final sample consists of 4,036

matching pairs, of which 1,621 were recorded before the introduction of the ETF and 2,415

afterwards.

[Table 1 about here.]

The sample of pairings is broadly representative of general options market activity. As

reported in Table 1, about 80% of the pairings correspond to options series that are less than

one month to maturity, and the number of pairings decreases with time to maturity. This pattern

is consistent with the trading activity on the put and call options series on the MONEP, which

is highly concentrated on the nearby maturity. Figure 1 depicts the intraday activity of both

put and call options transactions for fifteen-minute intervals. Trading activity decreases slowly

from the market opening until 2:00 pm and then increases throughout the afternoon, reaching its

maximum at the close. The distribution of pairings follows the same intraday trend. Although

the number of matched pairs increases when activity is higher, a substantial number of matching

pairs is also recorded in the middle of the day, when the activity is at its lowest.

[Figure 1 about here.]

11
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Also reported in Table 1 are the times to censoring (Panel A) and times to efficiency (Panel

B), computed for the full sample, and for pre- and post-introduction of the ETF samples. 9.76%

of the matching pairs are censored since they do not revert to no arbitrage levels before the

market close. For the entire period, the mean (median) time to censoring is 105:12 minutes

(31:46 minutes), with a very significant decrease after ETF is introduced: the mean time almost

halves and the median time falls to one fifth of its previous level.

[Figure 2 about here.]

Figure 2 depicts the empirical distributions of times to censoring (Panel A) and times to

efficiency (Panel B). The distribution of the observations that do not revert to no arbitrage is

left-skewed. This representation stems from deviations that are observed shortly prior to the

market close. This feature does not preclude the existence of arbitrageurs activity: given the

time period to conclude trades and for index moves to occur compared to earlier matchings,

these late in the day observations are more likely to survive until the market close. However,

the fat right tail is indicative of early identified deviations that persist throughout the trading

day. This result is indicative of the existence of limits to arbitrage since it illustrates that some

factors may slow down or even stop the reversion of prices to no arbitrage values.

Panel B consists of observations that revert to efficient prices before the end of the trading

day. On average, profits remain positive for 17:01 minutes after the identification of an arbitrage

opportunity. However, the median TTNA is only 3:33 minutes, with a significant decrease from

4:50 minutes before the introduction of ETFs to 3:10 afterward. From Figure 2, the distribution

of TTNA exhibits a fat right tail and is left-skewed. Thus, our sample consists of a high propor-

tion of short TTNAs and a small proportion of very long TTNAs. Most profit opportunities do

not persist for more than five minutes but it takes more than one hour for prices to reach levels

compatible with no arbitrage for 11.18% of the uncensored observations, and the maximum

TTNA is greater than six hours.

Overall, the market displays considerable efficiency in the sense that prices typically revert

12
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to no arbitrage levels rather quickly but there also appears to be a considerable degree of vari-

ability in the reversion process. The introduction of the ETF is associated with shorter durations

since the central values of times to efficiency decrease significantly after the ETF is introduced.

This finding suggests that the possibility of trading the index through the ETF enhances the

linkage between the options and their underlying markets. However, this preliminary analysis

does not account for possible differences in the trading environment that are known to affect

arbitrage efficiency (Kamara and Miller, 1995). The analysis we conduct in the next section

specifically addresses this problem.

4. Survival analysis results

In this section, we examine various factors that influence the persistence of arbitrage opportu-

nities. We first define the specified explanatory variables. We next report the empirical results

from the survival analysis and check for the adequacy of our parametrization. Finally we test

the robustness of our results in a framework that accounts for the possibility of stale prices.

4.1. SPECIFICATION OF EXPLANATORY VARIABLES

The theory of limited arbitrage posits that arbitrage is risky, costly and subject to short sale

restrictions. We specify explanatory variables that capture the intensity of these limits at the

time matched options trades deviate from put-call parity. High volatility levels of the underly-

ing index increase the likelihood of adverse price movements during the creation of the arbi-

trage portfolio (Campbell and Kyle, 1993). We measure the index volatility using the high-low

Parkinson (1980) estimator.10 When deciding to exploit arbitrage signals, traders must balance

the observable profit with the costs associated with the arbitrage strategy. Our proxy for the

total cost borne by the least-cost arbitrageur is the sum of 1% of the options price, the daily

estimate of the effective spread for the basket of stocks that constitutes the CAC 40 index11 plus

a short-selling costs of 1% so that short sellers receive only 99% of the proceeds (Kamara and

13
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Miller, 1995). Short-hedge opportunities imply that arbitrageurs short the index. Though short

sales are allowed on the French market, the difficulty of shorting the index should be accounted

for (Ofek, Richardson and Whitelaw, 2004). We use a dummy variable for the direction of

the arbitrage portfolio that takes on the value zero when the index leg of the portfolio is long

(qi = +1) and the value one when it is short (qi = −1). As ETFs became available on CAC

40 index on January 21, 2001, spot trades in the index are facilitated after this date. Therefore

we define a dummy variable that takes on value zero for the period before January 21, 2001 and

one for the period after this date.

Another impediment to arbitrage we focus on in this paper is market liquidity. Traders

always face a tradeoff between immediacy costs and the risk of adverse price movements when

delaying their trades. Illiquid markets make this tradeoff all the more critical and could thus

deter traders from entering in arbitrage trades. Hence we hypothesize that TTNA is positively

related to illiquidity. We proxy for the liquidity in options markets by the activity on the call

and put options contracts as measured by the total number of trades for the series of call and put

options included in the arbitrage portfolio, over the corresponding trading day. We also include

the maturity and the moneyness of the series as additional proxies for the liquidity of the options

since trading generally concentrates on the nearby maturity and on near- and out-of-the-money

options contracts. For maturity, we use dummy variables that take on the value one if the

option belongs to the corresponding maturity and zero otherwise (Mat1 stands for options that

expire by the end of the current month, Mat2 for options with maturity between two and three

months and Mat3 for options with maturity more than three months). Moneyness is measured

as log (|It −Ke−r| /Ke−r). Existing imbalances in the activity of call and put options series

may complicate the execution of the option leg of the arbitrage. We define the imbalance as

the differential activity between the two options contracts. Liquidity in the underlying index

should also be critical given that the index constitutes one leg of the arbitrage. We proxy for

the liquidity in the index by two variables. First, we use the activity on the constituent stocks
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as measured by the total trading volume in billion euro over the corresponding trading day.

Second, as the arbitrageurs are given the opportunity to trade the index through the ETF, we

also include a variable that takes on the value zero before the introduction of the ETF and the

trading volume in the ETF in billion euro after its introduction.

The index value is disseminated every 30 seconds on the basis of the last trading prices of

the constituent stocks. Staleness in stock prices may result in the index value not reflecting ac-

curately the price of the underlying basket. Staleness may be related to temporary difficulties in

trading a stock and may thus lengthen the return to no arbitrage. For each deviation we compute

the duration between the pairing time and the last transaction of each CAC 40 constituent stock.

The value for the Staleness variable on a given deviation is defined as the maximum of the log

of the individual durations.

4.2. EMPIRICAL DETERMINANTS OF THE PERSISTENCE OF ARBITRAGE OPPORTUNITIES

We use a maximum likelihood approach to obtain estimation results for the time to no arbitrage.

The estimation is first performed using an intercept-only specification (with no covariates) to

infer the characteristics of the failure mechanism of our sample of TTNAs. We then estimate

an accelerated failure time specification to isolate the incidence of the covariates previously

defined.

[Table 2 about here.]

Table 2 reports the results for the intercept-only model in the first column. First, the re-

gression coefficients are significantly different from zero, which means that there is significant

persistence of arbitrage opportunities. From these coefficients, we can recover the estimated

expected and median TTNA as Γ (1 + 1/α)
/

λ1/α and [(log 2) /λ]1/α, respectively. Consistent

with the summary statistics on TTNA, convergence to no arbitrage exhibits some persistence,

the estimated average (median) duration of deviations is 27:28 minutes (7:52 minutes), which

are quite long durations. Second, the regression coefficients can be transformed back to the
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original time scale as λ = exp(−µ/σ) and α = 1/σ. With α̂ equal to 0.8432, the hazard rate is

decreasing.12 Therefore, the probability that an arbitrage opportunity disappears in the next in-

stant is highest shortly after it is first detected. This is at odds with the common view of arbitrage

in which arbitrageurs become sequentially aware of the existence of arbitrage opportunities and

survival probabilities decrease with time (Abreu and Brunnermeier, 2002).

Collectively, the estimated durations and the decreasing hazard rate may cast doubt on the

existence of traders eliminating arbitrage profits on the French options market. However, our

identification of arbitrage signals is based on the value of ex post profits. Hence, consistent with

the limits to arbitrage literature, some observations we classify as deviations might prove to be

ultimately unprofitable. The signals that are not exploited should persist for a long time before

disappearing (if ever) after exogenous index moves. On the other hand, the signals that trigger

arbitrage transactions should quickly disappear. In this perspective, the decreasing hazard rate

we observe in the cross-section is consistent with the existence of limits to arbitrage restricting

the activity of arbitrageurs to a subset of deviations. We will show next that liquidity factors are

critical for the actual profitability of deviations from efficiency.

The results of the AFT specification are also reported in Table 2. Model 1 only includes the

liquidity and risk covariates, Model 2 also includes transaction costs13 and Model 3 includes

both transaction costs and ex post profits. The results strongly support the major role that

limits to arbitrage play in the process of convergence to no arbitrage. In every regression, the

chi-square statistic rejects the null hypothesis that the parameter estimates are jointly zero at

near-zero significance levels and most variables are significantly different from zero at the 1%

level. Hence, the persistence time of arbitrage opportunities is systematically related to the

proxies we use to measure the intensity of limits to arbitrage.

The results strongly support the role of liquidity as a determinant of time to no arbitrage. The

negative coefficient for ActivOpt indicates that the more active the options market, the shorter

the time to no arbitrage. The coefficient for RatioOpt is positive, which is consistent with the
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hypothesis that differences in liquidity between call and put options of a given series impede

the arbitrage process. Furthermore, the coefficients on variables Mat2 and Mat3 are positive,

which supports liquidity considerations since the nearest contracts are the most actively traded

ones.

In contrast, Moneyness is never significant at conventional levels although moneyness is

usually considered as a proxy of liquidity of options markets (Kamara and Miller, 1995). Our

selection process is such that the options series of our dataset necessarily reflect trading features.

We require that call and put options trade within one minute to form a matching pair, which

produces only a small number of observations for far out-of-the-money series. Studies based on

closing data arbitrarily produce observations for every option series for which there has been at

least one trade throughout the trading day. By comparison, our sample mainly consists of near-

the-money options series so that the thin trading argument that generally applies to moneyness

may not be relevant in our study.

The ease in trading the index also strongly affects the arbitrage process. First, the liquid-

ity of the CAC 40 constituent stocks is critical as indicated by the negative coefficient on the

variable ActivCAC, even when arbitrageurs can trade the index through the ETF. Second, the

positive coefficient on the variable Direc indicates that short-hedge deviations are more likely

to persist than long-hedge deviations. This result is in line with the costs and difficulties asso-

ciated with taking a short position on the underlying index. In contrast, although the coefficient

on the variable Staleness has the expected sign, it is not significant but for Model 3. Temporary

difficulties in trading at least one of the index constituent stocks, as captured by our variable,

do not have a substantial effect on the persistence of arbitrage opportunities.

We also find evidence of a significant negative relationship between volatility and time to

no arbitrage. A priori, the direction of this effect is ambiguous. In line with Campbell and Kyle

(1993) and Kamara and Miller (1995), volatility makes arbitrage riskier since it increases the

probability that a trader will face adverse price changes by the time the arbitrage portfolio is
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built, which should result in a longer TTNA. Alternatively, there could be a mechanical effect

in which greater volatility increases the probability that the index value is consistent with PCP

in the next instant. Such a circumstance should occur more frequently in the presence of ‘small’

arbitrage opportunities. Overall this mechanical effect appears to be the dominant one in our

sample.

The negative coefficient for the ETF variable in Model 1 and Model 2 indicates that the

introduction of the ETF on the CAC 40 index lessens TTNA, and thus appears to enhance

arbitrage across the options and the index markets. However, the coefficient for the variable

ActivETF is only significant at the 10% level in Model 1 and not significant in Model 2. The

liquidity of the ETF, as measured by its trading volume, does not significantly affect the time

necessary for the market to recover. This result can stem from the specificities of ETFs which,

as open-ended funds, can create or redeem new shares to respond to investor’s liquidity needs.

Because of this, the liquidity of an ETF ultimately relies on the liquidity of its underlying index.

These interpretations are supported by the results we obtain with the introduction of the ex post

profit (Model 3) in the analysis. The coefficient associated with the variable ETF remains

negative but becomes insignificant. The impact of the ETF availability is partly reflected in the

size of the ex post profit and, for a given profit value, the ETF is not a significant determinant

of the duration of arbitrage deviations. Deville (2004) shows that the ex post profits on the

CAC 40 index options market decrease with the introduction of ETFs. Hence, our results are in

line with the perspective that it is the availability of an ETF rather than its trading volume that

constitutes a relaxation of a limit to arbitrage. This is in contrast to the findings of Ackert and

Tian (1998, 2001) that the introduction of ETFs did not contribute to reducing put-call parity

ex post profits, either on Canadian or on US markets. Our results are, however, consistent with

Switzer, Varson et Zghidi (2000) and Kurov and Lasser (2002) who respectively document a

negative relationship between the existence of the SPDR ETF or the QQQ ETF on Nasdaq and

the size of arbitrage profits on the corresponding futures contracts.
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4.3. CHECKING MODEL ADEQUACY

We perform a graphical (hazard plot) test of goodness-of-fit (Lo, MacKinlay and Zhang, 2002)

to determine if TTNAs, conditional on our set of covariates, do follow the postulated censored

Weibull distribution. If our specification holds, the integrated hazard Λ̂({ûi}) of the standard-

ized residuals {ûi} where ûi = (log Ti − µ̂− γ′Zi)/σ̂, should behave like a censored sample

from a standard extreme value distribution. Thus, a plot of {ûi} against {log[Λ̂(ûi)]} should be

a straight line with intercept 0 and slope 1.

[Figure 3 about here.]

Figure 3 panel B reports the result. For comparison purpose, we also report in panel A the

hazard plot for a baseline exponential density. From these plots, it appears that the Weibull

specification does a fairly good job at explaining TTNAs whereas the exponential specification

is clearly rejected.14

4.4. ROBUSTNESS CHECKS

4.4.1. The incidence of outliers

The distributions of times to efficiency depicted in Figure 2 raise concerns about the existence

of outliers and their incidence on our estimation results. We look further into the causes of these

large times to no arbitrage by focusing on the 10.08% of the deviations that persist more than

one hour15. Clearly, there must be some serious impediments to arbitrage for these observations.

First, we investigate whether factors not controlled for in the analysis may be responsible for

these abnormal durations (e.g. announcements of change in the dividend policy for one of the

index constituents or unexpected intraday changes in the interest rates). Would it be the case,

any deviation recorded over the deviation window would face the same constraints and exhibit

comparable durations. Actually, we find that, in 238 out of 407 cases, deviations persisting for

short durations (less than 20 minutes) are also recorded within the same window.
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Second, these abnormal durations fit into the framework of limits to arbitrage since the

constraints associated with these observations are more stringent compared with the rest of the

sample. In particular, the observations associated with abnormal durations are mostly short

hedge deviations (305 out of 407) with a median distance to maturity of 29 days (compared to

15 days), a median of 21 options trades of the same series over the day (compared to 45) and

a staleness in the index of 3:42 minutes (compared to 2:35 minutes). In these extreme market

conditions, arbitrage signals that initially exhibit a positive profit value are presumably too risky

to trigger market reaction.

Finally, these very long durations do not drive the decreasing hazard we document. We

performed the analysis excluding the 5% and the 10% longest durations, and the 5% and the

10% largest profit values. The results, not reported to conserve space, remain qualitatively

unchanged and the hazard rate remains decreasing for all subsamples.

4.4.2. Robustness to stale options prices

Staleness in the index values is controlled for in the analysis through the introduction of the

variable Staleness. Another potential concern is staleness in the options prices. We compute

TTNAs with the last options transactions prices although the time between successive options

transactions can be long. The options prices we use will be stale if quotes have been revised and

no options transactions occurred.16 In this situation, our measure only provides an upper bound

for the actual duration of the arbitrage opportunity.17

While unable to achieve greater precision in computing the TTNAs due to the unavailability

of quotes data, we can address this issue by considering a generalized version of our estimation

procedure known as interval censoring.18 Suppose that, at time 0, transaction prices first deviate

from put-call parity. At time T1 a trade takes place on the options market and the associated

computed profit is still positive. At possible (uncensored) time T2, a new transaction price is

recorded, that translates into either a zero or negative computed arbitrage profit. In between,
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quotes might have been revised so that they are consistent with no arbitrage. Accordingly, the

likelihood function is modified as follows. For uncensored observations, the probability that an

arbitrage opportunity i disappears within the interval (T1,i, T2,i] is given by S(T1,i)− S(T2,i)

where S(·) denotes the survival function. For right-censored observations, we know only that

the time to no arbitrage is greater than T1,i so that the appropriate quantity is S(T1,i). Using the

same notation as in (4), the likelihood function is then:

L =
n∏

i=1

[S(T1,i)− S(T2,i)]
δi

n∏
i=1

[S(T1,i)]
(1−δi) (8)

where δi takes on the value one when time Ti is uncensored and zero otherwise. Inclusion of

covariates follows the same line as in section 2.3..

[Table 3 about here.]

The intercept-only and ATF results for this interval-censoring specification are reported in

Table 3. They are qualitatively unchanged: the hazard rate is decreasing and the estimates

exhibit the same signs and significance as in the right-censored analysis. Overall, our approach

is robust with respect to the possible existence of stale options prices, and the set of explanatory

variables that we employ determines the speed of convergence to no arbitrage.

5. Implications for the options market efficiency

We investigate how market conditions impact the probability that an arbitrage opportunity is

eliminated through a sensitivity analysis, which allows us to translate the parameter estimates

for the different covariates in terms of duration. We use two related measures: the survival

function and the hazard rate. For given market conditions Zi, we compute the correspond-

ing survival function SW [t exp(−γ̂′Zi)] and hazard rate exp(γ̂′Zi)hW [t exp(γ̂′Zi)] using the

Weibull specification for the baseline functions SW and hW . The analysis is performed for se-
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lected determinants by allowing the continuous explanatory variable of interest to take on 10%,

25%, 50%, 75% and 90% percentile values while all other explanatory variables are held fixed

at their sample median value.19

[Figure 4 about here.]

The survival curves depicted in figure 4 exhibit a decreasing convex pattern that stems from

the decreasing hazard we document in Section 4.2. Differences in convexity indicate how the

hazard rate decreases in a given explanatory variable. We first analyze the influence of maturity.

For the longest maturities, the estimated probability that an arbitrage opportunity survives after

20 minutes is 54.66%, with a corresponding 16.99% probability for the shortest maturity. It

takes 4:26 minutes for half of the opportunities to disappear for the shortest maturities whereas

78.96% are still alive at the same time if the underlying options are to expire after three months.

The instantaneous failure rate associated with one-month contracts is 193% higher compared

with the contracts associated with the longest maturities. These results suggest that the nearby

maturity is the most intensively monitored by market participants and thus we focus on this

specific contract in the remainder of the analysis.

The other liquidity variables (ActivOpt, RatioOpt and ActivCAC), though statistically sig-

nificant, yield smaller differences in the survival and hazard rates of arbitrage opportunities.

Although the impact of each of these variables is weak, summing their marginal effects implies

important differences in a high liquidity / low liquidity scenario comparison. Setting these vari-

ables to their best 10% values results in a hazard rate that is 147% higher than for the worst

10% values. This result, combined with the major impact of maturity, illustrates the key im-

pact of liquidity on the failure rate of arbitrage opportunities in the options market, as seen in

the ‘Comparative scenarios’ figure. Illiquidity appears as a major economic determinant of the

persistence time of arbitrage deviations.

The patterns associated with volatility do not generate substantial differences in the hazard

rate. We previously documented a mechanical effect associated with volatility. Although this
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effect is statistically significant, its economic relevance is small. Under median conditions for

volatility (14.30% annual), we estimate that 31.64% of the deviations should still be profitable

after ten minutes. With a volatility equal to its 10th percentile value (6.78% annual), the esti-

mated survival probability rises to only 35.35%. In terms of hazard rates, halving the volatility

results in a decrease of but 9.63%, so that volatility per se has only a marginal effect on the

speed of convergence to no arbitrage. This weak effect may be due to the ambiguous effect

that volatility has on time to no arbitrage, with the mechanical effect counterbalanced by a risk

effect.

Finally, the availability of an ETF tracking the index leads to lower estimated survival prob-

abilities. It takes 1:05 minute for the market to eliminate 25% of the deviations when the ETF

exists against 1:50 minutes before its introduction. The next 25% are eliminated in the subse-

quent 3:21 minutes in the former case versus 5:41 minutes in the latter. These results show that

the relaxation of a limit to arbitrage, in this case the introduction of the ETF, results in faster

convergence of prices to no arbitrage values.

6. Conclusion

On options markets, deviations with respect to arbitrage relationships are temporary. We show

that, eventually, prices typically revert to no arbitrage levels but the time it takes for reversion to

occur exhibits substantial variation. Using survival analysis, we analyze the properties of this

time for the French index options market and relate it to the constraints investors confront in

their arbitrage activity. We find that a Weibull distribution together with an accelerated failure

time specification provides a sensible fit to the durations of inefficiencies. We show that the

survival time of arbitrage opportunities exhibits a decreasing hazard rate: the probability of

an arbitrage opportunity disappearing in the next instant is at its highest shortly after it has

been detected. This “early failure” feature is consistent with the existence of limits to arbitrage
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restricting the activity of arbitrageurs to a subset of deviations.

We find that the persistence time of arbitrage opportunities is systematically related to con-

ventional limits to arbitrage but also to the liquidity of the index and options markets. In par-

ticular, we show that liquidity-linked variables, such as the volume on the options market, the

imbalance between put and call options volume, the trading volume of the index constituent

stocks and the time to maturity are critical for the speed of reversion of arbitrage profits. Fur-

thermore, the results of the sensitivity analysis illustrate the significance of the joint incidence

of liquidity variables: the probability of a deviation returning to no arbitrage values in the next

instant is 147% higher on a liquid market than it is on an illiquid market.

The results show that the introduction of an ETF affects survival rates enough to produce

highly noticeable differences in expected duration. However, it appears that this impact es-

sentially stems from the reduction in the level of potential arbitrage profits. Nonetheless, if

the speed of reversion to no arbitrage values is considered a measure of efficiency, then ETFs

appear to be a valuable lever for increasing the degree of efficiency the market can achieve.
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Notes

1Put-call parity empirical studies on the US markets include Gould and Galai (1974) on OTC options, Klemkoski

and Resnick (1979, 1980) on stock options traded on the CBOE, Ofek et al. (2004) on stock options traded on U.S.

exchanges, Evnine and Rudd (1985), Chance (1987), Finucane (1991) and Wagner et al. (1996) on S&P 100, and

Kamara and Miller (1995), Ackert and Tian (2001) and Bharadwaj and Wiggins (2001) on S&P 500. The latter

two studies test other arbitrage relationships, such as the box-spread, also tested by Billingsley and Chance (1985),

Chance (1987) and Ackert and Tian (1998). For empirical tests of arbitrage relationships on index options con-

tracts in European markets, see Puttonen (1993) for the Finnish market, Chesney et al. (1995) for the Swiss market,

Cavallo and Mammola (2000) and Cassese and Guidolin (2001) for the Italian market, and Capelle-Blancard and

Chaudhury (2001) and Deville (2004) for the French market.

2Put-call parity was formalized by Stoll (1969) for at-the-money options and extended for non-payout protected

options on dividend paying shares by Merton (1973).

3Multiple transactions for options having the same characteristics are at times recorded during the same minute,

with different transaction prices. In this case, we keep the premium that leads to the smallest profit. In the case

of long hedges (short hedges), we therefore use the most (less) expensive calls and the less (most) expensive puts.

As a result, we obtain a lower bound for TTNA. We have also estimated an upper bound by deriving the profit

with the premium that leads to the highest value. Results, available on request, are only marginally modified since

transactions, when recorded simultaneously, rarely exhibit significantly different premia.

4Alternatively, the updating process can be stopped as soon as the profit drops below an arbitrary efficiency

boundary ε > 0 rather than zero. Results based on this specification with ε set to 1 and 5 index points remain

qualitatively unchanged.

5In our case, time to censoring (i.e. time to close) provides no information about what would have been the

true time to no arbitrage.

6Since the December 2001 acquisition of LIFFE (the London International Financial Futures and Options

Exchange) by Euronext, French derivatives trading takes place on Euronext.liffe.

7Descriptive information in this subsection applies to the sample period of our study. There have been some

subsequent changes in the expiration date. For contracts expiring after September 2004, expiration date has moved

from the last trading day of the expiration month to the third Friday of the expiration month and fourteen instead

of eight maturities are traded.

8On 23 April 2001, Euronext implemented a common market model in its three constituent market places:

Paris, Amsterdam and Brussels. The continuous trading period now ranges from 9 am for the open to 5:25 pm for
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the close, followed by a closing call auction (fixing) at 5.30 pm.

9The settlement value is equal to the mean of all index values calculated and disseminated between 3:40 pm

and 4:00 pm on the expiration day.

10We first compute a 10-minute volatility from the 20 index values that immediately precede a given matching

using the high-low Parkinson (1980) estimator σ̂10 = (log Imax − log Imin)/(2
√

ln2) where Imax and Imin are

the maximum and the minimum of the index value over the 10-minute interval. We then transform the 10-minute

volatility into an annual volatility using the standard annualization formula. Notice that the Parkinson estimator

requires regularly-spaced price series, and is therefore applicable since the CAC 40 index value is disseminated

every 30 seconds.

11For each day, we first estimate, for each stock in the CAC 40 index, the percentage effective spread following

Roll (1984). We then compute the effective spread for the basket as the value-weighted average of the CAC 40

index constituent stocks spread estimates.

12The Weibull distribution can accommodate increasing, constant or decreasing hazard depending on the value

of the shape parameter. The intercept-only specification is necessary as the constant µ is contaminated in the

AFT regression by the presence of the dummy variables on maturity, on the direction of the deviation and on the

existence of the ETF that replicates the CAC 40 index.

13In addition to the specification of the transaction costs presented in Section 4.1. we also consider an alternative

in which, after the introduction of the ETF, the cost of trading the index is measured by the percentage effective

spread of the ETF. Results, available upon request, are unchanged.

14We also examined the performance of other common distributions such as log-logistic and log-normal. The

hazard plots we obtained yield clearly inferior, though acceptable fit, compared with the Weibull specification. We

also tried to fit the data using a generalized gamma specification, but were unable to get a converging result when

performing the likelihood maximization. All results are available upon request.

15Out of the 407 deviations that exhibit durations longer than one hour, 260 return to values compatible with no

arbitrage and 147 are censored.

16Staleness should not be an issue for the identification of initial deviations since (i) we use trade prices and (ii)

we impose a tight synchronicity constraint for the transaction time of the three instruments that form the arbitrage

portfolio. When we relax the synchronicity constraint and match option trades within a two-minute window instead

of one, we obtain qualitatively unchanged results with 2102 additional observations: the proportion of outliers

(TTNA longer than one hour) is not significantly different and regression coefficients keep the same sign and

significance. As a further check,we also performed the analysis using a more recent dataset in which trades are
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time-stamped to the nearest second. Results (available upon request) with put and call transactions matched within

30 seconds are qualitatively unchanged.

17We thank Thierry Foucault for making this point.

18In medical trials, interval censoring occurs when patients have a periodic follow-up examination (e.g. every

two weeks) so that the patients’ event time is only known to fall in an interval. See Klein and Moeschberger (2003).

19When fixed, dummy variables are assigned the following values: Direc = 0, ETF = 1, Mat2 = 0, Mat3 = 0,

so that computations are performed for long-hedge deviations in the presence of the ETF for the nearby maturity.
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Table 1: Time to no arbitrage summary statistics
Descriptive statistics of our sample of put-call parity matching pairs (upper part of the Table) are reported by time
to maturity, and descriptive statistics of the calculated times to censoring (Panel A) and times to efficiency (Panel
B) are reported both for the whole period and for the periods before (August 1, 2000 to January 21, 2001) and
after (January 22, 2001 to July 31, 2001) the introduction of the CAC 40 Master Unit ETF. Times are expressed in
minutes and seconds. T-stat. and Mann-Whitney stat. reported in the "Post-ETF period" column test the equality
between pre- and post-ETF central values. Asterisks ∗∗∗ denote the rejection of the null hypothesis at the 1% level
in a bilateral test.

Full sample Pre-ETF period Post-ETF period
Observations 4,036 1,621 2,415
by time to maturity
less than 1 month 3,219 1,335 1,884
2-3 months 516 191 325
4-12 months 301 95 206

Panel A: no reversion to efficient prices before the market close
Number 394 159 235
Proportion (%) 9.76 9.81 9.73
Time to censoring

Mean 105:12 140:31 81:18
T-stat. _ 4.162∗∗∗

Median 31:46 64:56 12:51
Mann-Whitney stat. _ 19.014∗∗∗

Panel B: return to efficient prices before the market close
Number 3,642 1,462 2,180
Proportion (%) 90.24 90.19 90.27
Time to no arbitrage

Mean 17:01 21:52 13:46
T-stat. _ 5.822∗∗∗

Median 3:33 4:50 3:10
Mann-Whitney stat. _ 70.426∗∗∗
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Table 3: Survival analysis results with interval-censoring
The maximum likelihood parameter estimates, with the corresponding standard errors and z-statistics are reported
for the 4,252 sample matchings both for the intercept-only (Panel A) and the Accelerated Failure Time (Panel B)
specifications with interval-censoring. The explanatory variables (covariates) are (i) the total number of transac-
tions for the series of call and put options that are included in the arbitrage portfolio over the day (ActivOpt); (ii)
the imbalance between the call and put options transactions (RatioOpt); (iii) and (iv) the maturity of the series
(Mat2, Mat3); (v) the moneyness of the option series (Moneyness); (vi) the direction of the deviation (Direc); (vii)
the total volume traded for the CAC 40 index constituting stocks over the day (ActivCAC); (viii) a measure of the
staleness in the index values (Staleness); (ix) the index volatility (Volat); (x) the availability of the CAC 40 ETF
(ETF) and (xi) the total volume traded for the CAC 40 ETF over the day (ActivETF). Log-likelihood test between
the intercept-only and the AFT specifications is reported in Panel C. The null hypothesis for the χ2 test statistic
is that the covariates do not improve the explanatory power of the model. Asterisks ∗∗∗, ∗∗, ∗ denote the rejection
of the null hypothesis at the 1%, 5% and 10% levels, respectively, in a bilateral test. The likelihood ratio statistics
follows a χ2 distribution with 11 degrees of freedom.

Panel A: Intercept-only specification
Variable Coefficient Std. error Z-stat.
µ (intercept) 5.867 ∗∗∗ 0.0421 139.30
log σ 0.858 ∗∗∗ 0.0131 65.30

Panel B: Accelerated Failure Time specification
Variable Coefficient Std. error Z-stat
µ (intercept) 7.195 ∗∗∗ 0.3281 21.93
log σ 0.793 ∗∗∗ 0.0135 58.93
ActivOpt -0.005 ∗∗∗ 0.0017 -3.29
RatioOpt 0.009 ∗∗∗ 0.0023 3.85
Mat2 0.590 ∗∗∗ 0.1275 4.62
Mat3 1.710 ∗∗∗ 0.1849 9.25
Moneyness -0.005 0.0296 -0.18
Direc 0.404 ∗∗∗ 0.0785 5.15
ActivCAC -0.287 ∗∗∗ 0.0520 -5.53
Staleness 0.038 0.0358 1.06
Volat -0.023 ∗∗∗ 0.0036 -6.51
ETF -0.635 ∗∗∗ 0.1219 -5.21
ActivETF -5.667 ∗∗ 2.8318 -2.00

Panel C: Likelihood ratio test (Intercept-only vs AFT)
Intercept-only log-likelihood -7,665.4
AFT log-likelihood -7,455.3
χ2 (p-value) 420.22 (<0.001)
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Figure 1: Intradaily distributions of call transactions, put transactions and put-call parity syn-
chronous pairings
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Figure 2: Empirical distributions of times to censoring (left figure, 437 observations) and times
to efficiency (right figure, 3,815 observations)
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Figure 3: Goodness-of-fit graphical check
The log of the integrated hazard of the standardized residuals based on the Kaplan-Meier estimator of their empir-
ical survival curve (ln[Λ̂(û)]) is plotted against the standardized residuals (û). Under appropriate specification for
the model, the graph should coincide with the plotted straight line.
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Figure 4: Sensitivity analysis
Estimated survival functions are plotted for different levels of the option series characteristics: maturity (Mati), ac-
tivity in the options market (ActivOpt), imbalances between call and puts (RatioOpt), a high liquidity/low liquidity
scenario, volatility of the CAC 40 index (Volat) and explicit transaction costs (Costs).
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