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Abstract 

 
This paper aims at introducing a relative security measure, applicable to evaluating the 

impact of arms races on the military security of allies. This measure is based on 

demographic criteria, which play a dominant role in a number of arms races involving 

military alliances. The case of Greece and Cyprus, on one hand, and Turkey on the other, 

is the one to which our relative security measure is applied and tested. Artificial neural 

networks were trained to forecast the future behaviour of relative security. The high 

forecasting performance permitted the application of alternative scenarios for predicting 

the impact of the Greek - Turkish arms race on the relative security of the Greek - Cypriot 

alliance.  
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1. INTRODUCTION 

 The Greek - Cypriot Integrated Defence Space Doctrine has been regarded by the 

two parties involved as a strategy aiming at facing potential offensive action by Turkey 

against either of the two allies, with particular emphasis on the protection of their national 

interests in the Aegean Sea theatre. This paper does not aspire to criticise the effectiveness 

or otherwise of such a doctrine, since an attempt of this kind would touch upon sensitive 

issues requiring the use of classified information over and above the needs of scientific 

research. What one can certainly do, however, is attract the reader’s attention to certain 

related issues, which may contribute to drawing a number of conclusions regarding the 

usefulness or otherwise of similar strategies, in view of the latest developments 

concerning the relations of the three countries involved. 

 These conclusions refer to the extent to which the security of the two allies in the 

area is promoted given the arms race which has long been going on between Greece and 

Turkey (Kollias and Makrydakis 1997). Whereas the impact of an arms race on the 

economy of the countries involved in it has been extensively dealt within the literature 

(Balfoussias and Stavrinos 1996; Ozmucur 1996; Kollias 1997), research referring to the 

consequences of arms races upon the security of the sides involved leaves a great deal to 

contribute on the issue.  To forecast the impact of this arms race on the security of Greece 

and Cyprus we resort to using artificial neural networks, with all advantages a data driven 

approach may entail, given the complexity of the models employed by the theory of 

alliances and the contradictory empirical results (Hartley and Sandler 1995), as well as the 

limited theoretical background covering the concept of relative security in similar cases.  
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The technical support concerning the structure and training of the networks used is 

given in section 3, after the theoretical background, along with a description of the input 

variables and a brief review of the relevant literature have been presented in section 2. The 

forecasting results of the relative security factor, as well as a presentation and analysis of 

various alternative scenarios concerning arms race tactics between the countries involved 

are reported in section 4. Finally, section 5 sums up and concludes the findings of this 

paper. 

 

2. LITERATURE OVERVIEW AND THEORETICAL BACKGROUND 

 The topic of arms races in its general context has been a rather popular issue, 

which was thoroughly investigated in the literature (e.g. Richardson 1960; Intriligator 

1982; Isard and Anderton  1985 and 1988). Concerning the specific arms - race case 

between Greece and Turkey, earlier research has concluded that the pressure on the Greek 

economy resulting from this arms race is determined chiefly by demographic factors 

strongly favouring the Turkish side, while the estimation of input significance has 

indicated that the leading determinants of such a race describe the Turkish rather than the 

Greek economic and demographic environment (Andreou and Zombanakis 2000). Having 

established the above framework for the arms race between Greece and Turkey, we now 

proceed to investigate the extent to which its impact on the sides involved may be 

described by introducing a more specific and accurate measure compared to the 

hypothetical figures of a payoff matrix in the context of a game theory exercise (e.g. 

Wagner 1983).  Such a measure requires defining a Relative Security (RS) coefficient, 
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tailored to fit the environment of such a conflict involving Greece and Cyprus on one hand 

and Turkey on another. Ayanian (1994) has already employed such a security coefficient 

aiming at explaining exchange-rate fluctuations better than conventional macroeconomic 

variables. Combining Ayanian's reasoning on the subject together with our earlier 

conclusions regarding the leading role of population developments in the Greek - Turkish 

arms race, we have proceeded to determining an RS coefficient. This coefficient is 

suitable to use when measuring the impact of the Greek - Turkish arms race on the 

security of the two allies, namely Greece and Cyprus.  

 Following Ayanian (1994), we define the security of Greece and that of Cyprus in 

the context of an Integrated Defence Space Doctrine scenario as follows: 

SG = (1/ k) * [(FG + FC) / FTG]    (1) 

and 

SC = (1/ k) * [(FG + FC) / FTC]    (2) 

where  SG is the military security of Greece 

SC is the military security of Cyprus  

FG is total Greek defence forces 

FC is total Cypriot defence forces 

FTG is Turkish forces potentially directed against Greece 

FTC is Turkish forces potentially directed against Cyprus 

k is the probability of a conflict between the sides involved 
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 The measure of the relative security of Cyprus with reference to Greece RSCG, 

which is the quintessence of the Integrated Defence Space Doctrine between Greece and 

Cyprus, is defined as the ratio of (2) over (1): 

RSCG = [FTG / FTC]     (3) 

Turkish forces potentially directed against Greece and Cyprus can be considered as an 

increasing function of the relative population growth rates between Turkey on one hand 

and each of the two allies on the other. This specification is based on the conclusion drawn 

in the literature, as mentioned earlier on in this section, referring to the dominance of 

human resources over financial resources in determining the defence burden on the Greek 

economy as a result of the ongoing arms race with Turkey1. Thus, the corresponding 

relationships for the two allies, Greece and Cyprus, may be stated as follows: 

( )[ ]TGTTG p/pexpFF &&=     (4) 

and  

( )[ ]TCTTC p/pexpFF &&=     (5) 

 

where  FT  stands for the total of Turkish armed forces and , ,  denote the 

respective population growth rates for Greece, Cyprus and Turkey. The interpretation of 

(4) and (5) requires special attention due to the asymmetric effect of the variables 

involved: Thus, in a purely hypothetical case which would involve a faster growth of the 

Gp& Cp& Tp&

                                                      
1Indeed, any variable which represents or includes developments in human resources in the countries 
involved may be suitable. Since, however, population developments are decisive in affecting most of the 
human resource variables, we feel that their role must be acknowledged as leading. The use of population 
growth rates rather than the corresponding levels aims at stressing the dynamic character of the relative 
security measure proposed.    
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Greek or Cypriot population compared to that of Turkey, one may argue that this 

difference in the population rates involved may be considered as representing a potential 

threat to Turkey, which would, therefore, be compelled to channel more forces to face 

those of the two allies2. However, where the Turkish population exhibits a faster rate of 

growth compared to that of Greece or Cyprus, which has always been the case, this will 

allow Turkey to increase FT, which is the total Turkish forces, and provide for an increase 

of the forces facing Greece and Cyprus, thus offsetting the effect caused due to the 

reduction of the exponent.      

Substituting the equivalent of FTG and FTC from  (4) and (5) in (3) we come up with the 

following Relative Security (RS) measure between Greece and Cyprus: 

RSCG = exp[x]     (6) 

 

where       ( ) TCG p/p-px &&&=             (7) 

 

Equation (6) interpreted together with (7) show how the population rates of growth of the 

three countries involved are expected to affect the relative security of Cyprus with 

reference to Greece, as this is measured by RSCG. More specifically, for an increase of this 

index as given by (6), x at time t2 must be higher than x at an earlier period t1 (t1 and t2 

represent years in our case). In terms of (7), therefore,  x1 < x2 , or:              

    <   ( ) )1(p/)1(p-(1)p  TCG &&& ( ) )2(p/)2(p-(2)p TCG &&&     (7a) 

                                                                                                                                                                 
2 Such extreme scenarios aim at just facilitating the interpretation of this relative security measure and must 
not be considered as reflecting reality by any means. 
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 Bearing in mind that RSCG as it is expressed by (6) and (7) measures the relative security 

of Cyprus, it is evident that (7a) holds true in the following three cases: 

a. If , holding  and constant, as shown by)2(p)1(p TT && > Gp& Cp&  equations (6) and (7). 

b. If , holding  and constant, since F)2(p)1(p CC && > Gp& Tp& TC in equation (5) will fall. 

c. If , holding  and  constant, since F)2(p)1(p GG && < Cp& Tp& TG in equation (4) will rise, 

meaning that Turkish forces are expected to move towards Greece and away from 

Cyprus. This case underlines the importance of the Greek support in the Greek – 

Cypriot alliance, in the context of which, all population growth rates not included in 

one of the above cases entail a decline of the RSCG, indicating a reduction of the 

relative security of Cyprus3. 

d. If all rates fluctuate, the direction of change of the RS will depend on the outcome of 

equation (7a), that is, RS will rise if the second term of (7a) is greater than the first. 

It is now evident that this relative security measure can be used to provide for a much 

more precise strategy payoff measure compared to the hypothetical payoffs used in the 

literature, as we indicated earlier in this section.  Indeed, if the percentage changes 

included in the exponent of (6) are instead denoted as logarithmic first differences, then 

the exponent x of the relative security measure RSCG in (7) may be expressed as follows: 

x = [ ln ( PG / PG(-1) ) - ln ( PC / PC(-1) ) ] / [ ln ( PT / PT(-1) ) ]  (8) 

where PG, PC and PT  stand for the populations of Greece, Cyprus and Turkey respectively. 

                                                      
3 We are thankful to an anonymous referee and to professor A. Bountis of the University of Patras, Greece, 
for their contribution to our analysis on this issue. 
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Denoting by g, c, and t the corresponding Greek, Cypriot and Turkish population 

increases, as given in (8) above, i.e: 

g = ln ( PG / PG(-1) )     (9) 

c = ln ( PC / PC(-1) )     (10) 

t = ln ( PT / PT(-1) )     (11) 

then, following Chiang (1984), x represents the algebraic solution of the following 

equation: 

        c * t
x - g = 0      (12) 

It is evident, therefore, that (12) provides the necessary theoretical framework within 

which a relative security coefficient may be developed and used to quantify the impact of 

the various strategies selected by the sides involved in an arms race.  

The benefits of introducing such a measure and applying it using neural networks 

are clear: 

a. It provides for a means to measure the impact of an arms race on the security of 

the allies involved in a much more specific way compared to the arbitrary payoffs found in 

the literature so far. Using, therefore, the relative security coefficient described in this 

paper, one may proceed to cardinal measurement comparisons among various arms race 

scenarios, thus drawing useful conclusions on the impact of such a race on the member 

states of an alliance.  

b. This Relative Security coefficient, by emphasising the role of demographic 

variables, is tailored to fit the case of specific categories of arms races, in which human 

resources play a dominant role, such as the one between Greece and Turkey. 
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It is important to remember, however, that the application of this relative security 

coefficient is not necessarily confined to cases of two - member alliances. In fact, the 

number of the member countries in an alliance does not impose any constraint, as long as 

one focuses on the relative security involving pairs of member countries each time, facing 

a common threat.  

 The relative security coefficient for the Greek - Cypriot alliance thus established 

represents the output of our network algorithm, using as input some of the leading 

determinants of the Greek - Turkish arms race (Stavrinos and Zombanakis 1998; Andreou 

and Zombanakis 2000), as well as the top performing variables during preliminary input 

significance exercises (Table 1). The input variables thus selected are the GDP as well as 

its share representing defence expenditure of the three countries involved. In addition, the 

GDP share of the non - defence spending in Greece and Cyprus have been employed in 

order to introduce the opportunity cost of defence and thus the dimension of the peace 

dividend in the analysis.   

 

3. TECHNICAL BACKGROUND 

 This section is devoted to present briefly the methodology of artificial neural 

networks. By using this data driven approach in forecasting the impact of the arms race on 

the security of the allies, one may avoid the complications arising due to the use of 

intricate models involving non-linearities, where, for example, the empirical results are 

occasionally contradictory. This approach is based on developing a “machine” composed 

of a number of basic computational elements called neurons, connected to each other 
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forming layers. A network is trained through general-purpose algorithms based on 

available data. The problem is reduced to the computation of weight neuron connections 

in a feed-forward network to accomplish a desired input-output mapping. The learning 

phase can be viewed as a high dimensional, non-linear, system identification problem. In a 

feed-forward Multi-Layer Perceptron (MLP) links from each neuron in the kth layer are 

being directed to each neuron in the (k+1)th layer. Inputs from the environment enter the 

first layer and outputs from the network are manifested at the last layer (Azoff 1994; 

Andreou and Zombanakis 2000).  

 The core architecture of our networks is the feed-forward MLP described above. 

Variations of this scheme were employed, such as the m-d-1 and m-d1-d2-1 topologies (m 

input nodes, one and two hidden layers respectively and one output) and a Multiply 

Activated (MA) one. The latter uses one hidden layer partitioned into three parallel sub-

layers activated by a different function (Figure 1). All networks developed have one 

output neuron, which yields the next sample (predicted value) in the time sequence. The 

training algorithm used is the well-known Error Back Propagation with a momentum term 

(e.g. Rumelhart and McLelland 1986; Azoff 1994). The networks are trained to learn and 

then predict the behaviour of the time-series presented in specific patterns of data. 

Detailed information regarding architectural and learning parameters can be found in the 

Appendix (A.1). 

 The networks used in the present paper were divided into three categories: The 

first one employs MLPs with a single hidden layer (category A), the second one includes 

MLPs with two successive hidden layers (category B) and the last one involves the 
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Multiply Activated MLP (MAMLP – category C) described above. Different topologies, 

as regards the number of nodes within the hidden layers, were implemented. In addition, 

variations of learning schemes were adopted, lying on different activation functions (Table 

2), such as: 

   Logistic sigmoid :                  (13) f y by( ) ( exp( ))= + − −1 1

 Hyperbolic tangent :   (14) 1))exp(1(*))exp(1()( −−+−−= bybyyf

 Gaussian : ( )2exp)( xyf −=     (15) 

 Gaussian complement : ( )2exp1)( xyf −−=     (16) 

where,                             (17) y wi i
i

n

=
=
∑

1
x

and xi’s denote the input values of a node, while wi’s the real valued weights of edges 

incident on a node and n the number of inputs to the node from the previous layer. b is 

known as the steepness of equations (13) and (14). The input layer is linear, while the 

output uses the sigmoid function.   

Our data series consist of 33 annual observations, 25 of which were included in the 

training set and 8 in the testing set. The forecasting horizon was set to one step ahead. 

Performance was evaluated using well known and widely used error measures (see 

Appendix, A.2), specifically the Normalized Root Mean Squared Error (NRMSE), the 

Correlation Coefficient (CC), the Mean Relative Error (MRE), the Mean Absolute Error 

(MAE) and the Mean Square Error (MSE). All these measures were evaluated on the 
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testing set of data, that is, a set of pattern values that did not participate during the course 

of learning.  

 An important aspect examined in the present analysis is the determination of the 

significance ordering of the variables involved, that is, the selection of the variables that 

contribute more to the forecasting process. This task can be performed using the notions of 

input sensitivity analysis, described extensively in Refenes et. al. (1995) and Azoff (1994), 

based on which one can sum up the absolute values of the weights fanning from each input 

variable into all nodes in the successive hidden layer, thus estimating the overall 

connection strength of this variable. The input variables that have the highest connection 

strength can then be considered as most significant, in the sense of affecting the course of 

forecasting in a more pronounced way compared to others. Presenting the analytical 

technical background behind these notions is beyond the scope of this work, since the 

reader may refer to the sources stated above for further information. 

 

4. POLICY SIMULATIONS  

 The RS coefficient seems to be quite successful in predicting the impact on the 

relative security of Cyprus with reference to Greece, in the context of an arms race 

between the two allies on one hand and Turkey on the other, using the input variables 

described earlier. As indicated in Table 3, the error figures during the training phase reveal 

a very satisfactory performance. In general, performance after training was very successful 

as indicated by the Correlation Coefficient (CC), while the Normalised Root Mean 

Squared Error (NRMSE) indicates that predictions were by far better than the simple mean 
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forecaster (NRMSE equal to 1). The deviation between actual and predicted samples, as 

indicated on the basis of the Mean Relative Error (MRE), the Mean Absolute Error (MAE) 

and the Mean Square Error (MSE) is negligible. As a result, the ability of the networks to 

generalise the knowledge embodied through the learning process during the testing phase 

is considerably high, as assessed on the basis of the corresponding errors for the out-of-

sample data.  

More specifically, the forecasting performance during the testing phase is quite successful 

in CC terms, which in certain networks, like C(2), C(3) and C(4) reached an approximate 

84-89% follow up of the original series. Regarding prediction accuracy, the MSE, MRE 

and MAE error indicators exhibit low values in all networks, while the NRMSE figures 

indicate a slightly inferior behaviour compared to a simple mean predictor in most of the 

cases, with the exception of A(2) and all networks constituting the C category. The 

network that yields the most accurate predictions regarding all error measures used is C(2) 

(Figure 2), while the predictions of the rest C-category networks are also quite 

satisfactory. Finally, concerning the rest two network categories, only one network, 

namely A(2) presented a forecasting performance which can be considered as equally 

successful.       

 Before we move to examining how the relative security of the two allies may be 

affected in the context of alternative arms race scenarios, we turn to investigate the leading 

determinants of the relative security between Cyprus and Greece, facing the possibility of 

a Turkish threat. Input sensitivity analysis was performed for all networks used, following 

the learning phase, with the summation of weights corresponding to each input node 
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(variable) presented in Table 4 in descending order.  The findings of our experiments seem 

to be very much in line with earlier research on this topic (Andreou and Zombanakis 

2000). Indeed, all experiments agree that the share of defence in the GDP of Turkey is 

clearly the top determinant of the Greek - Cypriot relative security. In most cases the 

Greek and Cypriot GDP shares of non - defence expenditure are the next two most 

important determinants of the relative security between the two allies. This finding 

underlines the importance of the trade - off between defence and non - defence spending 

and the extent to which the sacrifice of the peace dividend as a result of this specific arms 

race is too important to be overlooked, a conclusion which seems to agree with most of the 

literature (e.g. Hartley and Hooper 1990; Gleditsch et al. 1996). 

 Having identified the leading determinants of the relative security of the two allies 

with reference to Turkey, we may now proceed to study the simulation results of the 

networks forecasts of our relative security measure in the context of various arms race 

scenarios. The forecasting horizon included in the testing phase of the networks reaches 

the year 2002 and the results obtained confirm the findings of the literature on arms races 

and the various strategy payoffs (e.g. Wolfson 1985). The advantage of our method, 

however, lies with the possibility offered to substitute measurable payoffs for 

hypothetical, arbitrary values, thus obtaining a more meaningful cardinal measurement of 

the results of an arms race in the context of the Integrated Defence Space Doctrine. The 

scenarios selected are the usual ones involved in a typical arms race examined via game 

theory, or in the context of the “prisoner’s dilemma” (e.g. Majeski 1984). We assign, 

therefore, increasing or decreasing future values to the GDP shares of defence expenditure 
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of Greece and Cyprus on one hand and Turkey on another4, thus referring to the following 

four scenarios, with the terms “reduction” and “escalation” suggesting a respective 

decrease or increase of the GDP share of defence expenditure of the country or countries 

involved:   

i. Both sides escalate. 

ii. Greece and Cyprus escalate and Turkey reduces. 

iii. Turkey escalates and Greece and Cyprus reduce. 

iv. Both sides reduce. 

Prediction of the future course of the RS coefficient in the context of the scenarios 

described above was performed using the C(2) network which achieved the highest 

forecasting performance during all earlier simulations. 

 As the prediction results in Table 5 indicate, RS behaves as expected, according to 

the theoretical basis stated earlier. The best outlook is provided in the case in which both 

sides choose to reduce tension by contracting their defence expenditure, as this is 

described by the GDP ratio of military expenditure, a finding to be expected bearing in 

mind the peace dividend for both sides as described in the literature (Balfousias and 

Stavrinos 1996; Ozmucur 1996). In this case, the Greece - Cyprus relative security 

coefficient RS for the five years forecasted assumes an average value of 4.82, the highest 

of all scenarios. The second best option, however, seems to be the case in which both sides 

resort to an arms race, this providing for an average 5 year RS forecasted value of 4.55. 

                                                      
4 The choice of the defence expenditure as a share of the GDP rather than the level of the military 
expenditure itself is widely used in the literature and aims at introducing, to a certain extent at least, the 
question of sustainability of the defence burden by relating it to the total output of an economy. 
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The advocates of the “si vis pacem para bellum”5 doctrine, however, will be delighted to 

observe that the year 2002 value of the RS coefficient in this scenario is practically equal 

to the corresponding value of the case in which both sides select the reduced defence 

spending policy.  This finding is very interesting, since it underlines the importance of the 

arms race on the security of the alliance members. The cases in which one of the two 

parties emphasises military spending, while the other reduces, also appear to be very 

interesting. Indeed, the average RS value for the five - year period forecasted is 2.93 in the 

case in which Greece and Cyprus increase their GDP share of defence expenditure, while 

Turkey reduces it. This conclusion is very much in line with both the established 

theoretical framework (e.g. Hartley and Sandler 1995), as well as elementary reasoning, 

given that the RS reflects the relative security of the Greek - Cypriot side. It is also 

interesting to point out that the RS figures in all scenarios increase together with the time 

horizon, with the exception of those derived in the fourth scenario, namely the one in 

which Turkey escalates while Greece and Cyprus limit their defence expenditure. In this 

case the average of the RS figures, which decline with time up to 2002, does not exceed 

0.4, a very low value for the security of the two allies, as expected. The graphical 

description of the results referring to all four scenaria as discussed above is shown in 

Figure 3. 

 
 
5. CONCLUSIONS 

The aim of this paper has been to contribute to the cardinal measurement of an arms 

race impact upon the security of two allies involved in such a race against a potential 

                                                      
5 The Latin for “if you want peace prepare for war” 
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adversary. The analysis refers to the co-operation between Greece and Cyprus in the area 

of national security, something that has already been materialised in the context of the so-

called Integrated Defence Space Doctrine. Our efforts have focused on supplementing the 

available literature on arms races by suggesting the introduction of a payoff relative 

security coefficient, emphasising the dominant role of human resources in this case and 

measuring the impact on the military security of the two allies as a result of an arms race 

against a third party, namely Turkey.  

The main conclusion drawn after a variety of scenarios have been tried is that the 

short and medium term relative security of Cyprus and Greece is maximised when both 

sides involved in the arms race reduce their defence expenditures, while the arms race 

scenario appears as a second-best choice. When it comes to the long-run, however, it is 

interesting to see that the Greece-Cyprus relative security index assumes its maximum 

value in the context of an arms race between Greece and Cyprus on one hand and Turkey 

on the other. This finding supports the view of those who believe that despite the peace 

dividend (Balfousias and Stavrinos 1996), Greece has no choice but to follow up the 

ambitious 25-year Turkish armaments programme. Finally, the results of the “Turkey 

escalates-Cyprus and Greece reduce” scenario are discouraging due to their lowest relative 

security values and, consequently, their poor contribution to peace promotion, something 

that must be taken to consideration by the one - sided disarmament policy followers.  
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TABLES 

 

Table 1: Variables, Data and Sources 

 
 

Code Data Series Source 

GGDPCS GDP of Greece, Constant Prices Greek National 
Accounts 

CGDPCS GDP of Cyprus, Constant Prices Cypriot National 
Accounts 

TGDPCS GDP of Turkey, Constant Prices International Financial 
Statistics, IMF 

GDEFCRS Defence Expenditure of Greece (share of 
GDP) 

SIPRI 

CDEFCRS Defence Expenditure of Cyprus (share of 
GDP) 

SIPRI 

TDEFCRS Defence Expenditure of Turkey (share of 
GDP) 

SIPRI 

GNDEFCRS Non-Defence Expenditure of Greece 
(share of GDP) 

Greek National 
Accounts 

CNDEFCRS Non-Defence Expenditure of Cyprus 
(share of GDP) 

Cypriot National 
Accounts 

 

 



 

Table 2: Neural network architectures, activation functions and encoding. 
 

Network 

Architecture*

 
Hidden Layer(s) Activation Function(s) 

 
Code 

8-10-1 Logistic sigmoid A(1) 

8-10-1 Hyberbolic tangent A(2) 

8-14-1 Logistic sigmoid A(3) 

8-14-1 Hyberbolic tangent A(4) 

8-10-5-1 Logistic sigmoid B(1) 

8-10-5-1 Hyberbolic tangent B(2) 

8-15-8-1 Logistic sigmoid B(3) 

8-15-8-1 Hyberbolic tangent B(4) 

8-3-3-3-1 1st slab: Gaussian, 2nd slab: Hyberbolic 
tangent; 3rd slab: Gaussian complementary 

C(1) 

8-3-3-3-1 1st slab: Gaussian, 2nd slab: Gaussian 
complementary; 3rd slab: Hyberbolic tangent

C(2) 

8-3-5-8-1 1st slab: Gaussian, 2nd slab: Hyberbolic 
tangent; 3rd slab: Gaussian complementary 

C(3) 

8-3-5-8-1 1st slab: Gaussian, 2nd slab: Gaussian 
complementary; 3rd slab: Hyberbolic tangent

C(4) 

 
* “m-d-n” stands for m input nodes, d nodes in the hidden layer and n output nodes. 
  “m-d-p-n” stands for m input nodes, d nodes in the first hidden layer, p nodes in the 

second hidden layer and n output nodes. 
  “m-d-p-k-n” stands for m input nodes, d hidden nodes in the first slab (total hidden 

neurons subset) of the hidden layer, p hidden nodes in the second slab, k hidden 
nodes in the third slab and n output nodes. 

 
 



Table 3: Forecasting performance and error figures 

 
 

Network 
Training Phase Testing Phase 

 NRMSE MSE CC MRE MAE NRMSE MSE CC MRE MAE 

A(1) 0.0613          0.00430 0.9980 0.0642 0.0445 1.0871 0.6909 0.7594 0.4779 0.4453

A(2) 0.0340          0.00130 0.9994 0.0393 0.0258 0.9425 0.5194 0.7526 0.5309 0.4613

A(3) 0.0644          0.00470 0.9978 0.0713 0.0479 1.0683 0.6672 0.7537 0.5006 0.4536

A(4) 0.0354          0.00140 0.9994 0.0372 0.0258 1.0518 0.6467 0.7589 0.4901 0.4523

B(1) 0.0619          0.00430 0.9980 0.0636 0.0426 1.1511 0.7746 0.7604 0.4908 0.4642

B(2) 0.0236          0.00120 0.9994 0.0332 0.0211 1.2462 0.9079 0.7598 0.5322 0.5282

B(3) 0.0738          0.00620 0.9972 0.0800 0.0592 1.1167 0.7290 0.7638 0.4305 0.4115

B(4) 0.0183          0.00030 0.9998 0.0176 0.0124 1.1554 0.7805 0.7588 0.5357 0.5151

C(1) 0.0113          0.00010 0.9999 0.0103 0.0066 0.7650 0.2264 0.8795 0.3689 0.2993

C(2)           0.0070 0.00005 1.0000 0.0057 0.0041 0.6858 0.2183 0.8854 0.3338 0.2217

C(3) 0.0037          0.00001 1.0000 0.0032 0.0025 0.8352 0.3683 0.8486 0.3806 0.4389

C(4) 0.0125          0.00010 0.9999 0.0095 0.0075 0.8511 0.2889 0.8367 0.3785 0.3199



Table 4: Input significance analysis (percentage in parentheses) 
 

Input variables significance ordering (descending) Neural 
Network 1st 2nd 3rd 4th 5th 6th 7th 8th

TDEFCRS        CGDPCS GNDEFCRS GDEFCRS GGDPCS CNDEFCRS TGDPCS CDEFCRS
A(1) (24.12)        (16.76) (14.08) (11.91) (10.70) (8.76) (7.48) (6.20)

TDEFCRS        GNDEFCRS CGDPCS GDEFCRS CDEFCRS CNDEFCRS GGDPCS TGDPCS
A(2) (21.65)        (17.69) (14.49) (12.56) (11.40) (8.75) (8.33) (5.13)

TDEFCRS        GNDEFCRS CGDPCS TGDPCS GDEFCRS CNDEFCRS GGDPCS CDEFCRS
A(3) (22.21)        (17.49) (15.84) (10.03) (9.33) (8.78) (8.74) (7.58)

TDEFCRS        GNDEFCRS TGDPCS CGDPCS GGDPCS GDEFCRS CNDEFCRS CDEFCRS
A(4) (23.11)        (16.37) (11.52) (11.51) (10.51) (9.99) (8.83) (8.17)

TDEFCRS        (CGDPCS GNDEFCRS GGDPCS CNDEFCRS GDEFCRS TGDPCS CDEFCRS
B(1) (25.43)        (17.56) (13.74) (10.56) (9.65) (9.22) (8.09) (5.75)

TDEFCRS        GNDEFCRS CGDPCS GDEFCRS GGDPCS CNDEFCRS CDEFCRS TGDPCS
B(2) (22.50)        (14.70) (14.26) (12.24) (9.96) (9.25) (8.89) (8.18)

TDEFCRS        CGDPCS GNDEFCRS GGDPCS GDEFCRS CNDEFCRS TGDPCS CDEFCRS
B(3) (20.51)        (19.38) (11.51) (11.35) (10.60) (9.58) (9.37) (7.71)

TDEFCRS        GNDEFCRS GDEFCRS CGDPCS GGDPCS CNDEFCRS CDEFCRS TGDPCS
B(4) (18.53)        (15.19) (13.32) (12.56) (12.50) (11.35) (9.90) (6.66)

TDEFCRS        GNDEFCRS GGDPCS GDEFCRS CNDEFCRS CGDPCS CDEFCRS TGDPCS
C(1) (25.10)        (15.44) (14.11) (13.18) (9.87) (8.98) (7.47) (5.85)

TDEFCRS        GNDEFCRS CNDEFCRS CGDPCS GGDPCS GDEFCRS TGDPCS CDEFCRS
C(2) (20.67)        (19.64) (12.26) (11.26) (10.92) (10.89) (8.20) (6.17)

TDEFCRS        GNDEFCRS CNDEFCRS CGDPCS GDEFCRS GGDPCS CDEFCRS TGDPCS
C(3) (19.82)        (15.41) (12.36) (12.25) (11.71) (10.13) (9.35) (8.97)

TDEFCRS        GNDEFCRS CNDEFCRS GDEFCRS CGDPCS GGDPCS TGDPCS CDEFCRS
C(4) (19.52)        (16.45) (11.99) (11.68) (11.51) (10.35) (10.23) (8.27)

 



Table 5: Case scenarios predictions on the Relative Security (RS) coefficient 

 

Scenario Year Predicted RS 

 1998 1.4469 

All countries 1999 2.4368 

escalate 2000 4.0670 

 2001 6.1940 

 2002 8.5902 

 1998 1.6812 

Cyprus and  1999 2.3682 

Greece escalate,  2000 2.9593 

Turkey reduces 2001 3.5439 

 2002 4.1159 

 1998 0.7649 

Turkey Escalates, 1999 0.6195 

Cyprus and 2000 0.3689 

Greece Reduce 2001 0.1808 

 2002 0.0675 

 1998 1.6406 

All countries 1999 3.0701 

reduce 2000 4.6800 

 2001 6.4924 

 2002 8.2233 

 



LEGENDS FOR FIGURES 

 

Figure 1: The Multiply Activated Multi-Layer Perceptron (MAMLP) neural network 

architecture. 

Figure 2: Actual versus predicted values of the Relative Security (RS) coefficient using 

an 8-3-3-3-1 MAMLP neural network architecture. 

Figure 3: Predicted values of the Relative Security (RS) coefficient for hypothetical 

scenaria, using an 8-3-3-3-1 MAMLP neural network architecture. 
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Relative Security (RS) Coefficient Predicted Values in Hypothetical Scenaria
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APPENDIX 

A.1 System design and implementation  

 The given time series x={x(t): 1 ≤ t≤ N} is divided into two sets: a training set  

xtrain={x(t):  1 ≤  t ≤ T}, and a test set xtest={x(t): T < t ≤ N}, where N is the length of the 

data series. The training phase presents the xtrain set to the network repeatedly until a 

certain level of convergence is achieved based on some error criterion. The learning 

algorithm adjusts the weights in each repetition in order to minimize the diversion of the 

desired value from the predicted one.  

The number of input neurons and the selection of the variables involved have been 

based on prior research on the topic, as stated in section 2, which has led to the choice 

of the input set which exhibits the highest performance in terms of prediction accuracy. 

We used several alternative configuration schemes, as regards the number of hidden 

layers and the nodes within each layer, in order, first to achieve best performance and 

second, to facilitate comparison between different network architectures (Table 2). 

Every input variable is associated with one neuron in the input layer.  

Determining the number of hidden layers and neurons in each layer can often be 

a very difficult task and possibly one of the major factors influencing the performance 

of the network. Too few neurons in a hidden layer may produce bias due to the 

constraint of the function space, which results to poor performance as the network 

embodies a very small portion of information presented. Too many neurons on the other 

hand may cause overfitting of data on one hand and increase considerably the amount of 

computational time needed for the network to process data on the other, something that 

will not necessarily lead to convergence. We therefore have used a variety of numbers 
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of neurons within one hidden layer, while in some cases a two-hidden-layer scheme was 

also developed in order to investigate whether performance is improved. 

 The number of iterations (epochs) presenting the whole pattern set during the 

learning phase is also very important. We have let this number vary during our 

simulations, since different network topologies, initial conditions and input sets, require 

different convergence and generalization times. The number of epochs our networks 

needed for convergence was 10,000, while the learning and momentum coefficients 

(Rumelhart and McLelland 1986; Azoff 1994) were kept constant at the positive values 

of 0.3 and 0.1 respectively. One should be very cautious though when using a large 

number of epochs, as the network may overfit the data thus failing to generalize. The 

problems of bias and data overfitting can be overcome by evaluating the performance of 

each network using a testing set of unseen patterns (testing phase). This set does not 

participate during the learning process (e.g. Azoff, 1994). If the network has actually 

learned the structure of the input series rather than memorizing it then it can perform 

well when the testing set is presented. Otherwise, if bias or overfitting is really the case, 

performance will be extremely poor on these “new” data values. Architecture selection 

is generally based on success during the testing phase, provided that the learning ability 

was satisfactory. 

 
A.2 Performance evaluation  
 
The CC measures the ability of the predicted samples to follow the upward or 

downward jumps of the original series. A CC value near 1 in absolute terms is 

interpreted as a perfect follow up of the original series by the forecasted one. A negative 

CC sign indicates that the forecasting series follows the same ups or downs of the 
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original series with a negative mirroring, that is with a 180o rotation about the time-axis. 

When the original series moves up, the forecasting moves down at the same time-period 

and vice versa. 

The NRMSE indicates whether prediction is better than a simple mean forecaster. If 

NRMSE=0 then predictions are perfect; NRMSE=1 indicates that prediction is no better 

than taking xpred equal to the x-mean.  

MRE shows the accuracy of predictions in percentage terms expressing it in a stricter 

way, since it focuses on the sample being predicted, not depending on the scale in which 

the data values are expressed or on the units of measurement used. Thus, we are able to 

estimate prediction error as a fraction of the actual value, this making the MRE the 

more objective error measure among the three used.  

MSE is reported in order to have the error condition met by the Back Propagation 

algorithm, while the MAE shows the divergence between actual and predicted samples 

in absolute measures. The above prediction error measures are given by the following 

equations: 

[ ]
NRMSE(n) =
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where xact(i) and xpred(i) the actual and predicted value when pattern i is presented,  

npred,nact, x,x  the mean value of actual and predicted samples of length n 

and n is the total number of  patterns. 
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