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1 Introduction

This chapter is an up-to-date survey of static consumer demand analysis. We review and
evaluate recent advances in this attractive research area, in the spirit of a number of earlier
surveys of that literature such as those by Barnett and Serletis (2008), LaFrance (2001),
Lewbel (1997), Blundell (1988), and Brown and Deaton (1972).
It is not our intention in this chapter to cover all theories of consumer behavior. We

only deal with consumer choice in a static framework. In doing so, we also ignore a number
of important issues. In particular, we do not cover Varian�s (1982) nonparametric revealed
preference approach to demand analysis [see the recent survey paper by Barnett and Serletis
(2008) for a brief review], the e¤ects of demographic or other variables that a¤ect demand,
welfare comparisons across households (equivalence scales), and the many issues concerning
aggregation across consumers � see Lewbel (1991), Kirman (1992), Stoker (1993), and
Hildenbrandt (1994) regarding these issues.
The chapter is organized as follows. Section 2 brie�y presents directly speci�ed demand

equations, with no reference to the utility function. Section 3 reviews the neoclassical
theory of consumer choice, and section 4 deals with functional form issues. Section 5
discusses functional forms in terms of their ability to capture the Engel curve structure of
cross-sectional data. Section 6 discusses estimation issues and the �nal section concludes.

2 Demand Systems without Utility Reference

There is an old tradition in applied demand analysis, which speci�es the demand system
directly with no reference to the utility function. Under this approach, the demand for a
good i, xi, is speci�ed as a function of nominal income, y, and prices, p1; � � �; pn, where n is
the number of goods.
Consider, for example, the log-log demand system,

log xi = �i + �iy log y +
nX
j=1

�ij log pj, i = 1; � � �; n, (1)

where �i; �iy; and �ij are constant coe¢ cients. The coe¢ cient �iy is the income elasticity
of demand for good i, �iy = d log xi=d log y. It measures the percentage change in xi per 1
percent change in y, with prices constant. If �iy > 0, the ith good is classi�ed as normal
and if �iy < 0, it is classi�ed as inferior (its consumption falls with increasing income).
Moreover, if �iy > 1, the ith good is classi�ed as a luxury, and if �iy < 1, it is classi�ed
as a necessity. The coe¢ cient �ij is the uncompensated (Cournot) price elasticity of good
i, �ij = d log xi=d log pj. It measures the percentage change in xi per 1 percent change in
pj, with nominal income and the other prices constant. If �ij > 0, the goods are gross
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substitutes, if �ij < 0, they are gross complements, and if �ij = 0, they are independent. If
i = j, we would expect �ii < 0, ruling out Gi¤en goods.
Another example of a demand system without reference to the utility function is Work-

ing�s (1943) model,
si = �i + �i log y, i = 1; � � �; n, (2)

expressing the budget share of good i, si = pixi=y, as a linear function of logged income,
log y. Since the budget shares sum to 1,

Pn
i=1 si = 1, the parameters in equation (2) satisfyPn

i=1 �i = 1 and
Pn

i=1 �i = 0. As equation (2) does not involve prices, it is applicable to
cross sectional data that o¤er limited variation in relative prices but substantial variation in
income levels.
Under the assumption that prices are constant, multiplying the budget share of good i,

si = pixi=y, by its income elasticity, �iy, yields

si�iy =
pixi
y

@xi
@y

y

xi
= pi

@xi
@y

=
@ (pixi)

@y
= �i,

where �i = @ (pixi) =@y is the marginal share of good i. Unlike budget shares, marginal
budget shares are not always positive (for example, marginal shares are negative in the case
of inferior goods), but like budget shares, marginal shares also sum to 1,

Pn
i=1 �i = 1.

1

Multiplying both sides of (2) by y and di¤erentiating the resulting equation, pixi =
�iy + �iy log y, with respect to y, yields

�i = �i + �i (1 + log y) ,

which after using equation (2) reduces to

�i = �i + si. (3)

Equation (3) relates the marginal budget share of good i, �i, to its budget share, si. It shows
that the marginal share and the budget share di¤er by �i, and that the marginal share, like
the budget share, is changing over time.
Finally, if we divide both sides of equation (3) by wi, we get the income elasticity of good

i, �iy = 1+ �i=si, suggesting that good i is a luxury if �i > 0 and a necessity if �i < 0. The
model also predicts that as income increases, all goods become less luxurious. For example,

1To see that marginal shares sum to 1, take the di¤erential of the budget constraint, y =
nX
i=1

pixi, to get,

dy =
nX
i=1

pidxi +
nX
i=1

xidpi.

Since prices are assumed to be constant, the above implies
Pn

i=1 @ (pixi) =@y =
Pn

i=1 �i = 1.
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with constant prices, in the case of luxury goods, si increases as y increases, causing �iy to
fall towards 1; in the case of necessities, si declines as y increases, causing �iy to also decline.
As already noted, Working�s model is applicable to household level data where prices

exhibit little variation. To apply this model to time series data that o¤er substantial variation
in relative prices but less variation in income, the model has to be extended by adding a
substitution term, as in equation (1).

3 Neoclassical Consumer Theory

Consider n consumption goods that can be selected by a consuming household. The house-
hold�s problem is

max
fx1;���;xng

u(x1; � � �; xn) subject to
nX
i=1

pixi = y,

or in matrix notation
max
x
u(x) subject to p0x = y, (4)

where x is the n � 1 vector of goods; p is the corresponding vector of prices; and y is the
household�s total income.
The �rst order conditions for a maximum can be found by forming an auxiliary function

known as the Lagrangian

L = u(x) + �
 
y �

nX
i=1

pixi

!
,

where � is the Lagrange multiplier. By di¤erentiating L with respect to xi (i = 1; � � �; n),
and using the budget constraint, we obtain the (n+ 1) �rst order conditions

@u(x)

@xi
� �pi = 0, i = 1; � � �; n;

y �
nX
i=1

pixi = 0,

where the partial derivative @u(x)=@xi is the marginal utility of good i.
What do these �rst order conditions tell us about the solution to the utility maximization

problem? Notice that the �rst n conditions can be written as

@u(x)=@x1
p1

=
@u(x)=@x2

p2
= � � � = @u(x)=@xn

pn
= �, (5)
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which simply says that, in equilibrium, the ratio of marginal utility to price must be the
same for all goods. Alternatively, for any two goods i and j, the above condition can be
rewritten as

@u(x)=@xi
@u(x)=@xj

=
pi
pj
,

which says that, in equilibrium, the ratio of marginal utilities (also known as the marginal
rate of substitution) must equal the respective price ratio.
Notice that according to equation (5), the optimal Lagrange multiplier is utility per unit

of good k divided by the number of dollars per unit of good k (k = 1; � � �; n), reducing to
utility per dollar. By this interpretation, the optimal Lagrange multiplier is also called the
marginal utility of income.

3.1 Marshallian Demands

The �rst-order conditions for utility maximization can be used to solve for the n optimal
(i.e., equilibrium) values of x,

x = x(p; y). (6)

These utility maximizing quantities demanded are known as the Marshallian ordinary de-
mand functions. In fact, system (6) is the demand system, giving the quantity demanded
as a function of the prices of all goods and income. Demand systems are the systems
whose parameters we want to estimate and whose properties we want to analyze in empir-
ical demand analysis. Demand systems are also expressed in budget share form, s, where
sj = pjxj(p; y)=y is the income share of good j.
As an example, consider the Cobb-Douglas utility function,

u(x) =
nY
i=1

x�ii = x
�1
1 x

�2
2 x

�3
3 � �� (7)

with �i > 0 and
Pn

i=1 �i = 1. Setting up the Lagrangian for this problem, we get the
following �rst order conditions

�i
xi

nY
i=1

x�ii � �pi = 0, i = 1; � � �; n;

y �
nX
i=1

pixi = 0,

which, when solved for the n optimal values of x, yield the Marshallian demand functions

xi = �i
y

pi
, i = 1; � � �; n, (8)
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since
Pn

i=1 �i = 1.
It is to be noted that Marshallian demands satisfy the following properties:

i) positivity;

ii) adding up (or summability), p0x(p; y) = y, or, if the demand system is written in share
form, �0s = 1, where � is a vector of ones;

iii) homogeneity of degree zero in (p; y). That is, x(p; y) = x(tp; ty) for all t, implying the
absence of money illusion (meaning that the optimal consumption levels are invariant
to proportionate changes in all prices and money income);

iv) the matrix of substitution e¤ects (provided the derivatives exist and are continuous),

S =

�
@x(p; y)=@p0 +

@x(p; y)

@y
x(p; y)0

�
,

is symmetric and negative semide�nite (implying that the substitution e¤ect of each
good with respect to its own price is always nonpositive).

These properties of the demand system are frequently referred to as the �integrability
conditions,�since they permit the reconstruction of the preference ordering from the demand
system. See, for example, Hurwicz and Uzawa (1971). If they are tested empirically and
cannot be rejected, then we can infer that there exists a utility function that generates the
demand system. To put it di¤erently, demand behavior is consistent with the theory of
utility maximization, if and only if the integrability conditions are satis�ed.

3.2 Indirect Utility

The maximum level of utility given prices p and income y, h(p; y) = u [x(p; y)], is the
indirect utility function and re�ects the fact that utility depends indirectly on prices and
income. In the case, for example, of Cobb-Douglas preferences the indirect utility function
is obtained by substituting the demand system (8) into the direct utility function (7) to get

h(p; y) =
nY
i=1

x�ii

=

nY
i=1

�
�iPn
i=1 �i

y

pi

��i
= y

nY
i=1

�
�i
pi

��i
, (9)

since
Pn

i=1 �i = 1.
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The direct utility function and the indirect utility function are equivalent representations
of the underlying preference preordering. In fact, there is a duality relationship between
the direct utility function and the indirect utility function, in the sense that maximization of
u(x) with respect to x, with given (p; y), and minimization of h(p; y) with respect to (p; y),
with given x, leads to the same demand functions.
While the direct utility function has greater intuitive appeal than the indirect utility

function, being able to represent preferences by an indirect utility function has its advan-
tages. This is so, because the indirect utility function has prices exogenous in explaining
consumer behavior. Moreover, we can easily derive the demand system by straightforward
di¤erentiation, without having to solve a system of simultaneous equations, as is the case
with the direct utility function approach. In particular, a result known as Roy�s identity

x(p; y) = �@h(p; y)=@p
@h(p; y)=@y

, (10)

allows us to derive the demand system, provided that p > 0 and y > 0. Alternatively, the
logarithmic form of Roy�s identity,

s(p; y) = �@ log h(p; y)=@ logp
@ log h(p; y)=@ log y

, (11)

or Diewert�s (1974, p. 126) modi�ed version of Roy�s identity,

sj(v) =
vjrh(v)
v0rh(v) , (12)

can be used to derive the budget share equations, where v = [v1; � � �; vn] is a vector of income
normalized prices, with the jth element being vj = pj=y and rh(v) = @h(v)=@v. Applying,
for example, Roy�s identity (10) to the Cobb-Douglas indirect utility function (9) yields the
Dobb-Douglas demand system (8).
The indirect utility function is continuous in (p; y) and has the following properties:

i) positivity;

ii) homogeneity of degree zero in (p; y);

iii) decreasing in p and increasing in y;

iv) strictly quasi-convex in p;

v) satis�es Roy�s identity, (10).

Together, properties (i)-(iv) are called the �regularity conditions.� In the terminology of
Caves and Christensen (1980), an indirect utility function is �regular�at a given (p; y), if it
satis�es the above properties at that (p; y). Similarly, the �regular region�is the set of prices
and incomes at which an indirect utility function satis�es the regularity conditions.
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3.3 Hicksian Demands

Dual to the utility maximization problem is the problem of minimizing the cost or expendi-
ture necessary to obtain a �xed level of utility, u, given market prices, p,

C(p; u) = min
x
p0x subject to u(x) � u.

For example, with Cobb-Douglas preferences, the Lagrangian for this problem is

L =
nX
i=1

pixi + �

 
u�

nY
i=1

x�ii

!
,

with the following �rst order conditions

pi � �
�i
xi

nY
i=1

x�ii = 0, i = 1; � � �; n;

u�
nY
i=1

x�ii = 0,

which, when solved for the optimal values of x, yield the expenditure minimizing demands,
denoted by ex,

exi(p; u) = �i
pi
u
nY
j=1

�
pj
�j

��j
, i = 1; � � �; n. (13)

The expenditure minimizing demands are also known as Hicksian or compensated demands;
they tell us how x is a¤ected by prices with u held constant.2 Finally, substituting the
Hicksian demands into the cost function yields

C(p; u) =
nX
i=1

piexi

=
nX
i=1

pi

"
�i
pi
u
nY
j=1

�
pj
�j

��j#
= u

nY
j=1

�
pj
�j

��j
, (14)

since
Pn

i=1 �i = 1.
Hicksian demands are positive valued and have the following properties:
2To derive (13), we treat good x1 asymmetrically, by solving for the demand for each of the other goods

as a function of x1. We then substitute in the utility function, u =
nY
j=1

x
�j
j , and solve for x1 as a function of

u and the other x0s. We follow a similar procedure for each of the other x�s.

8



i) homogeneous of degree zero in p;

ii) the Slutsky matrix, [@ex(p; u)=@p0], is symmetric and negative semide�nite.
Finally, the cost or expenditure function, C(p; u) = p0ex(p; u), has the following proper-

ties:

i) continuous in (p; u);

ii) homogeneous of degree one in p;

iii) increasing in p and u;

iv) concave in p;

v) satis�es Shephard�s (1953) lemma

ex(p; u) = @C(p; u)

@p
. (15)

For example, applying Shephard�s lemma (15) to the cost function (14) yields the Hicksian
compensated demand functions (13).

3.4 Elasticity Relations

A demand system provides a complete characterization of consumer preferences and can be
used to estimate the income elasticities, the own- and cross-price elasticities, as well as the
elasticities of substitution. These elasticities are particularly useful in judging the validity
of the parameter estimates (which sometimes are di¢ cult to interpret, due to the complexity
of the demand system speci�cations).
The elasticity measures can be calculated from the Marshallian demand functions, x =

x(p; y). In particular, the income elasticity of demand, �iy(p; y), can be calculated as (for
i = 1; : : : ; n)

�iy(p; y) =
@xi(p; y)

@y

y

xi(p; y)
.

If �iy(p; y) > 0, the ith good is classi�ed as normal at (p; y); and if �iy(p; y) < 0, it is
classi�ed as inferior. Another interesting dividing line in classifying goods according to
their income elasticities is the number one. If �iy(p; y) > 1, the ith good is classi�ed as a
luxury; and if �iy(p; y) < 1, it is classi�ed as a necessity. For example, with Cobb-Douglas
preferences (7), the Marshallian demands are given by (8), in which case �iy = 1 (for all i),
since the Marshallian demands in this case are linear in income.
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The uncompensated (Cournot) price elasticities, �ij(p; y), can be calculated as (for i;
j = 1; : : : ; n)

�ij(p; y) =
@xi(p; y)

@pj

pj
xi(p; y)

.

If �ij(p; y) > 0, the goods are gross substitutes (meaning that when xj becomes more ex-
pensive, the consumer increases consumption of good xi and decreases consumption of good
xj). If �ij(p; y) < 0, they are gross complements (meaning that when xj becomes more ex-
pensive, the consumer reduces the consumption of xj and also of xi). If �ij(p; y) = 0, they
are independent. With Cobb-Douglas preferences (7), using the Marshallian demands (8),
the own-price elasticities are �ii = ��i=si (for all i), where si = pixi=y, and the cross-price
elasticities are �ij = 0, since the demand for the ith good depends only on the ith price.
The de�nitions given above are in gross terms, because they ignore the income e¤ect �

that is, the change in demand of good xi due to the change in purchasing power resulting
from the change in the price of good xj. The Slutsky equation, however, decomposes the
total e¤ect of a price change on demand into a substitution e¤ect and an income e¤ect. In
particular, di¤erentiating the second identity in

xi(p; y) = xi(p; C(p; u)) = exi(p; u)
with respect to pj and rearranging, we acquire the Slutsky equation

@xi(p; y)

@pj
=
@exi(p; u)
@pj

� xj(p; y)
@xi(p; y)

@y
,

for all (p; y), u = h(p; y), and i; j = 1; � � �; n. The derivative @xi(p; y)=@pj is the total e¤ect
of a price change on demand, while @exi(p; u)=@pj is the substitution e¤ect of a compensated
price change on demand, and �xj(p; y)@xi(p; y)=@y is the income e¤ect, resulting from a
change in price. Hicks (1936) suggested using the sign of the cross-substitution e¤ect (that is,
the change in compensated demand) to classify goods as substitutes, whenever @exi(p; u)=@pj
is positive. In fact, according to Hicks (1936), @exi(p; u)=@pj > 0 indicates substitutability,
@exi(p; u)=@pj < 0 indicates complementarity, and @exi(p; u)=@pj = 0 indicates independence.
As already noted, one important property of the Slutsky equation is that the cross-

substitution e¤ects are symmetric; that is, @exi(p; u)=@pj = @exj(p; u)=@pi. This symmetry
restriction may also be written in elasticity terms, as follows

�iy(p; y) +
�ij(p; y)

sj
= �jy(p; y) +

�
ji
(p; y)

si
.

The symmetrical terms in the above equation are the Allen elasticities of substitution, so
that the equation can be written, in terms of Hicksian demand elasticities, as

�aij =
e�ij(p; u)
sj

= �aji,
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where e�
ij
(p; u) = @ log exi(p; u)=@ log pj denotes the Hicksian elasticity of demand and �aij

denotes the Allen elasticity of substitution between goods i and j � see Allen (1938) for
more details. Hence, the Allen elasticity of substitution is the Hicksian demand elasticity
divided by the budget share; for this reason reporting both the Hicksian demand elasticity
and the Allen elasticity of substitution is redundant. Alternatively, since the Hicksian
demand elasticity is related to the Marshallian demand elasticity through the elasticity form
of the Slutsky equation, the Allen elasticities of substitution can be written in terms of
Marshallian demand elasticities as follows

�aij = �iy(p; y) +
�ij(p; y)

sj
= �jy(p; y) +

�
ji
(p; y)

si
= �aji. (16)

If �aij > 0, goods i and j are said to be Allen substitutes, in the sense that an increase in the
price of good j causes an increased consumption of good i. If, however, �aij < 0, then the
goods are said to be Allen complements, in the sense that an increase in the price of good j
causes a decreased consumption of good i.
The Allen elasticity of substitution is the traditional measure and has been employed

to measure net substitution behavior (with utility held constant) and structural instability
in a variety of contexts. There are, however, other elasticities that can be used to assess
the substitutability/complementarity relationship between goods and classify goods as com-
plements or substitutes. See Blackorby and Russell (1989) or Davis and Gauger (1996) for
more details. For example, the Morishima (1967) net elasticity of substitution can be used
to measure the percentage change in relative demands (quantity ratios) with respect to a
percentage change in one price. In particular, under the assumption that a change in pj=pi
is due solely to a change in pj, the Morishima elasticity of substitution for xi=xj is given by

�mij =
@ log

�exi(p; u)=exj(p; u) �
@ log(pj=pi)

=
@ log exi(p; u)
@ log pj

� @ log exj(p; u)
@ log pj

= e�ij(p; u)� e�jj(p; u) = sj ��aij � �ajj � , (17)

and measures the net change in the compensated demand for good i, when the price of good
j changes. As can be seen, a change in pj, holding pi constant, has two e¤ects on the
quantity ratio xi=xj: one on xi captured by e�ij(p; u) and one on xj captured by e�jj(p; u).
Goods will be Morishima substitutes (complements), if an increase in the price of j causes
xi=xj to decrease (increase).
The Morishima elasticity of substitution is a �two-good one-price� elasticity of substi-

tution, unlike the Allen elasticity of substitution, which is a �one-good one-price�elasticity
of substitution. Another �two-good one-price�elasticity of substitution that can be used
to assess the substitutability/complementarity relationship between goods is the Mundlak
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elasticity of substitution [see Mundlak (1968)],

�Uij =
@ log

�
xi(p; y)=xj(p; y)

�
@ log(pj=pi)

= �ij(p; y)� �jj(p; y)

= �mij + sj

�
�jy(p; y)� �iy(p; y)

�
. (18)

The Mundlak elasticity of substitution, like the Marshallian demand elasticity, is a mea-
sure of gross substitution (with income held constant). Goods will be Mundlak substitutes
(complements) if an increase in the price of j causes xi=xj to decrease (increase).
While either the Allen, Morishima, or Mundlak elasticity of substitution can be used

to stratify assets as substitutes or complements, they will yield di¤erent strati�cation sets.
See, for example, Davis and Gauger (1996). Thus, the choice of the appropriate elasticity
measure is very important. Comparing the Allen and Morishima elasticities of substitution,
for example, we see that if two goods are Allen substitutes, �aij > 0, they must also be
Morishima substitutes, �mij > 0. However, two goods may be Allen complements, �aij < 0,
but Morishima substitutes if

���ajj�� > ���aij��, suggesting that the Allen elasticity of substitution
always overstates the complementarity relationship. Moreover, the Allen elasticity of substi-
tution matrix is symmetric, �aij = �

a
ji, but the Morishima elasticity of substitution matrix is

not; Blackorby and Russell (1989) show that the Morishima elasticity of substitution matrix
is symmetric only when the aggregator function is a member of the constant elasticity of
substitution family.

4 Demand System Speci�cation

4.1 The Di¤erential Approach and the Rotterdam Model

One model that has been frequently used to test the theory and to estimate income elastic-
ities, own- and cross-price elasticities, as well as elasticities of substitution between goods is
the Rotterdam model, introduced by Theil (1965) and Barten (1966). As shown in Barnett
and Serletis (2008), if we take the total di¤erential of the logarithmic form of the Marshallian
demand function for good i, xi = xi(p; y), then

d log xi = �iyd log y +
nX
j=1

�ijd log pj,
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where �iy is the income elasticity and �ij is the price elasticity of good i with respect to the
price of good j. Using the Slutsky decomposition in elasticity terms, �ij = e�ij � �iysj, the
above equation can be written as

sid log xi = bi

 
d log y �

nX
j=1

sjd log pj

!
+

nX
j=1

cijd log pj, (19)

where bi = si�iy = pi@xi=@y is the marginal budget share of the ith good and cij = sie�ij.
Replacing the di¤erentials in (19) by �nite approximations and treating the bi�s and cij�s

as constant parameters, we get the absolute price version of the Rotterdam model, which is
linear in its parameters; another version is the relative price version, which is nonlinear in its
parameters. See Barnett and Serletis (this book) for more details regarding the di¤erential
approach to demand analysis and the absolute and relative price versions of the Rotterdam
model.

4.2 The Parametric Approach to Demand Analysis

The Rotterdam model that we just brie�y discussed avoids the necessity of using a particular
functional form for the utility function. In addition, it is entirely based on neoclassical
consumer demand theory, as discussed by Barnett and Serletis (this book). The proof of
the aggregated model�s consistency with economic theory does not require the existence of
a representative consumer, as shown by Barnett (1978).
However, after the publication of Diewert�s (1971) important paper, most of the demand

modeling literature has taken the approach of specifying the aggregator function with the
utility function of the representative consumer. This approach to empirical demand analysis
involves specifying a di¤erentiable form for the indirect utility function, and deriving the re-
sulting demand system. Using the demand system and relevant data, we then could estimate
the parameters and compute the income elasticities, the own- and cross-price elasticities, as
well as the elasticities of substitution of the aggregate representative consumer.

4.2.1 Globally Regular Functional Forms

For many years, the literature concentrated on the use of globally regular functional forms;
that is, forms that satisfy the theoretical regularity conditions for rational neoclassical eco-
nomic behavior globally at all positive prices and income. That approach primarily con-
centrated on speci�cations having pairwise elasticities of substitution that are constant,
independent of the quantities consumed of the pairs of goods. However, that approach ran
into a dead end, when Uzawa (1962) proved that it is not possible to produce a model that
simultaneously can have constant elasticities of substitution and also can attain arbitrary
elasticities of substitution.
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For example, the use of a Cobb-Douglas functional form in equation (7) imposes an
elasticity of substitution equal to unity between every pair of goods, and its use implies that
each good always accounts for a constant share of the expenditure. If this proposition is at
odds with the facts, as it is likely to be, the use of the Cobb-Douglas is inappropriate. Also,
a constant elasticity of substitution (CES) functional form,

u(x) =
nX
j=1

(ajx
r
j)
1=r, where 0 < aj < 1;�1 < r < 1, (20)

relaxes the unitary elasticity of substitution restriction imposed by the Cobb-Douglas, but
imposes the restriction that the elasticity of substitution between any pair of goods is always
constant, 1=(1� r). Again this is contrary to fact in almost all cases, except for the 2-good
case, in which there is only one pairwise elasticity of substitution.
The list of speci�c functional forms is boundless, but the de�ning property of the more

popular of these entities is that they imply limitations on the behavior of the consumer
that may be incorrect in practice. While the issue of their usefulness is ultimately an
empirical question, we feel that the constant elasticity-of-substitution, globally-regular class
of functions should be rejected, when the sample size is adequate to permit estimation of less
restrictive models, partly in view of the restrictive nature of their implicit assumptions, and
partly because of the existence of attractive alternatives. Among the alternatives are the
Rotterdam model and the �exible functional forms, to which we now turn. We shall make
a distinction between (i) �locally �exible�functional forms, (ii) �e¤ectively globally regular�
forms, (iii) �normalized quadratic �exible�functional forms, and (iv) �asymptotically globally
�exible�forms.

4.2.2 Locally Flexible Functional Forms

A locally �exible functional form is a second-order approximation to an arbitrary function.
In the demand systems literature there are two di¤erent de�nitions of second-order approxi-
mations, one by Diewert (1971) and another by Lau (1974). Barnett (1983a) has identi�ed
the relationship of each of those de�nitions to existing de�nitions in the mathematics of
local approximation orders and has shown that a second-order Taylor series approximation
is su¢ cient but not necessary for both Diewert�s and Lau�s de�nitions of second-order ap-
proximation.
Consider an n-argument, twice continuously di¤erentiable aggregator function, h(v). Ac-

cording to Diewert (1971), h(v) is a �exible functional form if it contains enough parameters
so that it can approximate an arbitrary twice continuously di¤erentiable function h� to the
second order at an arbitrary point v� in the domain of de�nition of h and h�. Thus h must
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have enough free parameters to satisfy the following 1 + n+ n2 equations

h(v�) = h�(v�); (21)

rh(v�) = rh�(v�); (22)

r2h(v�) = r2h�(v�), (23)

where rh(v) = @h(v)=@v and r2h(v) = @2h(v)=@vivj denotes the n� n symmetric matrix
of second-order partial derivatives of h(v) evaluated at v. The symmetry property follows
from the assumption that h(v) is twice continuously di¤erentiable.
Since both h and h� are assumed to be twice continuously di¤erentiable, we do not have

to satisfy all n2 equations in (23) independently, since the symmetry of second derivatives
(sometimes known as Young�s theorem) implies that @2h(v�)=@vi@vj = @2h(v�)=@vj@vi and
@2h�(v�)=@vi@vj = @2h�(v�)=@vj@vi for all i and j. Thus the matrices of second order
partial derivatives r2h(v�) and r2h�(v�) are both symmetric matrices. Hence, there are
only n(n + 1)=2 independent equations to be satis�ed in the restrictions (23), so that a
general locally �exible functional form must have at least 1+n+n(n+1)=2 free parameters.
To illustrate Diewert�s �exibility concept, let us consider the basic translog indirect utility

function, introduced by Christensen et al. (1975),

log h(v) = �0 +
nX
i=1

�i log vi +
1

2

nX
i=1

nX
j=1

�ji log vi log vj, (24)

where vj = pj=y, �0 is a scalar, �0 = [�1; � � �; �n] is a vector of parameters, and B = [�ij]
is an n � n symmetric matrix of parameters, for a total of 1 + n + n(n + 1)=2 parameters.
To show that (24) is a �exible functional form, we need to show that �0, �0, and B in (24)
satisfy conditions (21)-(23). With (24), conditions (21)-(23) can be written as (respectively)

�0 +

nX
i=1

�i log v
�
i +

1

2

nX
i=1

nX
j=1

�ij log v
�
i log v

�
j = log h

� (v�) ;

�i +
nX
j=1

�ij log v
�
j = rlog v�i

log h� (v�) , i = 1; � � �; n;

�ij = r2
log v�i log v

�
j
log h� (v�) , 1 � i � j � n.
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To show that we can satisfy these conditions, we can choose �0 and the elements of �0 and
B as follows

�0 = log h
� (v�)�

nX
i=1

�i log v
�
i �

1

2

nX
i=1

nX
j=1

�ij log v
�
i log v

�
j ;

�i = rlog v�i
log h� (v�)�

nX
j=1

�ij log v
�
j , i = 1; � � �; n;

�ij = r2
log v�i log v

�
j
log h� (v�) , 1 � i � j � n.

Another locally �exible functional form in the translog family of functional forms is the
generalized translog (GTL), introduced by Pollak and Wales (1980). The GTL reciprocal
indirect utility function is written as

log h(v) = �0 +
nX
k=1

�k log

�
pk

(y �
Pn

k=1 pkk)

�

+
1

2

nX
k=1

nX
j=1

�kj log

�
pk

(y �
Pn

k=1 pkk)

�
log

�
pj

(y �
Pn

k=1 pkk)

�
, (25)

where �0 is a scalar, �0 = [�1; � � �; �n] is a vector of parameters,  0 = [1; � � �; n] is a vector
of �committed�quantities, and B = [�ij] is an n� n symmetric matrix of parameters, for a
total of (n2 + 3n+ 2) =2 parameters. It is assumed that the consumer �rst purchases the
minimum required quantities and thereby expends p0. The consumer is then left with
the supernumerary expenditure, y�p0, to allocate in a discretionary manner. The share
equations, derived using the logarithmic form of Roy�s identity (11) are (for i = 1; � � �; n)

si =
pii
y
+

�
1� (

Pn
k=1 pkk)

y

�
�

�i +

nX
j=1

�ij log
�
pj= (y �

Pn
k=1 pkk)

�
nX
j=1

�j +
nX
i=1

nX
j=1

�ij log
�
pj= (y �

Pn
k=1 pkk)

� . (26)

With n goods the GTL model�s share equations contain n(n+ 5)=2 parameters.
It is to be noted that the basic translog (BTL) in (24) is a special case of the GTL. It

can be derived by imposing restrictions on the GTL form, namely,

i = 0, for all i. (27)
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Applying restriction (27) to the GTL (25), yields the BTL reciprocal indirect utility function
(24). The share equations of the BTL, derived using again the logarithmic form of Roy�s
identity, are (for i = 1; � � �; n)

si =

�i +
nX
j=1

�ij log vj

nX
j=1

�j +

nX
i=1

nX
j=1

�ij log vj

. (28)

With n assets the BTL model�s share equations contain n(n+ 3)=2 parameters.
Also, the linear translog (LTL), a homothetic special case of the GTL (or, equivalently,

a quasi-homothetic special case of the BTL) can be derived by imposing the restriction

nX
i=1

�ij = 0, for all j (29)

on the GTL. The LTL model�s share equations are (for i = 1; � � �; n)

si =
pii
y
+

�
1� (

Pn
k=1 pkk)

y

�
�

�i +
nX
j=1

�ij log
�
pj= (y �

Pn
k=1 pkk)

�
nX
j=1

�j

. (30)

This model has linear Engel curves (income-consumption paths for �xed prices), but does
not require them to pass through the origin. With n assets the LTL model�s share equations
contain n(n+ 5)=2 parameters.
Finally, the homothetic translog �exible form can be derived either by imposing restric-

tions (27) and (29) on (25) or by imposing restriction (29) on (24). The HTL model�s share
equations are (for i = 1; � � �; n)

si =

�i +
nP
j=1

�ij log vj

nP
j=1

�j

. (31)

With n assets the HTL model�s share equations contain n(n + 3)=2 parameters. The
homothetic translog is a generalization of the Cobb-Douglas and reduces to it when all of
the �ij are zero.
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Notice that estimation of each of (26), (28), (30), and (31) requires a parameter nor-
malization, as the share equations are homogeneous of degree zero in the ��s. Usually the
normalization

Pn
i=1 �i = 1 is used.

Another locally �exible functional form is the generalized Leontief (GL), introduced by
Diewert (1973) in the context of cost and pro�t functions. Diewert (1974) also introduced
the GL reciprocal indirect utility function,

h (v) = �0 +

nX
i=1

�iv
1=2
i +

1

2

nX
i=1

nX
j=1

�ijv
1=2
i v

1=2
j , (32)

where B = [�ij] is an n � n symmetric matrix of parameters and a0 and ai are other
parameters, for a total of (n2 + 3n+ 2) =2 parameters.
Applying Diewert�s (1974) modi�ed version of Roy�s identity, (12), to (32) the following

share equations result (for i = 1; � � �; n)

si =

�iv
1=2
i +

nP
j=1

�ijv
1=2
i v

1=2
j

nP
j=1

�jv
1=2
j +

nP
k=1

nP
m=1

�kmv
1=2
k v

1=2
m

. (33)

Since the share equations are homogeneous of degree zero in the parameters, the model
requires a parameter normalization. Barnett and Lee (1985) use the following normalization

2
nX
i=1

�i +
nX
i=1

nX
j=1

�ij = 1.

Deaton and Muellbauer (1980) also introduced another locally �exible demand system,
the Almost Ideal Demand System (AIDS). It is given by (for i = 1; � � �; n)

si = �i +
nX
j=1

ij log pj + �i log
� y
P

�
, (34)

where the price de�ator of the logarithm of income is

logP = �0 +
nX
k=1

�k log pk +
1

2

nX
j=1

nX
k=1

kj log pk log pj.

For more details regarding the AIDS, see Deaton and Muellbauer (1980), Barnett and
Serletis (2008), and Barnett and Seck (2008).
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4.2.3 E¤ectively Globally Regular Flexible Functional Forms

Locally �exible demand models such as the generalized Leontief, translog, and AIDS have
revolutionized microeconometrics, by providing access to all neoclassical microeconomic the-
ory in econometric applications. However, as argued by Caves and Christensen (1980),
Guilkey and Lovell (1980), Barnett and Lee (1985), and Barnett et al. (1985, 1987), among
others, most popular locally �exible functional forms have very small regions of theoretical
regularity, thereby giving up global integrability.
The problem of choosing between globally regular models (such as the Cobb-Douglas

and the CES), which are not locally �exible, and locally �exible models (such as the gener-
alized Leontief, translog, and AIDS), which are not theoretically globally regular, led to the
development of locally-�exible functional forms, which have larger regularity regions.
Cooper and McLaren (1996) classify such models as �e¤ectively globally regular��exible

functional forms. These functions typically have regular regions that include almost all data
points in the sample. In addition, the regularity region increases as real expenditure levels
grow, as is often the case with time series data. Furthermore, these functions provide more
general Engel curve approximations, especially when income varies considerably.
Examples of these functions include Barnett�s (1983a, 1985) min�ex Laurent (ML) models

[see also Barnett (1983b), Barnett and Lee (1985), and Barnett et al. (1985, 1987)], based on
the Laurent series expansion, the quadratic AIDS (QUAIDS) model of Banks et al. (1997),
and the general exponential form (GEF) of Cooper and McLaren (1996). Barnett and Serletis
(2008) provide a brief discussion of these models.

4.2.4 Normalized Quadratic Flexible Functional Forms

The e¤ectively globally regular �exible functional forms (min�ex Laurent, quadratic AIDS,
and the general exponential form) appear to violate the theoretically appropriate curvature
conditions less often than the generalized Leontief, translogs, and the AIDS. However, ef-
fectively globally regular �exible functional forms also exhibit regions whithin which the
curvature conditions are violated. Even if none of the data lie in those irregular regions,
forecasting and simulation could enter those regions. This problem led Diewert and Wales
(1988) to propose two locally �exible systems of functional forms for consumer demand func-
tions for which the theoretical curvature conditions can be imposed globally. The �rst system
is derived from a normalized quadratic (NQ) reciprocal indirect utility function and the sec-
ond is derived from a NQ expenditure function. See Diewert and Wales (1988) or Barnett
and Serletis (2008) for more details. But those models lose their �exibility, if monotonicity
also is imposed. Regularity requires both curvature and monotonicity conditions.

19



4.3 Asymptotically Globally Flexible Functional Forms

The functional forms discussed so far are capable of approximating an arbitrary function
locally (at a single point). A path-breaking innovation in this area has been provided
by Gallant (1981) in his introduction of the semi-nonparametric inference approach, which
uses series expansions in in�nite dimensional parameter spaces. The idea behind the semi-
nonparametric approach, is to expand the order of the series expansion, as the sample size
increases, until the semi-nonparametric function converges asymptotically to the true data
generating process.
Semi-nonparametric functional forms are globally �exible in the sense that the model

asymptotically can reach any continuous function. Inferences with this approach do not
maintain a speci�cation containing a �nite number of parameters, so that asymptotic in-
ferences are free from any speci�cation error. Two globally �exible functional forms in
general use are the Fourier �exible functional form, introduced by Gallant (1981), and the
Asymptotically Ideal Model (AIM), introduced by Barnett and Jonas (1983) and employed
and explained in Barnett and Yue (1988).
These functional forms are discussed in Serletis and Shahmoradi (2005) and also in Bar-

nett and Serletis (2008). Unlike other approaches, this state-of-the-art approach equates
economic theory with econometrics by permitting the model asymptotically to span the rel-
evant theoretical space. Recently, Serletis and Shahmoradi (2008) estimated the AIM(k)
demand systems for k = 1; 2; 3, where k is the order of the Müntz-Szatz series expansion, on
which the AIM model is based. They found that the AIM(3) model, estimated subject to
global curvature, currently provides the best speci�cation for research in semi-nonparametric
modeling of consumer demand systems.

5 Engel Curves and the Rank of Demand Systems

Applied demand analysis uses two types of data: time series data and cross sectional data.
Time series data o¤er substantial variation in relative prices and less variation in income,
whereas cross sectional data o¤er limited variation in relative prices and substantial variation
in income levels. In time series data, prices and income vary simultaneously, whereas in
household budget data prices are almost constant. Household budget data give rise to the
Engel curves (income expansion paths), which are functions describing how a consumer�s
purchases of some good vary as the consumer�s income varies. That is, Engel curves are
Marshallian demand functions, with the prices of all goods held constant. Like Marshallian
demand functions, Engel curves may also depend on demographic or other nonincome con-
sumer characteristics (such as, for example, age and household composition), which we have
chosen to ignore in this chapter.
Engel curves can be used to calculate the income elasticity of a good and hence whether
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a good is an inferior, normal, or luxury good, depending on whether income elasticity is
less than zero, between zero and one, or greater than one, respectively. They are also used
for equivalence scale calculations (welfare comparisons across households) and for determin-
ing properties of demand systems, such as aggregability and rank. For many commodities
standard empirical demand systems do not provide an accurate picture of observed behavior
across income groups. Hence, in the next section we discuss functional forms in terms of
their ability to capture the Engel curve structure of the data.

5.1 Exact Aggregation

We begin our discussion of the rank of demand systems with the de�nition of exactly aggre-
gable demand systems. A demand system is �exactly aggregable�if demands can be summed
across consumers to yield closed form expressions for aggregate demand. Exactly aggregable
demand systems are demand systems that are linear in functions of y, as follows,

si(p; y) =
RX
r=1

cir(p)'r(y), (35)

where the cir(p)�s are the coe¢ cients on 'r(y), which is a scalar valued function independent
of p, and R is a positive integer. Gorman (1981), extending earlier results by Muellbauer
(1975, 1976), proved in the context of exactly aggregable demand systems that integrability
(i.e., consistency with utility maximization) forces the matrix of Engel curve coe¢ cients to
have rank three or less. The rank of a matrix is de�ned as the maximum number of linearly
independent columns. Other related exact aggregation theorems can be found in Banks et
al. (1997).

5.2 The Rank of Demand Systems

Lewbel (1991) extended Gorman�s rank idea to all demand systems (not just exactly aggre-
gable demand systems), by de�ning the rank of a demand system to be the dimension of
the space spanned by its Engel curves, holding demographic or other nonincome consumer
characteristics �xed. He showed that demands that are not exactly aggregable can have
rank higher than three and still be consistent with utility maximization.
Formally, the rank of any given demand system x(p; y) is the smallest value of R such

that each si can be written as

si(p; y) =

RX
r=1

�ir(p)fr(p; y), (36)

for some R � n, where for each r = 1; � � �; R, �ir is a function of prices and fr is a scalar
valued function of prices and income. That is, the rank of the system is the number of
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linearly independent vectors of price functions. All demand systems have rank R � n,
where n is the number of goods. Clearly, demands that are not exactly aggregable can have
rank greater than three (i.e., R > 3). Equation (36) is a generalization of the concept of
rank. That generalization, de�ned by Gorman (1981), only applies to exactly aggregable
demands. Notice that fr in equation (36) depends on p and y, whereas 'r in equation (35)
is not a function of p.
Hence, any demand system has rank R, if there exist R goods such that the Engel curve

of any good equals a weighted average of the Engel curves of those R goods. The rank of an
integrable demand system determines the number of price functions on which the indirect
utility function and the cost or expenditure function depend on. See, for example, Lewbel
(1991).

5.2.1 Demand Systems Proportional to Expenditure

Homothetic demand systems, with Engel curves being rays from the origin, have rank one.
Rank one demand systems, such as the Cobb-Douglas, CES, and homothetic translog, exhibit
expenditure proportionality (so that the budget share of every good is independent of total
expenditure). This contradicts Engel�s law, according to which the budget share of food is
smaller for rich than for poor households.
Rank one demand systems can be written as

xi(p; y) = bi(p)y,

and are homothetic. For example, the demand system of the Cobb-Douglas utility function
(7) is given by (8), that of the CES utility function (20) is

xi(p; y) =
p
1=(r�1)
iPn

j=1 p
r=(r�1)
j

y,

and that of the homothetic translog, equation (24) with restriction (29) imposed, is given by
(31), in budget share form.
Clearly, expenditure proportionality implies marginal budget shares that are constant and

in fact equal to the average budget shares. Because of this, the assumption of expenditure
proportionality has little relevance in empirical demand analysis.

5.2.2 Demand Systems Linear in Expenditure

A demand system that is linear in expenditure is of the form

xi(p; y) = ci(p) + bi(p)y.
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If ci(p) = 0 (for all i) then demands are homothetic. Gorman (1961) showed that any
demand system that is consistent with utility maximization and linear in expenditure must
be of the form

xi(p; y) = fi(p)�
gi(p)

g(p)
f(p) +

gi(p)

g(p)
y

= fi(p) +
gi(p)

g(p)
[y � f(p)] , (37)

where g(p) and f(p) are functions homogeneous of degree one, and gi(p) and fi(p) denote
the partial derivative of g(p) and f(p) with respect to the ith price. Such demand systems
are generated by an indirect utility function of the �Gorman polar form,�

h(p; y) =
y � f(p)
g(p)

. (38)

To see this, apply Roy�s identity (10) to (38) to get (37).
An example of a demand system linear in expenditure is the �linear expenditure system,�

xi(p; y) = bi �
ai
pi

nX
k=1

pkbk +
ai
pi
y,

generated by the (Stone-Geary) utility function

u(x) =
nX
i=1

ai log (xi � bi) , ai > 0, (xi � bi) > 0,
nX
i=1

ai = 1,

which is homothetic relative to the point b = (b1; � � �; bn) as origin, or, equivalently, by
an indirect utility function of the Gorman polar form, (38), with f(p) =

Pn
k=1pkbk and

g(p) =
Q
pakk , with

P
ak = 1, so that fi(p) = bi and gi(p)=g(p) = ai=pi.

Demand systems linear in expenditure are rank two and have linear Engel curves, but
not necessarily through the origin. Linearity in expenditure implies marginal budget shares
that are independent of the level of expenditure, suggesting that poor and rich households
spend the same fraction of an extra dollar on each good. This hypothesis, as well as the
hypothesis of expenditure proportionality, are too restrictive for the analysis of household
budget data.

5.2.3 Demand Systems Linear in the Logarithm of Expenditure

Muellbauer (1975) has studied �two-term�demand systems of the general form

xi(p; y) = ci(p)y + bi(p)f(y), (39)
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for any function f(y). Homothetic demand are obtained, if f(y) = 0. He shows that if
f(y) 6= 0, then f(y) must be either equal to yk with k 6= 1 [the �price independent generalized
linearity�(PIGL) class] or equal to y log y [the �price independent generalized logarithmic�
(PIGLOG) class].
Hence, the PIGLOG class of demand systems is linear in the logarithm of total expendi-

ture and has the form
xi(p; y) = ci(p)y + bi(p)y log y,

with expenditure entering linearly and as a logarithmic function of y. Muellbauer (1975) has
shown that theoretically plausible demand systems of the PIGLOG form must be written as

xi(p; y) =
gi(p)

g(p)
y � Gi(p)

G(p)

h
log y � log g(p)

i
y, (40)

where G(p) is homogeneous of degree zero, G(p) = G(�p), and g(�p) is homogeneous of
degree one, g(�p) = �g(p). The indirect utility function associated with (40) is

h(p; y) = G(p)
h
log y � log g(p)

i
. (41)

To see this, apply Roy�s identity (10) to (41) to get (40).
Examples of PIGLOG demand systems are the log translog (log TL), a special case of the

basic translog (28) with
Pn

i=1

Pn
j=1�ij = 0 imposed, so that y drops out of the denominator

of (28), and the AIDS (34). For example, the AIDS demand system is a special case of (41)
with

G(p) =
nY
k=1

p��kk ,
nX
k=1

�k = 0,

and

log g(p) = �0 +
nX
k=1

�k log pk +
1

2

nX
k=1

nX
j=1

kj log pk log pj,

with ij = ji,
Pn

k=1 kj = 0, and
Pn

k=1 �k = 1.
It is to be noted, however, that most of the commonly used PIGLOG speci�cations are

rank two, and thus have limited �exibility in modelling the curvature of Engel curves.

5.2.4 Demand Systems Quadratic in Expenditure

Lewbel (1987a) has studied �three-term�demand systems of the following form

xi(p; y) = ci(p) + bi(p)y + ai(p)f(y). (42)

Equation (42) is a special case of Gorman�s (1981) equation (35), with r ranging from 1 to
3 and '1(y) = 1, '2(y) = y, and '3(y) = f(y). Gorman�s (1981) main result, that the
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matrix of Engel curve coe¢ cients cannot have rank higher than three, is true in this case,
since that matrix, [c(p) b(p) a(p)], only has three columns. Lewbel (1987a) showed that
in equation (42), f(y) must be either 0, yk, y log y, or log y, and that the only f(y) that
yields full rank-three demand systems is y2. Hence, one way to relax the assumption that
demand systems are linear in expenditure is to specify demand systems that are quadratic
in expenditure, as follows

xi(p; y) = ci(p) + bi(p)y + ai(p)y2.

Ryan and Wales (1999), following Howe et al. (1979) and van Daal and Merkies (1989),
argue that for a quadratic demand system to be theoretically plausible, the demand functions
must be of the form

xi(p; y) =
1

g(p)2

�
ri(p)�

gi(p)

g(p)r(p)

�
[y � f(p)]2

+
gi(p)

g(p)
[y � f(p)] + fi(p) + �

�
r(p)

g(p)

��
ri(p)�

gi(p)

g(p)
r(p)

�
, (43)

where there are no restrictions on the function �(�) and the functions f(p), g(p), and r(p)
are restricted to be homogeneous of degree one in prices. In equation (43), fi(p), gi(p),
and ri(p) are the �rst partial derivatives of f(p), g(p), and r(p) with respect to pi. The
demand function (43) can be simpli�ed by assuming �(:) = 0 and de�ning r(p) to be the
product of g(p) and a function h(p), that is homogeneous of degree zero in prices, so that
the coe¢ cient of the quadratic term in (43) becomes hi(p)=g(p). In that case (43) reduces
to

xi(p; y) =
hi(p)

g(p)
[y � f(p)]2 + gi(p)

g(p)
[y � f(p)] + fi(p), (44)

whose corresponding indirect utility function is

h(p; y) = � g(p)

y � f(p) � h(p). (45)

To see this, apply Roy�s identity (10) to (45) to get (44).
Equation (45) is the general form of the indirect utility function that can generate

quadratic Engel curves (that is, rank-three demand systems). The di¤erence between the
Gorman polar form indirect utility function (38) and the more general indirect utility func-
tion (45) is that the latter adds a term, h(p), that is homogeneous of degree zero in prices,
to the Gorman polar form indirect utility function (38).
The �rst functional form proposed along these lines is the quadratic AIDS (known as

QUAIDS), which we mentioned in Section 4. As already noted, the QUAIDS is an extension
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of the simple AIDS, having expenditure shares linear in log income and in another smooth
function of income. See Banks et al. (1997) for more details.
Following Banks et al. (1997), Ryan and Wales (1999) modi�ed the translog (24), GL

(32), and NQ demand systems and introduced three new rank-three demand systems, having
expenditure shares quadratic in expenditure. The three new demand systems are called
the �translog-quadratic expenditure system,��GL-quadratic expenditure system,�and �NQ-
quadratic expenditure system.�
To demonstrate, we consider the NQ expenditure function, introduced by Diewert and

Wales (1988),

C(p; u) = a0p+

�
b0p+

1

2

p0Bp

�0p

�
u, (46)

where the parameters of the model consist of a0 = [a1; � � �; an], b0 = [b1; � � �; bn], and the
elements of the n�n symmetric B = [�ij] matrix. The nonnegative vector of predetermined
parameters �0 = (�1; � � �; �n) is assumed to satisfy

�0p� = 1, �j � 0 for j = 1; � � �; n, (47)

where p�j is the jth element of the reference vector. Moreover, the following restrictions are
also imposed

nX
j=1

ajp
�
j = 0; (48)

nX
j=1

�ijp
�
j = 0, i = 1; � � �; n. (49)

Hence, there are n(n+ 5)=2 parameters in (46), but the imposition of the above restrictions
reduces the number of parameters to (n2+3n� 2)=2. The NQ expenditure function de�ned
by (46)-(49) is a Gorman polar form, and the preferences that are dual to it are quasi-
homothetic.
Applying Shephard�s lemma (15) to (46) yields the share equations of the NQ expenditure

system (for i = 1; � � �; n)

si = aivi +
(1��0v)

�
bi + (�

0v)�1Bv � 1
2
(�0v)�2 v0Bv�

�
vi

b0v + 1
2
(�0v)�1 v0Bv

. (50)

Since the share equations in (50) are homogeneous of degree zero in the parameters, Diewert
and Wales (1988) impose the normalization

Pn
j=1 bj = 1. Also, regarding the curvature

properties of the NQ expenditure function, it is locally �exible in the class of expenditure

26



functions satisfying local money-metric scaling, and it retains this �exibility when concavity
needs to be imposed. See Diewert and Wales (1988) for more details.
In developing the NQ-QES, Ryan and Wales (1999) choose the f(p), g(p), and h(p)

functions in (45) as follows

f(p) =

nX
k=1

pkdk; (51)

g(p) =
nX
k=1

pkbk +
1

2

 Pn
k=1

Pn
j=1BkjpkpjPn

k=1 �kpk

!
; (52)

h(p) =
nX
k=1

�k log pk,
nX
k=1

�k = 0. (53)

Substituting (51)-(53) in (45) and applying Roy�s identity (10) to (45) yields the demand
system (for i = 1; � � �; n)

xi(p; y) =
�i

pig(p)

 
y �

nX
k=1

pkdk

!2

+

2666664
bi +

nX
k=1

Bikpk

, 
nX
k=1

�kpk

!
� 1

2
�i

nX
k=1

nX
j=1

Bkjpkpj

, 
nX
k=1

�kpk

!2
g(p)

3777775

�
 
y �

nX
k=1

pkdk

!
+ di,

where ak, bk, dk, and Bkj are unknown parameters, and the ak > 0 are predetermined
parameters, k; j = 1; � � �; n. The B � [�ij] matrix also satis�es the following two restrictions,
as in the common NQ model,

�ij = �ji, for all i; j;

Bp� = 0, for some p� > 0.
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The development of the GL-QES and TL-QES follows a similar pattern. See Ryan and
Wales (1999) for more details.
The QUAIDS, translog-quadratic expenditure system, GL-quadratic expenditure system,

and NQ-quadratic expenditure system are locally �exible in the Diewert sense and also are
rank-three demand systems, thereby allowing more �exibility in modelling income distribu-
tion than the AIDS, translog, GL, and NQ models.

5.2.5 Fractional Demand Systems

Lewbel (1987b) has studied demand systems of the �fractional�form

xi(p; y) =
ci(p)f(y) + bi(p)g(y)

c(p)F (y) + b(p)G(y)
, (54)

where f(y), g(y), F (y), and G(y) are di¤erentiable functions of income and ci(p), bi(p),
c(p), and b(p) are di¤erentiable functions of prices only. He shows that the budget shares
of fractional demand systems can always be written as

si(p; y) =
ci(p) + bi(p)f(y)

1 + b(p)f(y)
, (55)

where f(y) must be either 0, log y, yk, or tan(k log y) for k 6= 0. As can be seen, fractional
demands are proportional to two-term demands. Moreover, if f(y) = 0 in equation (55), ho-
mothetic demands obtain and if b(p) = 0, Gorman polar form demands obtain, either PIGL
demands or PIGLOG demands, corresponding to f(y) = yk or f(y) = log y, respectively.
For f(y) = y2 equation (55) reduces to what Lewbel (1987b) refers to as �EXP�demands;
the min�ex Laurent demand system that we mentioned in Section 4 is a member of the EXP
class of demand systems.
As Lewbel (1987b) puts it, fractional demand systems provide a parsimonious way of

increasing the range of income response patterns. In fact, an advantage of fractional demands
(54) over three-term demands (42) is that they require the estimation of only one more
function of prices, b(p), than two-term demands (39), whereas three-term demands require
the estimation of one more function of income, f(y), and n � 1 functions of prices, ai(p),
than two-term demands.
For analyses involving substantial variation in income levels across individuals, increased

�exibility in global Engel curve shapes is required and fractional demand systems in the form
of equation (55) are likely to be superior to two-term demand systems (such as homothetic,
PIGL, and PIGLOG systems) and three-term demand systems (such as the quadratic AIDS,
GL-QES, TL-QES, and NQ-QES). Moreover, as already noted, fractional demand systems,
like the min�ex Laurent, have larger regularity regions than two- and three-term demand
systems.
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6 Estimation Issues

In order to estimate share equation systems, such as (26), (28), (30), (31), (33), (34), and
(50), a stochastic version must be speci�ed. Demand systems are usually estimated in budget
share closed form, in order to minimize heteroskedasticity problems, with only exogenous
variables appearing on the right-hand side. It often is assumed that the observed share in the
ith equation deviates from the true share by an additive disturbance term ui. Furthermore,
it is usually assumed that u � N (0;

IT ), where 0 is a null vector, 
 is the n�n symmetric
positive de�nite error covariance matrix, I is the identity matrix, and 
 is the Kronecker
product.
With the addition of additive errors, the share equation system can be written in matrix

form as
st = g(vt; #) + ut, (56)

where s = (s1; � � �; sn)0, g(v; #) = (g1 (v; #) ; � � �; gn (v; #))
0, # is the parameter vector to be

estimated, and gi (v; #) is given by the right-hand side of systems, such as (26), (28), (30),
(31), (33), (34), and (50).
The assumption made about ut in (56) permits correlation among the disturbances at

time t, but rules out the possibility of autocorrelated disturbances. This assumption and
the fact that the shares satisfy an adding up condition imply that the errors across all
equations are linearly related and that the error covariance matrix is singular. Barten
(1969) has shown that this problem can be handled by arbitrarily deleting any equation
from the system. When the errors are homoskedastic and non-autocorrelated, the resulting
estimates are invariant to the equation deleted, and the parameter estimates of the deleted
equation can be recovered from the restrictions imposed.
Equation (56) can be estimated using di¤erent methods, including maximum likelihood

and Bayesian methodology, as recently discussed by Barnett and Serletis (2008). In the
case, for example, of maximum likelihood estimation, if the disturbances in (56) are multi-
variate normally distributed, then maximum likelihood estimation of (56) is equivalent to
maximizing the log likelihood function for a sample of T observations,

logL (s j� ) = �MT
2
ln (2�)� T

2
ln j
j � 1

2

TX
i=1

u0t

�1ut,

where � = (#;
). In the relevant class of (�seemingly unrelated regression�) models,
maximization of logL (s j� ) is equivalent to minimization of j
j, as shown by Barnett (1976),
who provided the relevant asymptotics for the maximum likelihood estimator within the
relevant class of nonlinear systems under the customary assumptions. See Barnett and
Serletis (2008) for more details regarding estimation issues and a number of under-researched
complications in this area.
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6.1 Theoretical Regularity

The usefulness of �exible functional forms depends on whether they satisfy the theoretical
regularity conditions of positivity, monotonicity, and curvature, and in the empirical demand
systems literature there often has been a tendency to ignore theoretical regularity or not to
report the results of full regularity checks. In fact, as Barnett (2002, p. 199) observed in his
Journal of Econometrics Fellow�s opinion article: �without satisfaction of both curvature and
monotonicity, the second-order conditions for optimizing behavior fail, and duality theory
fails. The resulting �rst-order conditions, demand functions, and supply functions become
invalid.�
Once a demand system is estimated, the regularity conditions can be checked as follows:

� Positivity is checked by direct computation of the estimated indirect utility functionbh(v). It is satis�ed if bh(v) > 0, for all t.
� Monotonicity is checked by direct computation of the values of the �rst gradient vector
of the estimated indirect utility function. Monotonicity is satis�ed if rbh(v) < 0, where
rbh(v) = @bh(v)=@v.

� Curvature requires that the Slutsky matrix be negative semide�nite and can be checked
by performing a Cholesky factorization of that matrix. The Cholesky values must
be nonpositive, since a matrix is negative semide�nite, if its Cholesky factors are
nonpositive. See Lau (1978, Theorem 3.2). Curvature alternatively can be checked by
examining the Allen elasticities of substitution matrix, if the monotonicity condition
holds. This matrix must be negative semide�nite.

If regularity is not attained, some models can be estimated by imposing regularity, thereby
treating the curvature and monotonicity properties as maintained hypotheses. In the case
of the locally �exible functional forms, for example, curvature can be imposed using the pro-
cedure suggested by Ryan and Wales (1998). But simultaneous imposition of monotonicity
on these models, as required for regularity, can seriously damage �exibility. In the context
of the globally �exible functional forms (Fourier and AIM) curvature, and monotonicity can
be imposed using the procedures suggested by Gallant and Golub (1984). For a discussion of
these methods for imposing theoretical regularity on locally and globally �exible functional
forms, see Serletis and Shahmoradi (2005, 2007) and Barnett and Serletis (2008).

6.2 Elasticity Calculations

As we noted earlier, a system of budget share equations, such as (56), provides a complete
characterization of consumer preferences over goods and can be used to estimate the income
elasticities, the own- and cross-price elasticities, as well as the elasticities of substitution.
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In particular, the elasticities can be calculated directly from the estimated budget share
equations, rearranged in the form

xi =
siy

pi
; i = 1; : : : ; n.

For example, the uncompensated (Cournot) price elasticities, �ij(p; y), can be calculated as

�ij(v) =
@si
@vj

vj
si
� �ij; i; j = 1; � � �; n,

where �ij = 1 for i = j and 0 otherwise. The income elasticities, �iy(p; y), can be calculated
as

�iy(v) = �
nX
j=1

�ij(v); i = 1; � � �; n.

The Allen, Morishima, and Mundlak elasticities of substitution can then be calculated
using equations (16), (17), and (18), respectively.

7 Conclusion

We have provided a glimpse of one of the most interesting and rapidly expanding areas of
current research � the measurement of consumer preferences and the estimation of demand
systems. But as we noted in the introduction, we only dealt with consumer choice in a
static framework.
The static neoclassical model of consumer choice can be extended to accommodate taste

change, the introduction of new goods, and changes in the characteristics of the available
goods.3 One of these (widely used) extensions is the theory of household production, which
integrates consumer choice theory with the theory of the �rm. See Becker (1965), Lancaster
(1966), and Barnett (1977). Finally, merging household production theory with the theory
of intertemporal consumer choice gives rise to dynamic household production theory. These
and other important extensions of the static neoclassical theory of consumer choice are
well beyond the objectives of this chapter. See LaFrance (2001) for a summary of the
current status of household production theory, dynamic household production theory, and
the microeconomic theory of consumer choice in an intertemporal framework.

3Changing tastes has become the subject of much research, but usually only through the habit formation
mechanism. More general explorations of time varying tastes have been rare, with a notable exception being
Basmann, Molina, and Slottje (1983).
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