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Modeling Long Memory in REITs 
 

Abstract 
 

One stylized feature of financial volatility impacting the modeling process is long 

memory. This paper examines long memory for alternative risk measures, observed 

absolute and squared returns for Daily REITs and compares the findings for a market 

equity index. The paper utilizes a variety of tests for long memory finding evidence 

that REIT volatility does display persistence. Trading volume is found to be strongly 

associated with long memory.  The results do however suggest differences in the 

findings with regard to REITs in comparison to the broader equity sector.  
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Modeling Long Memory in REITs 
 

 

1. Introduction 

The continued development and increased investor awareness of the Real Estate 

Investment Trusts (REIT) sector has led to a dramatic increase in daily trading in the 

sector in recent years. SNL Financial estimate that average daily volume has increase 

from just over 7m shares in 1996 to over 40m shares in 2005. In addition, as the sector 

continues to mature and develop there will be is increased interest in derivative 

products based on the sector. At present a number of OTC (over-the-counter) products 

are available, while the Chicago Board Options Exchange (CBOE) provides traded 

options on the Dow Jones Equity REIT Index. The growth in both traded and OTC 

derivative products based on REITs furthers the interest in the dynamics of the sector 

at higher frequencies such as daily intervals. Furthermore, an examination of the 

volatility of the sector becomes more important as not only daily trading increases, 

but also as a result of its role in derivative pricing. 

 

In contrast to the large literature that has examined the return behavior of REITs, very 

few examine volatility in the sector, and even fewer use high frequency data. Two 

early papers on REIT volatility (Devaney, 2001 and Stevenson, 2002a) both analyzed 

monthly data. The analysis conducted by Devaney (2001) was primarily concerned 

with the sensitivity of REIT returns and volatility to interest rates and was undertaken 

using a GARCH-M framework. The Stevenson (2002a) paper was, in contrast, 

concerned with volatility spillovers across both different REIT sectors, and between 

REITs and the equity and fixed-income markets. Four recent papers have examined 

various aspects of daily REIT volatility. Winniford (2003) concentrates on seasonality 

in REIT volatility. The author finds strong evidence that volatility in Equity REITs 

varies on a seasonal basis, with observed increased volatility in April, June, 

September, October and November. Cotter & Stevenson (2006) utilize a multivariate 

GARCH model to analyze dynamics in REIT volatility. Using a relatively short and 

quite distinct period of study (1999-2003) they find an increasing relationship 

between Equity REITs and mainstream equities in terms of both returns and volatility. 

Bredin et al. (2008), as with the Devaney (2001) paper, concentrate on the specific 

issue of interest rate sensitivity, examine the impact of unanticipated changes in the 
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Fed Funds Rate on REIT volatility. The results show a significant response in REIT 

volatility to unanticipated rate changes, however in contrast to much of the broader 

equity market evidence no evidence of asymmetry in the response in found. The final 

paper to have examined daily REIT volatility is the one most similar to the current 

paper. Najand & Lin (2004) utilize both GARCH and GARCH-M models in their 

analysis, reporting that volatility shocks are persistent. 

 

This persistence in volatility is a common empirical finding in financial economics 

and is studied extensively in Taylor (1986). Whereas asset returns have largely been 

found to contain very little autocorrelation, it has been noted in a large number of 

papers across different asset classes that autocorrelation in various measures of 

volatility does exist at significant levels and remains over a large number of lags
1
. 

This effect, referred to as long memory, has been documented across a large sphere of 

the finance literature from macroeconomic series such as GNP (Diebold & 

Rudebusch, 1989) to exchange rate series (Baillie et al., 1996; Andersen & Bollerslev, 

1997a, 1997b) at low and relatively high frequencies. Moreover, it is documented for 

equity index series at daily intervals (Ding et al., 1993, Ding & Granger, 1996).  

 

This paper examines the long memory properties of alternative risk measures, 

observed absolute and squared returns for REITs and compares these to the S&P500 

composite index. Analysis of long memory has been overlooked and we benchmark 

our REIT findings against the broader equity market.  Specifically, the long memory 

property and its characteristics are explored. The long memory property occurs where 

volatility persistence remains at large lags and the series are fractionally integrated. 

Fractionally integrated series are integrated to order d where 0 < d < 1 unlike 

integrated series of order 1, d = 1, and non-stationary series of order 0, d = 0. 

Fractionally integrated series have observations far apart in time that may exhibit 

weak but non-zero correlation. Much focus has been on the absolute returns 

series,
k

tR , or a squared returns series, [Rt
2
]

k
, for different power transformations, 

k>0. This property adds to the general clustering condition usually referred to in the 

context of squared returns persistence originally modeled in Engle’s (1982) ARCH 

paper. There are daily cycles to the dependence structure giving rise to daily 

seasonality that exhibits a slow decay of the autocorrelation structure but also 



 4 

involves a u-shaped cyclical pattern (Andersen & Bollerslev, 1997a, 1997b). In 

addition, Ding et al. (1993) indicate that this non-linear dependence is strongest for 

absolute volatility with a power transformation of k=1 and as a consequence they 

suggest that parametric modeling of volatility should focus on absolute returns rather 

than the commonly used squared returns.   

 

This paper begins by examining the autocorrelation structure of the REIT returns and 

volatility series. It then formally tests for the long memory property and measures the 

magnitude of the fractional integration parameter. In terms of model building, there 

are several approaches from linear and non-linear perspectives that could be applied. 

This paper fits two long memory volatility models, Fractionally Integrated GARCH 

(FIGARCH) and Fractionally Integrated Exponential GARCH (FIEGARCH) that 

allow for asymmetry. Baillie et al. (1996) find that these models have considerable 

success in modeling daily equity returns and we will investigate whether these 

GARCH models can capture the long memory properties of daily REITS. The paper 

examines the association between volume and volatility in the long memory volatility 

models. The paper proceeds as follows. In Section 2, long memory is discussed. The 

section incorporates a presentation and discussion of our GARCH models that are 

fitted to the daily series’. Details of the series and data capture follow in Section 3. 

Section 4 presents the empirical findings. It begins by briefly describing the indicative 

statistics of the volatility series’, followed by a thorough analysis of their long 

memory characteristics. In addition, the ability of the GARCH processes to model 

volatility persistence is presented. Finally, a summary of the paper and some 

conclusions are given in section 5. 

 

 

2. Long Memory 

Baillie (1996) shows that long memory processes have the attribute of having very 

strong autocorrelation persistence before differencing, and thereby being non-

stationary, whereas the first differenced series does not demonstrate persistence and is 

stationary. However, the long memory property of these price series is not evident 

from just first differencing alone, but has resulted from analysis of the associated risk 

measures. In fact financial returns themselves have only been found to exhibit short 

memory, with significant first order dependence that dissipates rapidly over 
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subsequent lags. Thus the finance literature has concentrated its analysis of long 

memory on the volatility series and we follow this convention.  

 

Long memory properties may be investigated by focusing on the absolute returns 

series denoted absolute volatility, 
k

tR , or the squared returns series denoted squared 

volatility, [Rt
2
]
k
, and on their power transformations, where k>0.

2
 Absolute volatility 

is examined as Davidian & Carroll (1987) find that absolute realizations are more 

robust in the presence of fat-tailed observations found in financial series than their 

squared counterparts.  Moreover, empirical analysis of financial time series suggests 

that the long memory feature dominate for absolute over squared realizations (see 

Ding & Granger, 1996).  Whereas squared volatility is utilized given that it underpins 

the commonly used risk measures such as standard deviation and variance.  

 

Models with a long memory property have dependency between observations of a 

variable for a large number of lags so that Cov[Rt+h, Rt-j, j≥0] tends to zero as the 

number of lags h gets large.
3
 In particular, long memory in financial time series has 

concentrated on volatility realizations where unexpected shocks affect the series for a 

large time frame. Thus confirmation of long memory properties for REITS would 

have major implications for the associated investments strategies that need to take 

account of the persistence and characteristics of the dependence structure in REIT 

volatility. However, if the dependency between observations of a variable disappears 

for a small number of lags, h, such as for a stationary ARMA process, then the data is 

described as having a short memory property and Cov[Rt+h, Rt-j, j≥0] → 0.  Formally, 

long memory is defined for a weakly stationary process if its autocorrelation function 

ρ(⋅) has a hyperbolic decay structure:  

 

( )
2

1
0 ,0 , as ~ 12 <<≠∞→−

dCjCj
d

jρ        (1) 

where d represents the long memory parameter, or degree of fractional integration. 

 

In contrast, short memory, or anti-persistence is evident if 021 <<− d .  
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The corresponding shape of the autocorrelation function for a long memory process is 

hyperbolic if there is a relatively high degree of persistence in the first lag(s) that 

declines rapidly initially and is followed by a slower decline over subsequent lags.  

Thus the decay structure remains strong for a very large number of time periods. 

Previous analysis of equity returns suggest that the long memory parameter, d, is 

generally found to be between 0.3 and 0.4 (e.g. Andersen and Bollerslev, 1997a; and 

Taylor, 2000).   

 

The explanations for long memory are varied. One economic rationale results from 

the aggregation of a cross-section of time series with different persistence levels 

(Andersen & Bollerslev, 1997a; Lobato & Savin, 1998). Alternatively, regime 

switching may induce long memory into the autocorrelation function through the 

impact of different news arrivals (Breidt et al., 1998). The corresponding shape of the 

autocorrelation function is hyperbolic, beginning with a high degree of persistence 

that reduces rapidly over a few lags, but that slows down considerably for subsequent 

lags to such an extent that the length of decay remains strong for a large number of 

time periods. Also, with a slight variation, it may follow a slowly declining shape 

incorporating cycles that correspond to, for example, daily seasonality (Andersen et 

al, 1997a). 

 

We test for the existence of long memory in REITs by using an informal analysis of 

autocorrelation dependence of our volatility series augmented by two formal tests for 

the existence of the property. We are interested in two issues: whether REITs exhibit 

long memory properties and how the characteristics of the dependence structure of 

REITs compares to the broader equity market. The first test statistic is the parametric 

Modified Rescale Range (R/S) statistic developed by Lo (1991): 

 

( ) ( ) 





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Where nσ̂ is the estimate of the long run variance for sample size n, and for any series 

z, we compare the realized value, jz , to its mean, z , and examine the range of the 

variation. The Modified R/S allows for short memory in the time series but can 
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distinguish if long memory exists separately, whereas in contrast, the original R/S 

statistic (Hurst, 1951) is not able to distinguish between long and short memory. 

Given, that microstructure issues such as bid-ask bounce induces first order 

correlation and short memory in returns series (Andersen et al., 2001) we may have 

both long and short memory characteristics in the series analyzed
4
. As a by product, 

we can also obtain an estimate of the degree of fractional integration, d, from applying 

this test denoted R/S d. This describes the degree of fractional integration and allows 

us to compare to different benchmarks, for example whether it is in the domain 

2
10 << d , and whether its magnitude differs across REIT and broad market series.  

 

In addition, long memory is investigated by using the semi-nonparametric Geweke & 

Porter-Hudak (1983) log-periodogram regression approach (GPH) updated for non-

Gaussian volatility estimates by Deo & Hurvich (2000). This adjustment is required 

given the fat-tailed and skewed behavior of financial time series. We also obtain semi- 

nonparametric estimates of the long memory parameter denoted GPHd. Assuming, 

I(ωj) stands for the sample periodogram at the j
th

 fourier frequency, ωj=2πj/T, j=1, 2, 

…, [T/2), the log-periodogram estimator of GPHd is based on regressing the 

logarithm of the periodogram estimate of the spectral density against the logarithm of 

ω over a range of frequencies ω: 

 

( )[ ] ( )
jjj UI ++= ϖββω loglog 10        (3) 

 

where j=1, 2,…, m, and d=-1/2β1. This approach allows us to determine if the long 

memory property is evident in the series analyzed and also gives estimates of the long 

memory parameter. Again like the R/S approach, estimates of d are dependent on the 

choice of m. We estimate the test statistic by using m=T
4/5

 as suggested by Andersen 

et al. (2001). This implies that for our sample size, a sample of 788 periodogram 

estimates is employed in our analysis.   

 

Given, that long memory is not evident in financial returns series, but is strongly 

found in their volatility counterparts we need to examine volatility models and their 

suitability in describing the persistence patterns of the REIT and broad market series. 

Whilst second order dependence is a characteristic of financial returns, usually 
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modeled by a stationary GARCH process, these specifications have been questioned 

as to their ability to model the long memory property adequately in contrast to their 

Fractionally Integrated GARCH counterparts (Baillie, 1996). For instance, while 

stationary GARCH models show the long memory property of financial returns 

volatility series occurs by having [Rt
2
] and |Rt| with strong persistence, they assume 

that the autocorrelation function follows an exponential pattern not corresponding to a 

long memory process. In particular, the correlation between [Rt
2
] and |Rt| from 

stationary GARCH models and their power transformations remain strong for a large 

number of lags, with the rate of decline following a constant pattern (Ding et al., 

1993), or an exponential shape (Ding & Granger, 1996). In contrast, a number of 

returns series, both [Rt
2
] and |Rt|, have been found to decay in a hyperbolic manner, 

namely, they decline rapidly initially, and this is followed by a very slow decline 

(Ding & Granger, 1996).
5
 

 

Turning to the set of conditional volatility models applied in this study, we first use 

the Fractionally Integrated GARCH (FIGARCH) model introduced by Baillie et al. 

(1996). These incorporate the standard time-varying volatility models and estimate the 

short run dynamics of a GARCH process. More importantly, they also measure the 

long memory characteristic of the data by estimating the degree of fractional 

integration d. First, taking a GARCH (p,q) process time varying volatility 2

tσ  is given 

as: 

( ) ( ) 222

ttt LL σβεαωσ ++=        (4) 

With ( )Lα and ( )Lβ being polynomials of order q and p in the lag operator.  The 

process can be written as an ARMA (m, p) process in 2

tε where ),max( qpm = : 

( ) ( ) ( )
tt LLL νβωεβα }1{}1{ 2 −+=−−       (5) 

For 22

ttt σεν −= are the innovations in the conditional variance process. 

 

Converting it back into a GARCH type process gives the FIGARCH (p,d,q) model: 

 

( )( ) ( ) tt

d
LLL νβωεφ }1{1 2 −+=−        (6) 



 9 

Where ( ) 1)1)}(()(1{ −−−−= LLLL βαφ is of order m - 1, and all the roots of ( )Lφ and 

( )}1{ Lβ−  lie outside the unit circle. 

 

This model can be expanded to deal with further stylized features of financial data.  

For instance, Black (1976) empirically notes a leverage effect where bad news tends 

to drive the price of an equity down thus increasing the debt-equity ratio (its leverage) 

and causing the equity to be more volatile.  The leverage effect has an asymmetric 

impact on volatility with bad news having a greater impact than positive news.  This 

leverage effect led Nelson (1991) to introduce the (Exponential) EGARCH process 

with a specific variable that distinguished between good news volatility and bad news 

volatility.  If this variable’s coefficient was negative bad news shocks have a greater 

impact on volatility than good news shocks.  Engle and Ng (1993) provide further 

support for the existence of leverage effects in equity data following their introduction 

of a news impact curve that graphically separates the impact of good new and bad 

news shocks on volatility.  If the effects of news are long lasting as suggested by the 

fractionally integrated process we should also determine if the long memory exhibits 

asymmetric effects. In order to allow for asymmetric effects we also apply the 

Exponential version of the FIGARCH model, the FIEGARCH developed by 

Bollerslev & Mikkelsson (1996): 

 

[ ] )()(1)1()()log( 1

12

−
−− −−+= t

d

t gLLL ξλφωσ      (8) 

Where  

[ ]tttt Eg −+= ξγθξξ )(  

With the volatility shocks following an asymmetric function, and all the roots of 

( )Lφ and ( )Lλ lie outside the unit circle.  The function has a slope of γθ − when ξ is 

negative (market falls) and when ξ  is positive (market rises) the slope is γθ + . 

 

The residuals from both FIGARCH and FIEGARCH processes were initially assumed 

to be from a conditionally fat-tailed process in line with the commonly found 

characteristics in financial returns. We assume that the underlying data conditionally 

followed a student-t distribution as in Baillie & DeGennaro (1990). 
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3. Data 

The data used in this paper consists of daily logarithmic returns for the period January 

1 1990 through December 30 2005 totaling 4175 observations. During this time the 

popularity of REITS has expanded dramatically with massive growth in investor 

awareness and interest that focused in on the return and volatility characteristics of the 

sector. As we are interested in the long memory of the REIT sector we compare the 

findings to the broad equity market, as represented by the S&P 500 Composite. 

 

Some descriptive statistics of the respective series are outlined in Table 1 detailing the 

first four moments of each series and a test for normality. Separate analysis is 

completed for the returns series and the two proxies of volatility, absolute and squared 

volatility. Starting with returns we find that the average daily returns of both series are 

near zero but positive for the time frame analyzed suggesting that for the mainstream 

equity market the 1990s boom has slightly outweighed the downturn at the start of 

this decade. Accordingly, the reverse is true for the REIT sector, with their strong 

recent performance outweighing the underperformance of the sector observed during 

the late nineties. Overall however, the average risk of REITs approaches 1% and is 

almost identical to the S&P. The time series behaviour of both series is given in 

Figure 1. Here we can see the increase in volatility at the turn of the decade associated 

with amongst other events, the fall out of the Asian crises and September 11, and the 

technology bubble where equity markets in general exhibited greater turbulence and 

very poor return performance. In the last couple of years the markets have settled 

down to some degree.  

 

In Table 1 evidence on higher moments of returns suggests negative skewness 

recorded by both series suggesting that the weights of the large negative returns are 

dominating their positive counterparts. Consistent with the literature, we also find 

excess kurtosis suggesting that the series exhibit a fat-tailed property. Combining 

these findings for skewness and kurtosis, we find that all series are non-normal using 

the Jarque-Bera test statistic and therefore need to incorporate this property later in 

our modeling approach.  
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Turning to the proxies of the volatility series, we first reiterate the findings for the 

returns series, namely, that the REIT index exhibit similar volatility to the S&P and 

behaviour over the sample period. Average volatility (regardless of proxy) in Table 1 

are similar for both indexes.  Looking at the plots in Figure 1 we see the behaviour of 

the volatility associated with the series’ since 1990.  We clearly see the volatility 

clustering property where periods of high volatility or low volatility can remain 

persistent for some time before switching. This property suggests that volatility on 

any day is dependent on the previous day’s values and we will model this 

phenomenon using a GARCH process that specifically incorporates long memory. 

The lack of independence of either absolute or squared volatility is clearly seen by the 

lack of normality and excess kurtosis reported in Table 1 for both series.  We also get 

strong positive skewness for all series that is reasonably similar across the series. 

Comparing the two measures of volatility, we see that the magnitude of the squared 

realizations dominate their absolute counterparts but that the squared values are more 

prone to extreme outliers regardless of which series you examine. 

 

 

4. Empirical Analysis 

Our main focus in this paper is to examine the long memory properties of REITs and 

it is to this issue that we now turn. We begin by discussing the autocorrelation plots; 

followed by formal testing for long memory and determining the magnitude of the 

long memory parameter, and finally we outline our findings from applying two time-

varying long memory volatility models. First, looking at dependence using the 

autocorrelation function (ACF), we provide plots over 100 lags for the volatility series 

and these are given in Figure 2 for absolute volatility and Figure 3 for squared 

volatility.
6
 Ding et al. (1993) suggest that, as volatility is unobservable, the long 

memory in equity data should be examined for different power transformations of the 

volatility proxy series. We follow this suggestion by examining the volatility series 

for 5 different power transformations [k=0.25, 0.5, 1, 1.5, 2]. This supports the 

analysis of Beran (1994) in his seminal work in the area. In its strictest sense, the ACF 

plots in Figures 2 and 3 do not offer conclusive evidence that REITs exhibit long 

memory in volatility but are much more striking in their support for the property in 

the broad market index. Moreover there is strong variation in the strength of the long 

memory feature for the different power transformations and it tends to be stronger for 
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lower k. These findings are consistent for squared and absolute volatility. It is 

noticeable that REITs appear to display less persistence in volatility than the general 

market. The ACF plots for the S&P indexes report enhanced long memory. It can be 

seen that in general the first lag for the REIT volatility ACF’s tends to be of a greater 

magnitude but that the persistence reduces at a faster rate than for mainstream 

equities.  

 

Table 2 reports details of the initial tests for long memory using the approaches 

described in Section 2. There is extensive evidence of long memory in both the 

absolute and squared volatility series’. This is consistent across all of the different 

power transformations, although the effect is generally enhanced as k reduces, 

particularly in the case of REITs. Furthermore, the magnitude of the test statistics is 

generally lower for the REIT sector than for the S&P. The findings from fitting the 

long memory volatility models are given in Table 3.  The results generally show that 

both the FIGARCH and FIEGARCH models provide good fits for the data, and are 

broadly in line with expectations and the previously reported findings. The degree of 

fractional integration, as measured by the d-values, is in the range of 0.3-0.4 for the 

FIGARCH model for both series and is consistent with the previous empirical 

evidence. In relation to the FIEGARCH model the significant negative leverage 

coefficients also implies asymmetry in the long memory process with the greater 

impact of negative shocks over positive shocks affecting not only immediate 

volatility, but also on a persistent basis. 

 

In the literature volume is seen as an important explanatory variable for time varying 

volatility
7
. To investigate whether trading volume is important for the long memory 

inherent in the volatility series we analyse the role of trading volume.  In Figure 4 we 

see the large increase in trading activity in equities and this is particularly pronounced 

for REITs that had very low volume at the start of the sample.  In Figure 5 we see that 

the change in trading volume shows similar patterns to that of the price series, 

namely, there is clustering of inactive (active) trading periods followed by active 

(inactive) trading periods.   

 

Taking the volume data we fit a FIEGARCH model and results are reported in Table 4 

with the associated time series plots given in Figure 6.
8
  We are trying to determine 
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whether volume is an important mixing variable for long memory in volatility.  

Trading volume is clearly an important explanatory variable for our conditional 

volatility with a strong statistical significance.  Also, economically a 1% change in 

REIT volume is associated with a 0.01% change in its volatility and this effect is 

approximately doubled for the S&P series.  Interestingly, by including the change in 

volume variable we see a major revision in the volatility specification with GARCH 

and ARCH coefficients being considerably amended in comparison to the 

FIEGARCH model results excluding volume.  The main coefficients of the GARCH 

process, whilst remaining significant, reduce in magnitude considerably, and provide 

support for the hypothesis that volume and volatility are strongly related.  The impact 

of volume, however, is even more pronounced on long memory with the long memory 

parameter, d, increasing to approximately 0.8 for both REITs and S&P series.  Thus 

the long memory characteristic is no longer present in the volatility series if we 

include trading volume as an explanatory variable.  Overall, changes (increases) in 

volume are strongly associated with the long memory in property found in REIT (and 

market) data. 

 

5. Conclusion 

This paper has examined the long memory properties in the volatility of the REIT 

sector at daily frequencies. As the sector develops and daily trading volume increases 

not only will interest in the daily dynamics in REITs increase but it will also in all 

likelihood increase interest in derivative instruments based on the sector. The paper 

illustrates that as with the general equity market volatility persistence occurs. 

However, there is evidence that long memory in REIT volatility is not of the same 

magnitude as that observed in the S&P 500 index.  Moreover, changes in volume is an 

important explanatory variable in modeling long memory of REIT volatility.  
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Tables & Figures 
 

Figure 1: Time Series Plots of Daily Series 
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Notes: The plots show the time series behaviour of daily percentage values for the 

returns, absolute returns (absolute volatility) and squared returns (squared volatility) 

series’ between 1990 and 2005 inclusive. 
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Table 1: Summary Statistics for Daily Series 

 REITs S&P 500 

Panel A: Returns 

Mean 0.029 0.030 

Std Dev 0.944 0.997 

Skewness -0.256* -0.100* 

Kurtosis 8.297* 7.011* 

Normality 4925.84* 2805.12* 

Panel B: Absolute Volatility 

Mean 0.659 0.701 

Std Dev 0.677 0.709 

Skewness 2.617* 2.244* 

Kurtosis 14.55* 11.66* 

Normality 27963* 16541.8* 

Panel C: Squared Volatility 

Mean 0.893 0.994 

Std Dev 2.405 2.432 

Skewness 8.535* 8.396* 

Kurtosis 109* 119* 

Normality 2003006* 2387327* 

 
Notes: Estimates are given for returns (Panel A), for Absolute Volatility (Panel B) and 

Squared Volatility (Panel C). Mean and standard deviations are expressed in 

percentage form. Skewness and kurtosis are tested using Fisher’s G and Fisher’s G2 

statistics respectively. Normality is tested for using the Jarque-Bera test statistic.  The 

skewness, kurtosis and normality statistics have a value of 0 for a normal distribution. 

All skewness, kurtosis and normality statistics are significant at 5% significance 

levels indicated by *. 
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 Figure 2a: Plots of Autocorrelation Values for REIT Daily Absolute Volatility 
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Notes: The plots show the dependence in REIT daily absolute volatility for 5 different 

power transformations [k=0.25, 0.5, 1, 1.5, 2] using the autocorrelation function for 

100 lags.  All plots include confidence bands using the 95% critical values (± 1.96/√n) 

so significance occurs at ± 0.03 and these are imposed where appropriate.  



 19 

Figure 2b: Plots of Autocorrelation Values for S&P Daily Absolute Volatility  
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Notes: The plots show the dependence in S&P daily absolute volatility for 5 different 

power transformations [k=0.25, 0.5, 1, 1.5, 2] using the autocorrelation function for 

100 lags.  All plots include confidence bands using the 95% critical values (± 1.96/√n) 

so significance occurs at ± 0.03 and these are imposed where appropriate.   
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Figure 3a: Plots of Autocorrelation Values for REIT Daily Squared Volatility 
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Notes: The plots show the dependence in REIT daily squared volatility for 5 different 

power transformations [k=0.25, 0.5, 1, 1.5, 2] using the autocorrelation function for 

100 lags.  All plots include confidence bands using the 95% critical values (± 1.96/√n) 

so significance occurs at ± 0.03 and these are imposed where appropriate.     
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Figure 3b: Plots of Autocorrelation Values for S&P Daily Squared Volatility  
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Notes: The plots show the dependence in S&P daily squared volatility for 5 different 

power transformations [k=0.25, 0.5, 1, 1.5, 2] using the autocorrelation function for 

100 lags.  All plots include confidence bands using the 95% critical values (± 1.96/√n) 

so significance occurs at ± 0.03 and these are imposed where appropriate.   
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Table 2: Long Memory Diagnostics for Daily Series 

  R/S GPH R/S d GPHd 

Panel A: Absolute Volatility 

REIT k = 0.25 4.1083** 3.703** 0.139796 0.2791813 

 0.5 4.2062** 4.0009** 0.162991 0.3362795 

 1 3.8566** 4.5319** 0.174352 0.3619588 

 1.5 3.5013** 4.1893** 0.168648 0.3556661 

 2 3.1706** 3.7235** 0.15553 0.312547 

S&P k = 0.25 5.7324** 5.5284** 0.12405 0.3157433 

 0.5 6.0847** 5.9749** 0.138839 0.385766 

 1 5.9084** 5.7912** 0.144529 0.4221734 

 1.5 5.4511** 5.4709** 0.142107 0.4150753 

 2 4.8572** 4.7648** 0.134813 0.3655939 

Panel B: Squared Volatility 

REIT k = 0.25 4.2062** 4.0009** 0.162991 0.3362795 

 0.5 3.8566** 4.5319** 0.174352 0.3619588 

 1 3.1706** 3.7235** 0.15553 0.312547 

 1.5 2.5481** 2.8687** 0.129716 0.2333424 

 2 2.0718* 2.2246* 0.110291 0.1758527 

S&P k = 0.25 6.0847** 5.9749** 0.138839 0.385766 

 0.5 5.9084** 5.7912** 0.144529 0.4221734 

 1 4.8572** 4.7648** 0.134813 0.3655939 

 1.5 3.6671** 3.5083** 0.117991 0.2193724 

 2 2.725** 1.7617 0.103408 0.1310806 

Notes: Further technical details of the long memory tests and parameter estimates are 

given in the text. The R/S test is the modified R/S statistic (Lo, 1991). The GPH test is 

the Geweke & Porter-Hudak (1983) semi-nonparametric statistic. The R/S d is the R/S 

long memory parameter. The GPHd is the periodogram long memory parameter. 

Estimates are given for Absolute Volatility (Panel A) and Squared Volatility (Panel 

B) with different power transformations, [k=0.25, 0.5, 1, 1.5, 2].  A single asterisk 

represents significance at the 5% level whereas two represents significance at the 1% 

level.   
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Table 3: Fractionally Integrated GARCH Models for Daily Return Series 

 REITs S&P 500 

 Coefficient p-value Coefficient p-value 

Panel A: FIGARCH (1,1) 

A 0.04641*** 3.66E-06 0.02803*** 2.10E-07 

GARCH(1) 0.50543*** 1.01E-11 0.54397*** 0.00E+00 

ARCH(1) 0.37822*** 1.69E-08 0.18921*** 8.22E-15 

d 0.3175*** 0.00E+00 0.39632*** 0.00E+00 

LM (12) 20.9* 0.05189 7.942 0.7896 

Q
2
 (12) 20.29* 0.06178 20.32* 0.06127 

Panel B: FIEGARCH (1,1) 

A -0.24867*** 0.00E+00 -0.10651*** 0.00E+00 

GARCH(1) 0.13449** 2.72E-02 0.452*** 7.38E-08 

ARCH(1) 0.33099*** 0.00E+00 0.13623*** 0.00E+00 

Leverage -0.05662*** 1.41E-08 -0.0983*** 0.00E+00 

d 0.59397*** 0.00E+00 0.63067*** 0.00E+00 

LM (12) 17.94 0.1176 9.205 0.6853 

Q
2
 (12) 17.61 0.1279 9.118 0.6928 

Notes: Coefficients and marginal significance levels for the FI(E)GARCH models are 

presented with full details of the models given the text.  The respective optimal model 

is chosen based on Akaike’s (AIC) and Schwarz’s (BIC) selection criteria.  A single 

asterisk denotes statistical significance at the 10%, two denotes statistical significance 

at the 5% level, while three denotes statistical significance at the 1% level.  The 

FIEGARCH model incorporates a leverage variable that is significant for both 

indexes.  Significant (G)ARCH effects are reported for both indexes.  The long 

memory parameter, d, is tested for statistical significance from 0 and occurs in all 

cases. The diagnostics are supportive of a good fit for both fractionally integrated 

models.  The diagnostics used are the Q
2
(12)  Ljung-Box test on the squared 

standardised residual series and  Engle’s (1982) LM test for up to 12
th

 order ARCH 

effects on the squared standardised returns series.  
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Figure 4: Time Series Plots of Daily Volume Series 
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Notes: The plots show the time series behaviour of daily trading volume for both 

indexes between 1990 and 2005 inclusively. 
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Figure 5: Time Series Plots of Daily Change in Volume Series 
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Notes: The plots show the time series behaviour of daily percentage values for the 

change in volume for both indexes between 1990 and 2005 inclusive. 
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Table 4: Fractionally Integrated EGARCH Model with Volume 

 REITs S&P 500 

 Coefficient p-value Coefficient p-value 

FIEGARCH (1,1) 

A -0.14787*** 0.00E+00 -0.08081*** 2.00E-15 

GARCH(1) 0.17908*** 9.65E-04 0.08229* 8.82E-02 

ARCH(1) 0.19329*** 0.00E+00 0.1001*** 2.07E-14 

Leverage -0.03489*** 9.13E-08 -0.06085*** 1.45E-13 

Volume 0.01184*** 0.00E+00 0.02012*** 0.00E+00 

d 0.77339*** 0.00E+00 0.86554*** 0.00E+00 

LM (12) 20.84* 0.05277 21.21* 0.04734 

Q
2
 (12) 20.71* 0.05477 21.95* 0.03811 

Notes: Coefficients and marginal significance levels for the FIEGARCH model are 

presented with full details of the model given the text.  The respective optimal model 

is chosen based on Akaike’s (AIC) and Schwarz’s (BIC) selection criteria.  A single 

asterisk denotes statistical significance at the 10%, two denotes statistical significance 

at the 5% level, while three denotes statistical significance at the 1% level.  The 

FIEGARCH model incorporates both volume and leverage variables.  Significant 

(G)ARCH effects are reported for both indexes.  Both volume and leverage variables 

are significant for both indexes.  The long memory parameter, d, is tested for 

statistical significance from 0 and occurs in all cases. The diagnostics are supportive 

of a good fit for the fractionally integrated model.  The diagnostics used are the 

Q
2
(12)  Ljung-Box test on the squared standardised residual series and  Engle’s 

(1982) LM test for up to 12
th

 order ARCH effects on the squared standardised returns 

series.  
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Figure 6: Time Series Plots of FIEGARCH Daily Conditional Volatility Series 
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Notes: The plots show the time series behaviour of daily percentage conditional 

volatility for both indexes between 1990 and 2005 inclusive.  Conditional volatility 

was obtained from fitting the FIEGARCH model with volume included as an 

explanatory variable. 
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Endnotes: 

                                                
1
 Two recent papers to have examined persistence and mean reversion in REIT and international real 

estate security returns are Kleiman et al. (2002) and Stevenson (2002b). 
2
 As volatility is a latent unobservable variable proxies of volatility such as absolute and squared 

returns are examined in the literature. 
3
 For an excellent treatment of long memory processes see Beran (1994). 

4
 Extensions of the Hurst (1951) R/S statistic involve replacing the sample standard deviation of the 

series, Z, with the square root of the Newey-West estimate of the long run variance. 
5
 One such example of a relatively successful application of standard GARCH models is the application 

of the APARCH model (see Cotter, 2005; for an example).  The APARCH specification, developed by 

Ding et al. (1993) nests seven commonly applied GARCH models. However, the specification has an 

exponential decline structure that shows strong dependence but is not fully consistent with the long 

memory decline structure.  
6
 We also examine dependence of returns formally through long memory tests and informally through 

ACF plots.  In line with previous studies we find negligible evidence to support the presence of long 

memory of returns.  Results are available on request. 
7 See Lamoureux & Lastrapes (1990).  They find that trading volume reflects the dependence in 

information flows to the market that feeds directly into price volatility.    
8
 We avoid fitting the FIGARCH specification as our exogenous variable, change in trading volume, is 

not always positive as can be seen from the time series plot and would result in negative conditional 

variance values. Also we have already documented asymmetric effects in the long memory of 

volatility. 


