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Abstract: This text provides with an introduction to the modern approach of artificiality and 
simulation in social sciences. It presents the relationship between complexity and artificiality, 
before introducing the field of artificial societies which greatly benefited from the computer 
power fast increase, gifting social sciences with formalization and experimentation tools 
previously owned by "hard" sciences alone. It shows that as "a new way of doing social 
sciences", artificial societies should undoubtedly contribute to a renewed approach in the 
study of sociality and should play a significant part in the elaboration of original theories of 
social phenomena.  
 

Introduction 

The "sciences of the artificial" deal with synthesized things which may imitate natural things; 
which have functions and goals and which are usually discussed in terms of imperatives as 
well as descriptives. Imitation with computer is now usually termed simulation and is used to 
understand the imitated system (Simon, 1996).  
Artificiality has invaded science over the last thirty years and physicists, chemists or 
biologists now daily use widespread computing tools for simulations. Social sciences did not 
set this trend aside (Halpin, 1999). This chapter will first introduce the essential link between 
complexity and artificiality before presenting the highly promising field of artificial societies.  

Complexity and artificiality 

Since the seminal book of Herbert Simon in 1969 (Simon, 1996), the sciences of the artificial 
knew a jerky evolution. In the field of artificial intelligence, the excessive ambitions of the 
sixties were considerably lowered in the seventies, before knowing a new wave of optimism 
in the mid eighties. The renewed interest toward artificiality originates in new approaches of 
artificial intelligence and in the success of the highly innovative related fields of artificial life 
(Langton, 1989) and artificial societies (Gilbert & Conte, 1995; Epstein & Axtell, 1996). 
Artificial life is at the crossroad of the rebirth of artificiality and offers lots of nice examples 
illustrating this revival, like this one:  
Many ant species tend to form piles of corpses (cemetery) in order to clean their nest. 
Experiments with different species showed that if corpses are randomly distributed, ants tend 
to gather them in some clusters within few hours.  
Deneubourg, Goss, Franks, et al. (1991) proposed a simple model of corpses gathering (see 
also Bonabeau, Dorigo, & Théraulaz, 1999). They designed virtual ants having the following 
behaviors:  

• The probability for an ant to pick up a corpse is 2
1 1( ( ))pp k k f= / +  with 1k  a 

threshold constant and f  the fraction of perceived corpses in the neighborhood.  



• The probability for an ant to deposit a corpse is: 2
2( ( ))dp f k f= / +  with 2k  a 

threshold constant. Deneubourg, Goss, Franks, et al. (1991) computed f  as the 
number of items perceived during the last t  periods divided by the largest number of 
items that can be encountered during the last t  periods.  

To put it simply, virtual ants tend to pick-up isolated corpses to drop them in dense zones. The 
result (see figure 1) is close to the real phenomenon.  

 

<< FIGURE 1 >> 

Figure 1. Virtual ant cemetery 

Highly simple virtual individuals ("agents") without any knowledge of the global process, 
manage to carry out cemetery building. Furthermore, it "suffices" to define different types of 
objects to obtain sorting capabilities, like for example larval sorting observed in anthills. The 
gathering or the sorting process emerges from the interactions of simple agents.  

Emergence 

Emergence can be defined as the qualities or properties of a system which are new compared 
with the qualities or properties of the components isolated or differently organized (Morin, 
1977). According to Gilbert (1995b): "Emergence occurs when interactions among objects at 
one level give rise to different types of objects at another level. More precisely, a 
phenomenon is emergent if it requires new categories to describe it that are not required to 
describe the behavior of the underlying components. For example, temperature is an emergent 
property of the motion of atoms. An individual atom has no temperature, but a collection of 
them does."  
Most authors consider that emergence relies on three conditions:  

1. The global process is distributed, there is no central control and the result 
depends on the interactions between components.  
2. The process is autonomous, there is no external controller.  
3. The process is not at the same level as the components. The language or 
concepts used to describe the emergent process are different from the language or 
concepts used to describe the components. The "Test of emergence" thus relies on the 
surprise engendered by the difference between the language 1L  used to design 
components, and the language 2L , used to describe the resulting process (Ronald, 
Sipper, & Capcarrère, 1999). According to Steels (1997), this change of language is 
sufficient to characterize emergence.  

We can clarify this concept with the classical and very general formalization proposed by 
(Baas, 1994), which is based on three elements:  

1. A set of first order structures 
1

1
1 1{ }iS i J, ∈  with 1J  some index set finite or not. 

First order structures are primitive objects, abstract or physical; they can be 
organizations, machines as well as fields or concepts.  
2. An observational mechanism Obs .  
3. Interactions Int .  

The new kind of structure resulting from the observed interactions of first order structures is: 

1 1 1

2 1 1 1( )i i JS R S Obs Int ∈= , , , where R  is the result of the interaction process and 



1

1 1( )iObs Obs S≡ . Baas calls 2S  a second-order structure, and 
2

2
2 2{ }iS i J, ∈  families.  

The properties of the new unity resulting from the collection 2S  can be measured with an 
observational mechanism 2Obs . Then P  is an emergent property of 2S  iff  

2 2( )P Obs S∈ , but 
1

2 1( )iP Obs S∉  for all 1i . 

The property P  belongs to the emergent structure 2S , but is absent from the components.  
The 2S ’s can interact to form a third order structure, and so on. A N-th order structure is 
then:  

1

1 1 1
1 1( )

N

N N N N
i N NS R S Obs Int i J

−

− − −
− −= , , , ∈  

Baas calls it a hyperstructure and he considers that "complexity often takes the form of a 
hyperstructure." (Baas, 1994, p.525, original italics). According to Simon (1996), hierarchies 
are necessary to allow the evolution of complex structures.  
Baas distinguishes two different types of emergence:  

• Deductible or computable emergence: A process or theory D  exists which 
allows to determine 2 2( )P Obs S∈  from 

1

1 1 1( )iS Obs Int, , . That is typically the case of 
engineering constructions or "trivial emergence" like temperature evoked above.  
• Observational emergence: the emerging property P  cannot be deduced (e.g. 
consequences of Gödel’s theorem).  

Bedau (1997) considers less drastically, that weak emergence characterizes emerging 
properties that can only be derived by simulation. Most of the recent modeling works deal 
with this type of weak emergence (Chalmers, 2002).  
Despite the thousands of pages published on emergence, or the recent emphasis on the 
reduction principle (the macrobehavior is reducible to the interactions of the components), 
(e.g. Holland, 1999; Kubik, 2003)), we are still far from an ontological concept of emergence 
(Emmeche, Koppe, & Stjernfelt, 1997), but, considering its success, emergence is 
undoubtedly epistemologically a fertile concept.  

Bottom-up modeling 

Emergence is a key feature of those famous non-linear systems which are said to be more 
than the sum of their parts (Waldrop, 1992). Non-linear systems do not obey the 
superposition principle —the linear combination of solutions is not a solution. Their dynamic 
cannot be reduced to the simple (linear) combination of their components ones.  
We have known since at least the end of the nineteenth century and Henri Poincaré (Poincaré, 
1892), that the dynamic of such complex systems is unpredictable. The only way to know 
their state at a given step is to compute each step. The usual analytical method is of few help; 
the necessary mathematics are still to be invented. Even the small body of mathematics which 
directly deals with non-linearity depends upon linear approximations (Holland, 1999). Non-
linearity thus challenges the traditional approach which tries to understand a system by 
analyzing its components: "The key feature of non-linear systems is that their primary 
behaviors of interest are properties of the interactions between parts, rather than being 
properties of the parts themselves, and these interactions-based properties necessarily 
disappear when the parts are studied independently." (Langton, 1989, p.41, original italics). 
How to deal with emergence? How to study processes which are "more than the sum of their 
parts"? How to analyze properties that cannot be forecasted? The solution proposed by 
computer scientists is termed bottom-up modeling.  
Bottom-up modeling is a very new way of building artificial systems. Since core properties 
disappear when the components are studied independently, bottom-up modeling is based on 
the gathering of interacting components. Corpses clustering or larval sorting models are then 



based on the building of rather simple agents (see below) which interact both with one 
another and with the environment. Such constructions and the study of the dynamic resulting 
from non-linear interactions of the simple components constitute the "bottom-up method". 
Instead of modeling the global dynamic of the studied system ("top-down method" usually 
based on differential equations) one merely models the components to study the potentially 
emerging regularities.  
This synthetic method is at the heart of the revival of artificiality. Commenting the first 
workshop on artificial life, C. Langton stated: "I think that many of us went away […] with a 
very similar vision, strongly based on themes such as bottom-up rather than top-down 
modeling, local rather than global control, simple rather than complex specifications, 
emergent rather than prespecified behavior, population rather than individual simulation, and 
so forth." (Langton, 1989, p.xvi, original italics). 
The 19th  century ended with Poincaré’s discovery of the limits of the analytical method faced 
with non-linear systems. The 20th  century ended with the unprecedented quick spread of a 
machine able to deal with these systems. Computers are in fact surprisingly adapted to the 
analysis of non-linear systems. Besides their ability to iteratively compute equations which do 
not have analytical solutions, computers —particularly since the development of object 
oriented programming— can easily deal with populations of interacting agents, so 
contributing to the study of Bedau’s weak emergence. "(…) Computer-based models offer a 
halfway house between theory and experiment [(…) and computer-based non-linear 
modeling] will certainly improve our understanding of emergence." (Holland, 1999, p.232). 
Bottom-up modeling is based on the interactions of (usually) simple virtual individuals. It 
massively uses multi-agent systems (MAS).  

Multi-Agent Systems 

MASs originate in Distributed Artificial Intelligence (DAI) and in artificial life. The basic 
idea of DAI is that intelligence is not only a matter of phenotype (brain) but also depends on 
the interactions with other individuals. Intelligence has a "social dimension" (Drogoul, 2005). 
The emergence of DAI is directly linked to the limits of the traditional symbolic AI (GOFAI) 
which tries to embed intelligence in a unique entity. The cognitive school of DAI associates a 
few complex agents to obtain some kind of group expertise (see e.g. Demazeau & Müller, 
1991). The reactive school of DAI is more original. Strongly rooted in artificial life, it uses 
the insect (and animal) societies metaphor to try to obtain emergent intelligent behaviors by 
associating simple ("sub-cognitive") agents (Steels, 1990; Deneubourg, Goss, Beckers, & 
Sandini, 1991). 
We have seen that cemetery building was modeled with "virtual insects" i.e. some software 
processes that imitates insects’ behaviors. These virtual insects are agents. Jacques Ferber, 
one of the founders of the field, considers that an agent is a physical or virtual entity (Ferber, 
1999):  

• capable of acting.  
• capable of communicating with other agents.  
• driven by a set of tendencies. Autonomous agents act according to their own 
goals.  
• having its own resources; but these resources depend on the environment. 
Agents are then open systems since they find resources in the environment, and close 
system, since they manage the use of these resources.  
• having a partial representation of their environment. An agent thus do not have 
to "fully understand" its environment; above all it does not have to perceive the global 
result of its actions.  



• possessing skills.  
• possibly able to reproduce itself.  
• tending to act according to its objectives.  

"The agent is thus a kind of ’living organism’, whose behavior, which can be summarized as 
communicating, acting and perhaps, reproducing, is aimed at satisfying its needs and attaining 
its objectives, on the basis of all the other elements (perception, representation, action, 
communication and resource) which are available to it." (Ferber, 1999, p.10).  
Ferber’s definition is restrictive and one can limit the characterization of agents to the 
following core properties (Wooldridge & Jennings, 1995): 

• autonomy: agents operate according to their own control.  
• social ability: agents can interact with one another through some kind of 
language.  
• reactivity: agents can perceive their environment and react according to its 
change.  
• pro-activness: agents act according to their own goals.  

Figure 2 summarizes the structure of an agent.  
 

<< FIGURE 2 >> 

Figure 2. An agent in its environment 

Bottom-up modeling uses interacting agents by building multi-agent systems (MAS). A MAS 
contains the following elements (Ferber, 1999): An environment E ; a set of objects O  having 
a specific position in the environment; a set of agents A  with A O⊆ ; a set of relations R  
linking the objects to each other; a set of operations Op  allowing the agent to "perceive, 
produce, consume, transform and manipulate" objects; operators able to apply the operations 
and to process the reaction of the environment. MASs and Agent Based Modeling (ABM) are 
the base of social simulation (see e.g. the Iterated Prisoners Dilemma—IPD (Axelrod, 1984, 
1997)) and artificial societies (Conte, Gilbert, & Sichman, 1998).  

Artificial Societies 

How to connect virtual agents with human societies? Humans are quite different from ants 
and despite real progress —thanks to the quick growth of computer power— the intelligence 
of the most sophisticated agent ever programmed cannot be compared to human intelligence. 
The 2005 Nobel Prize in Economics was attributed to Thomas C. Schelling (along with 
Robert J. Aumann) who proposed in 1971 (Schelling, 1971, 1978) a far ahead of one’s time 
experiment, which will help us understand the link between agents and human societies.  

The seminal model of Thomas Schelling 

Schelling wanted to understand the pre-eminence of geographical segregation between black 
and white in American cities despite the fact that when they are questioned, citizens refute 
any desire of segregation. He designed very simple agents of two distinct colors ("black and 
white"), having the following abilities:  

• Each agent can compute the fraction of neighbors having the same color.  
• If this fraction is below the agent preference, then the agent moves to an 
unoccupied place which satisfies its preference.  



Schelling used cellular automata to implement its experiment. Very briefly, cellular automata 
are lattice of sites whose states —belonging to a finite set— evolve in discrete time step 
according to rules depending on the states of the neighbors sites. In a two dimensions 
implementation, Schelling used a "Moore" neighborhood, i.e. neighbors are the eight closest 
squares. The rules were:  

• If an agent has two neighbors, it will not move if at least one is of the same 
color.  
• If an agent has three to five neighbors, it will not move if at least two are of the 
same color.  
• If an agent has six to eight neighbors, it will not move if at least three are of the 
same color.  

These rules are compatible with a fully integrated structure. The initial state of Schelling (see 
figure 3) is thus an attractor since no agent needs to move. Schelling showed that a slight 
perturbation of this initial state is sufficient to give rise to a dynamic quite inevitably leading 
to segregation (see figure 3). 

  

<< FIGURE 3 >> 

Figure 3. Schelling’s model 

Schelling’s model clearly demonstrates that local interactions (micromotives) lead to global 
structures (macrobehavior, (Schelling, 1978)). More important, he showed that the 
macrobehavior can be different from the underlying micromotives, since segregation occurs 
even when preference rules are compatible with integrated structure. Nowak and Latané 
(1993)  used an extended model to study Dynamic Social Impact i.e. the change of attitudes or 
beliefs resulting from the action of other individuals. They notably showed that the system 
achieved stable diversity. The minority survived, thanks to a clustering process of attitudes, 
not because individuals moved, but due to the attitude change process. (Latané, 1996). The 
observed macrobehaviors are very robust. Schelling’s and Latané’s models were tested under 
a wide range of parameters and quite always evolve towards the same type of attractors. Pancs 
and Vriend (2003) recently enlarged the study of segregation process showing that it tends to 
occur even if people are anxious that segregation should not occur.  
Both these examples show that some complex social dynamics can be modeled from simple 
basis: "(…) there is a spirit in the air which suggests that we should look for simple 
explanations of apparent complexity." (Gilbert, 1995b). Stephen Wolfram recently brought a 
strong justification to this quest for simplicity (Wolfram, 2002). Its Principle of 
Computational Equivalence states that: "(…) almost all processes that are not obviously 
simple can be viewed as computations of equivalent sophistication. (…) So this implies that 
from a computational point of view even systems with quite different underlying structures 
(…) can always exhibit the same level of computational sophistication. (…) And what it 
suggests is that a fundamental unity exists across a vast range of processes in nature and 
elsewhere: despite all their detailed differences every process can be viewed as corresponding 
to a computation that is ultimately equivalent in its sophistication." (Wolfram, 2002, pp.717-
719). Without going as far as Wolfram, it is now clear that at least some social phenomena 
can be modeled with interacting sub-cognitive agents.  

• The Newtonian model uses systems of differential equations to study equilibrium; the 
best example being equilibrium theory in economics —which is also a brilliant 
example of the consequences of oversimplification motivated by the will to obtain 



tractable equations; the results having few to do with reality.  
• Considering the difficulty to write the equations of the system, the statistical model 

tries to discover regularities; the best example being the study of "social forces" by 
Durkheim in 1897 (Durkheim, 2004).  

Schelling’s or Latané’s models are then quite a new way of doing social sciences based on 
virtual experiments inside artificial societies.  

Artificial Societies as a new way of doing social sciences 

The field of artificial societies is based on the strong assumption that human societies are 
complex systems (Goldspink, 2000). Analysis is unable to point the source of macro-
properties since there is no localized source, but a distributed process which obliges to 
consider the system as a whole (Goldspink, 2002). Furthermore, they are complex adaptive 
systems (CAS) i.e. systems where agents can learn and modify their rules according to their 
previous success (that is of course also the case of animal or insect societies, but the 
specificity of human —cognitive— societies is that they can also learn from their failures). 
Schelling’s segregation process or Nowak and Latané’s clustering process of people sharing 
the same opinion are emergences or "regularities at the global level" (Gilbert, 1995a). "As the 
number of elements and interactions of a system is increased, we can observe an emergent 
complexity. But somehow, regularities arise and we can observe emergent simplicity 
(Gershenson, 2002, original italics). 
Artificial societies then try to obtain emergent regularities: "(…) the defining feature of an 
artificial society model is precisely that fundamental social structures and group behaviors 
emerge from the interaction of individual agents operating on artificial environments 
(…)."(Epstein & Axtell, 1996, p.6, original italics). Considering European contributions to 
social modeling, Gilbert wrote: "One of the major objectives of the approach being reviewed 
here is to generate through simulation, emergent phenomena and thus to understand and 
explain the observable macro-level characteristics of societies." (Gilbert, 2000). 
This is quite a new way of doing science; so new that simulation is said to be "a third way of 
doing sciences" (Axelrod, 2006) different from deduction and from induction. In the fields of 
artificial intelligence and artificial life, Luc Steels termed it the synthetic method (see figure 4) 
(Steels & Brook, 1994). 

 

<< FIGURE 4 >> 

Figure 4. Inductive vs. synthetic method 

 

Induction starts from observed facts and uses inferences to build a theory potentially able to 
globally explain the observed facts. The theory is then validated through the test of predicted 
facts. The synthetic method starts like induction from the observed facts and the inferred 
theory (but it can also start like deduction from a set of assumptions). On this basis, the 
synthetic method engineers an artificial system, the objective being that, while operating, this 
system will behave like the real one, thus confirming the tested theory.  
In their seminal work, Epstein and Axtell (1996) considered that artificial societies models 
may change the way we think about explanation in the social sciences. "Clearly, agent-based 
social science does not seem to be either deductive or inductive in the usual senses. But then 
what is it? We think generative is an appropriate term. The aim is to provide initial 
microspecifications that are sufficient to generate the macrostructures of interest." (Epstein & 



Axtell, 1996, p.177). This generative interpretation is directly linked to the disjunction 
between determinism and predictability which is a huge epistemological consequence of 
complexity sciences. Even if we perfectly understand the concerned forces, we are unable to 
predict the evolution of the system (Croquette, 1997). 

A high potential to stimulate novelty 

Agent based modeling is potentially a highly powerful tool for social scientists. Axelrod and 
Tesfatsion (forthcoming) recently synthesized its goals with four forms:  

• Empirical understanding: why have regularities emerged?  
• Normative understanding: how can models help to define the good 
norms/design? How to know if a given decision is positive for the society?  
• Heuristic: How to attain greater insight about fundamental mechanisms in 
social systems?  
• Methodological advancement: How to give researchers the method and tools to 
rigorously study social systems?  

Practically, these four forms rely on three pillars: Formalization, experiments and ability to 
study the macro to micro problem.  

Formalization 

Apart from the verbal and mathematical symbol systems, computer simulation can be 
considered as the "third symbol system" (Ostrom, 1988). Any theory originating in the first 
two models can be expressed in the third one. Simulation can then be considered as formal 
models of theories (Sawyer, 2004). That is an important point since computer symbols are 
more adapted to social sciences than mathematical ones (Gilbert & Troitzsch, 2005, pp.5-6): 

• Programming languages are more expressive and less abstract than 
mathematical techniques.  
• Programs deal more easily with parallel processing.  
• Programs are modular. Major changes can easily be made, that is not the case 
of mathematical systems.  

Computer modeling thus helps social scientists to formalize their theories. The difficulty —
not to say the impossibility— to mathematically formalize many social sciences theories is 
considered to be a great weakness by "hard" scientists. This inability is closely linked to the 
inability of mathematics to deal with distributed emergent processes. Computer modeling can 
thus contribute to give social sciences some of the scientific tools they need to rigorously 
express their theoretical models.  

Experiments 

Simulation can be considered as a new experimental methodology. Gilbert and Conte (1995) 
defined it as "exploratory simulation". Such explorations can contribute to social sciences 
notably in the following ways:  

• Modeling allows a culture-dish methodology. The modeler designs the agents 
and the initial state of its society and studies its temporal evolution (Tesfatsion, 2002). 
Any sort of experiments can be carried out since the modeler has a complete control 
on the model. It is then possible to study the consequences of any given modification. 
This will notably contribute to the analysis of the minimal set of parameters and 
system characteristics necessary to give rise to a given behavior as well as to the 
analysis of the attractors of dynamic social systems (Goldspink, 2002).  
The ability to carry out experiments is something very new for social scientist that 



usually cannot test their theory in the field. Like formalization this contributes to bring 
closer social and "hard" sciences methods.  
• Modeling is potentially able to contribute to original discoveries. The same 
way the classification of cellular automata permitted to propose an original analysis of 
complex systems (Wolfram, 1984; Langton, 1990), simulations can play a role in the 
discovery of general, yet unattainable, laws. Implicit unknown effects can be detected 
(Gilbert & Conte, 1995). This ability to stimulate discovery does not only stand on the 
possibility to carry out otherwise impossible experiments, but also on the capacity of 
emergent modeling to give rise to original cognitive processes. In the field of artificial 
life, Cariani (1992) emphasizing non-stochastic models like the Game of Life, pointed 
out the fact that emergence relies on a cognitive process; a process is emergent only 
according to its observer: "The interesting emergent events that involve artificial life 
simulations reside not in the simulations themselves, but in the way that they change 
the way we think and interact with the world. Rather than emergent devices on their 
own right, these computer simulations are catalyst for emergent processes in our 
minds; they help us create new ways of seeing the world." (Cariani, 1992, p.790, 
original italics).  
• Modeling can go beyond some of the limits of the statistical tools usually used 
by social scientists, e.g. qualitative changes can be analyzed through simulation (see 
(Pyka, 2006)). Simulation also helps the study of processes. Usual statistical analyses 
study the correlations between variables at a given time. Simulations embed the 
processes which lead to these correlations (Gilbert & Troitzsch, 2005). Since social 
systems are fundamentally dynamic, simulation allows formalizing processes beyond 
the scope of statistical analysis. Furthermore, statistic is based on linearity 
assumptions which oblige to over simplify the observed facts. Simulation does not 
suffer from this limit.  
• Modeling is not concerned by the technical limits of mathematical 
formalization. For example, mathematical formalization obliges to consider agents as 
equivalent whereas simulation is able to manage heterogeneous population. In the 
same vein, simulation allows to relax assumptions necessary to obtain tractable 
equations (e.g. the rationality of economic agents). In economics, the highly promising 
field of Agent-Based Computational Economics (ACE) (Tesfatsion, 2002) clearly 
illustrates the potential of simulations.  
• More generally, the same way artificial life allows the study of "Life as it 
could be" (Langton, 1989), artificial societies allow the study of "Societies as they 
could be" (Gilbert, 2000), thus giving social sciences an unprecedented tool to 
understand fundamental invariants (Rennard, 2004). 

Study of the macro to micro problem 

The macro to micro problem—how to describe the relationship between macro-phenomena 
characterizing the dynamic of a system as a whole and micro-phenomena characterizing the 
dynamic of the components of the system— is a central issue of social sciences, but also of 
DAI (Schillo, Fischer, & Klein, 2000).  
Simulation is a ground-breaking tool to study the core problem of the micro/macro relations. 
The relations between different levels (individual, organization, societal) and the potential 
associated lock-in can be studied. Artificial life with its widely studied concept of Dynamical 
hierarchy which "refers to a system that consists of multiple levels of organization having 
dynamics within and between the entities described at each of the different levels." (Lenaerts, 
Chu, & Watson, 2005, p.403), should contribute to this study. Simulation can be used to study 
both the micro to macro and the macro to micro problems (Sawyer, 2003). Schelling’s or 



Latané’s models thus show how regularities can arise from micro-interactions. But such 
models also show that these regularities then constraint the system and impact the behaviors 
of individual agents. More directly, it is possible to conceive simulations that specifically 
study the impact of macro-phenomena. For example, Axtell (2000) while studying retirement 
behaviors, showed that modifying the sole network connections between agents can lead to 
great changes of the overall society behavior.  
The study of the micro/macro problem through simulation remains nevertheless very difficult 
while studying societies. In fact, humans are not limited to basic behavior, they notably have 
the ability to grasp macro-level phenomena and they can adjust their behavior according to 
this. That is what Gilbert (2000) terms second order emergence, characterizing systems where 
agents can detect and react to emergent properties. Models should then embed both the 
emergence of macro-properties and the ability to deal with the effects of these macro-
properties on self-aware individuals. This remains a challenge (Gilbert, 1995b). 
 

Limits 

Artificial societies is a very recent field in which huge problems still are to be solved that 
challenges these researches.  
 

A first set of problems relies on the cognitive dimension of human societies. Guided by the 
success of artificial life, many artificial societies are based on reactive DAI, one of the most 
famous example being the Sugarscape of Epstein and Axtell (1996). The complexity of 
human cognition has a deep impact on the structuring of societies. 

• Self-awareness and the related second order emergence should be modeled. 
• Interpretativism in sociology leads to the idea that meanings are parts of the actions. 

“(…) meanings and concepts describing both the physical and the social world are said 
to be socially constructed by members of society” (Gilbert, 2000). Simulations should 
then embed the corresponding social constructions. 

As a consequence, artificial societies must find a way to associate cognitive and reactive DAI. 
This remains both a theoretical (how to build cognitive agents) and a practical (how to have 
sufficient computing power) problem. 
A second set of problems is linked to the tools and methods used for modeling and 
simulation. First of all, simulation uses tools that may make implicit assumptions having 
nothing to do with the tested theory. For example, the use of cellular automata assumes that 
the world is a regular grid, which may have massive consequences on the global dynamic of 
the simulation (Troitzsch, 1997). Then simulation tends to develop its own finality, hence the 
importance to ground it in social theories in order to avoid the trend to develop simulations 
for themselves and to mistake them for reality. The balance is difficult to find: "If our ’toy 
models’ serve only to reify and naturalize the conventional social science wisdom, then they 
are indeed a Medusan mirror, freezing the victim by the monster’s glance" Lansing (2002, 
p.289). 
The gap between social sciences and computer sciences also challenges the field. Some social 
sciences theories are mainly descriptive and discursive and such approaches may be very 
difficult to formalize through simulation. Moreover, despite common issues, the discussion 
between computer scientists and social scientists remains very difficult. For computer 
scientists, non formalized discursive social theories often seem blurred and they have 
difficulties in understanding them. Social scientists are often reluctant facing computer 
programming and they usually consider that computer scientists do not understand the 



complexity of human societies. 
Finally, the core problem (which is not limited to artificial societies) of "how to obtain from 
local design and programming, and from local actions, interests, and views, some desirable 
and relatively predictable/stable emergent results" (Castelfranchi, 2000, original italics) still 
remains to be solved. 
 

Conclusion 

The field of artificial societies, despite old roots, is now only ten years old. Along with 
artificial life, it participates to an emerging way of doing science. This way still has to reach 
maturity, but will undoubtedly contribute to complement more traditional methods. The 
debate now is not to choose between usual methods and methods originating in artificiality, 
but to convince "traditional" scientist that artificiality is not limited to some kind of, possibly 
funny, computer game and to find ways of building stronger bridges between these practices 
of science. The growing easiness of computer programming and the quick spread of computer 
culture among young scientists is potentially a promise of quick evolution of artificiality in 
social sciences; no doubt this will contribute to renew the field.  
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