
MPRA
Munich Personal RePEc Archive

Present value relations, Granger
non-causality and VAR stability

Fanelli, Luca

Department of Statistics, University of Bologna

December 2006

Online at http://mpra.ub.uni-muenchen.de/1642/

MPRA Paper No. 1642, posted 07. November 2007 / 01:53

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Papers in Economics

https://core.ac.uk/display/7306474?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://mpra.ub.uni-muenchen.de/
http://mpra.ub.uni-muenchen.de/1642/


Present value relations, Granger non-causality
and VAR stability
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December 2006.

Abstract

When in “exact” present value (PV) relations the decision variables do
not Granger cause the explanatory variables and a VAR process is used to
derive restrictions, the system embodies explosive roots. Hence any test of
the PV restrictions would reject the null if the system incorporates Granger
non-causality constraints. This paper investigates the issue.

1 Problem and motivation

An “exact” present value (PV) relation between them×1 vector of decision variables,
yt, and the q × 1 vector of explanatory (forcing) variables, zt, can be formulated as

yt = ω0yt−1 +
∞X
j=0

ωj
1γθEtzt+j + ς (1)

where ωh, h = 0, 1 and γ are m×m matrices, θ is m×q, ς is an m×1 constant, and
Et· := E( · | Ωt) denotes expectations conditional on the sigma algebra Ωt, Ωt ⊆
Ωt+1, summarizing agent’s information at time t.1 It is assumed that the coefficients
of the system of equations (1) satisfy:

A1 for each i, h = 1, ...,m, the elements γih of γ depend on '0 = vec(ω0) and '1 =
vec(ω1) through differentiable functions γih := γi,h('

0
0 : '

0
1), γi,h(·) : S → R,

with S open subset of Rm2
;

A2 ω1 is non-singular and has stable eigenvalues, i.e. lying within the unit circle in
the complex plane;

∗Department of Statistics, University of Bologna, via Belle Arti, 41, I-40126 Bologna, ph: +39
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1Further deterministic terms might be included in (1) without any significant change to the
concepts and results that follow.
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A3 ω0 has stable eigenvalues.

The elements of the θ matrix in the relation (1) reflect the link between yt and zt
and usually depend on agents’ preferences and technology. The matrices ωh, h = 0, 1
and γ typically embody adjustment-type parameters. Usually the elements of ω1
depend on a time-invariant discount factor δ, (0 < δ < 1), and may depend on the
elements of ω0. Given assumption A1, the number of free parameters of model (1)
is (at most) 2m2 +mq, and correspond to those in the matrices (ω0, ω1, θ).
Two important aspects of the PV model specified in (1) are worth stressing.

First, we have deliberately left for the moment the stochastic process generating
zt unspecified. In general, however, the process generating zt plays a key role in
determining solution properties and the identification of the PV model. Second, the
PV relation reads as an “exact” rational expectations model in the sense of Hansen
and Sargent (1991). This means that the model does not include stochastic processes
which are unobservable to the econometrician. Examples of “exact” PV models
include, inter alia, Sargent (1979), Campbell and Shiller (1987), Baillie (1989),
Hansen and Sargent (1991), Engsted and Haldrup (1994), Johansen and Swensen
(1999) and Fanelli (2002, 2006a, 2006b).
It might be argued that assumption A3 rules out some interesting situations, e.g.

ω0 := Im. Actually, the PV model (1) with A1-A3 is general enough to cover several
special cases of interest, provided that the variables are opportunely transformed.
For instance, when ω0 := Im one may specify a new PV relation (1) with y∗t := ∆yt
as vector of decision variables, and ω0 := 0m×m. More generally, when one faces
a model of the form (1) where the ω0 matrix has eigenvalues equal to one, it is
possible to resort to transformations of the system which preserve the form (1) and
assumptions A1-A3.
A convenient formulation of (1), for given zt, reads as

(Im + ω1ω0)yt = ω1Etyt+1 + ω0yt−1 + γθzt + ς∗ (2)

where ς∗ := (I − ω1)ς. The system of Euler equations (2) can be obtained from
(1) through the following steps: (i) write (1) at time t+ 1 and multiply both sides
by ω1; (ii) condition with respect to the information set Ωt and apply the law of
iterated expectations; (iii) subtract the system of equations derived in (ii) from (1)
and rearrange terms. Observe that while (1) implies (2), the reverse is not generally
true, unless a suitable transversality condition is imposed on, or satisfied by the
stochastic process generating yt, see e.g. Sargent (1987).
Testable implications of (1) or of its counterpart (2) can be derived by assuming

that the form of the rational expectations solution of (1) belongs to the class of
VAR processes for the p × 1 (p = m + q) vector Xt := (y

0
t : z

0
t)
0, and then applying

the method of undetermined coefficients, see e.g. Bekaert and Hodrick (2001). This
paper shows that when yt does not Granger causes zt, the restrictions that the PV
relation entails on the VAR are inconsistent with a stable process for Xt. In other
words, the VAR embodies explosive roots under both PV and Granger non-causality
restrictions. Aside from the so-called “rational bubbles” (e.g. Diba and Grossman,



3

1988) and other special circumstances and episodes, explosive (unstable) roots usu-
ally imply dynamic patterns for the variables which can be hardly reconciled with the
typical features observed in most macroeconomic and financial time-series. Thus,
one can reasonably expect that any VAR-based test of the restrictions implied by (1)
tend to reject the null if the system incorporates Granger non-causality constraints.
In general, there are strong economic grounds to expects feedbacks from yt to

zt in PV relations, see e.g. Timmermann (1994).2 Nonetheless, PV models where
zt behaves (or is treated by the econometrician) as a strongly exogenous vector
of variables with respect to the parameters of interest, (ω0, ω1, θ), are frequently
used in both theoretical and applied research. For instance, in the PV model for
stock prices, the finance literature typically treats dividends as given exogenously,
and generally specifies univariate ARMA processes to describe their law of motion
(Campbell and Shiller, 1988). In dynamic factor demand models, it is often assumed
- and found empirically, see e.g. Meese (1980) - that firms face stochastic processes
where real wages and the rental price of capital, zt = (wt : ct)

0, are not Granger
caused by labour and capital, yt = (nt : kt)0.
We conclude this section by showing that the PV formulation (1) under A1-A3

covers many of the models typically used in financial and macroeconomic time-
series. In the expectations theory of interest rates, yt = Rt (m = 1) is a long-term
yield, zt = rt (q = 1) the one-period rate, ω0 := 0, ω1 := δ is the discount factor,
γ := (1 − ω1) = (1 − δ), θ a (scalar) proportionality parameter, and ς a constant
risk premium, see Campbell and Shiller (1987). In modern macroeconomic sticky
pricing theories (1) follows from the assumption of forward-looking price-setting
firms (Calvo model), see e.g. Galì and Gertler (1999), with yt = πt (m = 1) being
the inflation rate, zt = mct (q = 1) a measure of firm’s marginal costs, θ a structural
parameter related to the degree of firm’s price rigidity, and ω0 := λ1, ω1 := λ−12 ,
γ := (λ1+λ2)(λ1λ

2
2)
−1, with λ1 and λ2 the stable and unstable root of a second-order

equation, respectively. Other examples may be found in e.g. Baillie (1989), Fanelli
(2006a) and references therein.

2 Main result

Let Xt := (y0t : z
0
t)
0 be generated by a VAR(k), A(L)Xt = µ + εt, with A(L) :=

Ip−A1L− · · ·−AkL
k, L being the lag operator, Ai p× p matrices of parameters, µ

a p× 1 constant, and εt an iidN(0,Σ) p× 1 disturbance term. It is assumed that:
A4 k ≥ 2.
A5 every root of the characteristic equation det(A(s)) = 0 is such that | s |> 1 or

s = 1, where the symbol det(·) denotes the determinant of a matrix.
2Feedback mechanisms can be interpreted as proxies for equilibrium forces which should be

modelled directly. Timmermann (1994) provides a thorough analysis of the impact of feedbacks
on the solutions to PV models. Granger causality from yt to zt is often regarded as a “weak
implication” of the PV model, see e.g. Campbell and Shiller (1987) and Engsted and Haldrup
(1994).
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A6 When there are roots at s = 1, their number is equal to q = p − r, r := m,
and yt and zt are cointegrated with cointegration matrix β0 := [Im : − θ], i.e.
vt := β0Xt = yt − θzt is an I(0) process.

See e.g. Fanelli (2002) for an explanation of the role of A4. Condition A5
states that both stationary and possibly I(1) processes are allowed; condition A6,
which is subordinate to the existence of unit roots in A5, confines the analysis of
I(1) processes to the case where yt and zt are cointegrated with θ restricted to the
cointegration space, covering therefore a well known empirical implication of PV
models (Campbell and Shiller, 1987).
The state space representation of the VAR is given by

eXt = A eXt−1 + eµ+ eεt (3)

where eXt := (X
0
t : X

0
t−1 : ... : X

0
t−k+1)

0 is the g × 1 state vector, g = pk, and

A :=


A1 A2 · · · Ak

Ip 0p×p · · · 0p×p
. . .

...
0p×p Ip 0p×p

 =
·
G
Ξ

¸
(4)

is the g×g companion matrix, the sub-matrix G = [A1 : A2 : · · · : Ak] has dimension
p× g, the sub-matrix Ξ has dimension (g − p)× g and contains “1” and “0” only;eµ and eεt are defined accordingly. It is assumed that when A6 holds, the sub-matrix
G in (3)-(4) is restricted as G := Gc = ΨW − F , where Ψ := [αβ0 : Γ1 : · · · : Γk−1],
F := [Ip : 0p×p : · · · : 0p×p],

W :=


Ip 0p×p · · · 0p×p
Ip −Ip · · · 0p×p
0p×p Ip · · · 0p×p
...

...
. . .

...
0p×p 0p×p −Ip

 ,

α is a p×mmatrix that satisfies αβ0 := α[Im : −θ] := −A(1) =
Pk

j=1Aj−Ip, and the
Γis are p×p matrices such that Γi := −

Pk
j=i+1Aj, i = 1, ..., k−1 (Johansen, 1996).

The p× g matrix Ψ contains the coefficients associated with the Vector Equilibrium
Correction (VEqC) representation of the cointegrated VAR, and G := Gc maps
VEqC to VAR coefficients. Therefore results derived with respect to the general state
space representation (3)-(4) of the VAR, automatically hold when Xt is cointegrated
as in A6, provided that

A := Ac =

·
Gc

Ξ

¸
.

Expectations conditional on the sigma algebra Ht := σ(Xt, Xt−1,..., X1), Ht ⊆
Ωt, can be easily computed from the VAR (3)-(4). More precisely, E(Xt+1 | Ht) :=
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J 0xE( eXt+1 | Ht) := J 0xA eXt + J 0xeµ = Pk−1
h=0AhXt−h + µ, where J 0x := [Ip : 0p×(g−p)] is

a selection matrix; when A := Ac because of A6, E(Xt+1 | Ht) := J 0xA
c eXt + J 0xeµ :=

Xt + αβ0Xt +
Pk−2

h=0 Γh∆Xt−h + µ. Hence, by using J 0y := [Im : 0m×(g−m)], one can
replace expectations in (2) by the forecast J 0yE( eXt+1 | Ht) := J 0yA eXt + J 0yeµ and
retrieve a set of restrictions.
We now introduce some further notation. Partition matrices Ai, i = 1, 2, ..., k

and the constant µ in the VAR (3)-(4) conformably with Xt = (y
0
t : z

0
t)
0 :

Ai =

·
Ayy
i Ayz

i

Azy
i Azz

i

¸
m×m m×q
q×m q×q

, µ =

·
µy

µz

¸
m×1
q×1

. (5)

Hereafter the absence of Granger causality from yt to zt will be denoted by “yt GNC
zt” and will correspond to the VAR restrictions

Azy
i := 0q×m , i = 1, 2, ..., k. (6)

Likewise, “yt GC zt” means that yt Granger causes zt, i.e. that it exists at least a
matrix Azyei , 1 ≤ei ≤ k, such that Azyei 6= 0q×m.
The following proposition and corollary establish the relation between “exact”

PV models, Granger causality and VAR stability.

PROPOSITION 2.1
Assume that Xt is generated by (3)-(4) with the assumption A4, and that yt

GNC zt, i.e. that (6) holds. If Xt satisfies the restrictions implied by the PV model
(2) with A1-A3, then Xt does not match A5.

Proof. Using A2, write (2) as

Etyt+1 = ω−11 (Im + ω1ω0)yt − ω−11 ω0yt−1 − ω−11 γθzt + ς∗∗

where ς∗∗ := ω−11 ς∗. Condition both sides with respect to Ht, apply the law of
iterated expectations and replace the quantity on the left hand-side by the VAR
forecast E(yt+1 | Ht) = J 0yA eXt + J 0yeµ, obtaining, in light of (5), the relation

Ayy
1 yt +Ayz

1 zt +Ayy
2 yt−1 +Ayz

2 zt−1 +
kX
i=3

[Ayy
i : A

yz
i ]Xt−i+1 + µy

= ω−11 (Im + ω1ω0)yt − ω−11 ω0yt−1 − ω−11 γθzt + ς∗.

As Xt 6= 0p×1 (a.s.) ∀ t, for the equality above to be satisfied the following set of
cross-restrictions must hold:

Ayy
1 : = ω−11 (Im + ω1ω0) , Ayz

1 := −ω−11 γθ (7)

Ayy
2 : = −ω−11 ω0 , Ayz

2 := 0m×q
Ayy
i : = 0m×m , Ayz

i := 0m×q , i = 3, ..., k

µy : = ς∗. (8)
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Given (6) and (7)-(8), the characteristic polynomial associated with the VAR (3)-(4),
det(A(s)), reduces to

det( eA(s)) = detµ· eAyy(s) eAyz(s)
0q×m Azz(s)

¸¶
= det( eAyy(s)) det(Azz(s)) (9)

where “ e ” indicates that the VAR coefficients are constrained, eAyy(s) := Im −
(ω−11 + ω0)s + ω−11 ω0s

2, eAyz(s) := −ω−11 γθs, and Azz(s) := Iq −
Pk

i=1A
zz
i s

i. It
can be recognized that eAyy(s) = (Im − ω−11 s)(Im − ω0s), and that det( eAyy(0)) 6= 0.
Moreover, det( eAyy(1)) 6= 0, as det(Im − ω−11 ) 6= 0 given A2, and det(Im − ω0) 6= 0
given A3 and a Jordan decomposition of ω0. Since if λ is a non-zero eigenvalue of
the square matrix P , then s := λ−1 is a root of det(I − Ps) = 0, it turns out that
det(Im − ω−11 s) = 0 has exactly m (non-zero) roots inside the unit circle because
of A2, whereas det(Im − ω0s) = 0 has roots outside the unit circle (when ω0 6= 0)
because of A3. Thus the characteristic equation (9) of the constrained VAR process
has m roots inside the unit circle and Xt does not match A5.¥

COROLLARY
Consider the PV relation (2) with A1-A3, and the VAR (3)-(4) with A4. Neces-

sary condition for Xt to match the stability condition A5 under the PV restrictions
is that yt GC zt.

Remark. Proposition 2.1 can be easily extended to the situation where the
specified VAR is of the formXt := (y

0
t : zt

0 : wt
0)0, where wt is a vector of “additional”

variables that help to forecast zt. Indeed, define the new vector z∗t := (zt
0 : wt

0) of
dimension q∗ × 1 (q∗ > q); for a suitable definition of the m× q∗ matrix θ, the PV
model (1) and its counterpart (2) can be re-written, other things remaining fixed,
by replacing zt by z∗t .

A natural fix to the shortcoming sketched in Propositions 2.1 is to appeal to “in-
exact” formulations of (1), other than looking outside VAR processes. For instance,
one may add an exogenous m× 1 MDS, ut, on the right hand side of (1). In prin-
ciple, it is possible to interpret such a component as a process capturing temporary
unexplained deviations from the theory, however, there are circumstances where a
precise motivation for ut stems from theory itself.3 In general, Proposition 2.1 does
not apply to the class of “inexact” PV models, see e.g. Hansen and Sargent (1981).
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