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Margin setting with high-frequency data1 

John Cotter2 and François Longin3 

 

Abstract 

Both in practice and in the academic literature, models for setting margin requirements 

in futures markets classically use daily closing price changes. However, as well documented by 

research on high-frequency data, financial markets have recently shown high intraday volatility, 

which could bring more risk than expected. This paper tries to answer two questions relevant for 

margin committees in practice: is it right to compute margin levels based on closing prices and 

ignoring intraday dynamics? Is it justified to implement intraday margin calls? The paper 

focuses on the impact of intraday dynamics of market prices on daily margin levels. Daily 

margin levels are obtained in two ways: first, by using daily price changes defined with different 

time-intervals (say from 3 pm to 3 pm on the following trading day instead of traditional closing 

times); second, by using 5-minute and 1-hour price changes and scaling the results to one day. 

Our empirical analysis uses the FTSE 100 futures contract traded on LIFFE. 
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1. Introduction 

The existence of margin requirements decreases the likelihood of customers' default, 

brokers' bankruptcy and systemic instability of futures markets. Margin requirements act as 

collateral that investors are required to pay to reduce default risk. 4 Margin committees face a 

dilemma however in determining the magnitude of the margin requirement imposed on futures 

traders. On the one hand, setting a high margin level reduces default risk. On the other hand, if 

the margin level is set too high, then the futures contracts will be less attractive for investors due 

to higher costs and decreased liquidity, and finally less profitable for the exchange itself. This 

quandary has forced margin committees to impose investor deposits that represent a practical 

compromise between meeting the objectives of adequate prudence and liquidity of the futures 

contracts. 

Let us describe as an example the way margins are set on the London International 

Financial Futures and Options Exchange (LIFFE). For products traded on this exchange, margin 

requirements are set by the London Clearing House (LCH) (for further details see London 

Clearing House, 2002). The LCH risk committee is responsible for all decisions relating to 

margin requirements for LIFFE contracts. Margin committees generally involve experienced 

market participants who have widespread knowledge in dealing with margin setting and 

implementation, through their exposure to various market conditions and their ability to respond 

to changing environments (Brenner (1981)). The LCH risk committee is independent from the 

commercial function of the Clearinghouse. In order to measure and manage risk, the LCH uses 

the London Systematic Portfolio Analysis of Risk (SPAN) system, a specifically developed 

variation of the SPAN system originally introduced by the Chicago Mercantile Exchange 

(CME). The London SPAN system is a non-parametric risk-based model that provides output of 
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margin requirements that are sufficient to cover potential default losses in all but the most 

extreme circumstances.5 The inputs to the system are estimated margin requirements relying on 

price movements that are not expected to be exceeded over a day or couple of days. These 

estimated values are based on diverse criteria incorporating a focus on a contract’s price history, 

its close-to-close price movements, its liquidity, its seasonality and forthcoming price sensitive 

events. Market volatility is specially a key factor to set margin levels. Most important however 

is the extent of the contract’s price movements with a policy for a minimum margin requirement 

that covers three standard deviations of historic price volatility based on the higher of one-day or 

two-day price movements over the previous 60-day trading period. This is akin to using the 

Gaussian distribution where multiples of standard deviation cover certain price movements at 

various probability levels.6  

Clearinghouses are also beginning to recognize the importance of intraday dynamics. For 

example, in 2002, the LCH has introduced an additional intraday margin requirement that is 

initiated if price movements on a contract challenge the prevailing margin requirement (London 

Clearing House, 2002). Specifically, an intraday margin requirement is initiated if a contract 

price changes by 65% of the margin requirement originally set for that contract.7 In this case, the 

                                                                                                                                                      

4 Futures exchanges also use capital requirements and price limits to protect against investor default. 

5 Alternative approaches in order to compute the margin requirement have been developed in the 
academic literature: Figlewski (1984), Gay et al (1986), Edwards and Neftci (1988), Warshawsky 
(1989), Hsieh (1993), Kofman (1993), Booth et al (1997), Longin (1999) and Cotter (2001) use different 
statistical distributions (Gaussian, historical or extreme value distribution) or processes (GARCH), 
Brennan (1986) proposes an economic model for broker cost minimization in which the margin is 
endogenously determined, and Craine (1992) and Day and Lewis (1999) model the distributions of the 
payoffs to futures traders and the potential losses to the futures clearinghouse in terms of the payoffs to 
barrier options. 
 
6 For instance, under the hypothesis of normality for price movements, two standard deviations would 
cover 97.72% of price movements, and three standard deviations 99.87%. 
7 The validity of the chosen cut-off point for imposing intraday margins cannot be taken for granted as it 
is arbitrarily chosen without any rational or justification. 
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Clearinghouse requires an additional margin payment for falling prices on a long position or for 

rising prices on a short position. The possible impact of intraday price movements is now 

clearly, and rightly so, of concern to risk management overseers for LIFFE contracts. 

This paper tries to answer two questions relevant for margin committees in practice: is it 

right to compute margin levels based on closing prices and ignoring intraday dynamics? Is it 

justified to implement intraday margin calls? In order to answer these two questions this paper 

takes into account the intraday dynamics of futures market prices in computing margin 

requirements. All previous academic studies considered daily closing prices only, thus missing 

potentially important information. In our study we obtain daily margin levels in two ways: first, 

by using daily price changes defined with different time-intervals (say from 3 pm to 3 pm on the 

following trading instead of traditional closing times); second, by using 5-minute and 1-hour 

price changes and scaling the results to one day. The use of high frequency data may specially 

be beneficial in order to get more precise estimates of risk measures as shown by Merton (1980). 

The computation of risk management measures for futures at different frequencies has already 

been considered by Hsieh (1993).8 Under the assumption of independence and identical 

distribution (iid), daily margin levels obtained over different time-intervals should be on average 

equal to and statistically different from daily margin levels obtained with closing prices. 

Identically, scaled intraday margin levels estimated with 5-minute and 1-hour price changes 

should be on average equal to daily margin levels obtained with closing prices. Any significant 

differences may then be accounted for by the lack of iid behavior. In such a case, it may be 

appropriate to set intraday margin levels in order to take into account specific intraday 

                                                

8 Hsieh (1993) computes long-term minimal capital requirements and daily minimum capital 
requirements while we look at short-term margins and daily margins. By focusing on the short term we 
adopt the position of the exchange concerned with its own risk while Hsieh (1993) takes the point of 
view of investors who may wish to hold their position for a long time and who are mainly concerned 
with the funding risk (in the case of a hedge). 
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dynamics. In our paper, different statistical distributions are also used to model futures price 

changes: the Gaussian distribution, the extreme value distribution and the historical distribution. 

A GARCH process is also used to take into account the time-varying property of financial data. 

An application is given for the FTSE 100 futures contract traded on LIFFE. 

The remainder of the paper is organized as follows. The statistical models used for the 

distribution of futures contract price changes and the scaling methods are presented in the next 

section. Section 3 provides a description of the FTSE 100 futures contract data used in the 

application and a detailed statistical analysis of the intraday dynamics of the market prices. 

Section 4 presents empirical results for margins by taking into account the intraday dynamics. 

Finally, a summary of the results and some implications for decision makers are given in the 

concluding section. 

2. Statistical models and scaling methods 

This section presents the different statistical models used to compute the margin level for 

a given probability. We do not necessarily select the best model but rather consider distributions 

that are used in practice by practitioners in charge of setting margins in derivative markets: the 

Gaussian and historical distributions (commonly used), the extreme value distribution 

(especially relevant for the problem of margin setting) and a GARCH type model (a conditional 

distribution). Our main goal is to study the impact of intra-day dynamics in margin levels and to 

show that such an impact is present whatever the distribution chosen. This section also presents 

the scaling method (where available) to obtain daily margin levels from intraday price changes. 

2.1 The Gaussian distribution 

The Gaussian distribution is considered because it is a standard tool in risk management. 

The unconditional Gaussian distribution of price changes requires the estimation of two 

parameters only, the mean, µ, and the variance, σ2. For a given probability p, the margin level 
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corresponds to the quantile where one is examining what margin requirement is sufficient to 

exceed futures price changes over a time-period of length T for the probability level p. Denoted 

by ML(p, T), the margin level is computed as follows : 

(1) ( ) ( ) TpNTTpML ⋅⋅+⋅= − σµ 1,  

where N-1 is the inverse of the standardized Gaussian distribution. 

As the expected price change can empirically be neglected over a short-time period (less 

than one day in our study), the scaling law relating the margin ML(p, T) and the margin level for 

a basic time unit (T=1) follows the T rule: 

(2) ( , ) ( ,1)ML p T T ML p= ⋅  

2.2 The extreme value distribution 

One question that we may ask about the nature of risk management is whether the 

clearinghouse should care more about ordinary market conditions or more about extraordinary 

market conditions. In other financial institutions such as banks two distinct approaches are used: 

value at risk models for ordinary market conditions and stress testing for extraordinary market 

conditions (see Longin (2000)). The clearinghouse must also address both sets of market 

conditions in margin setting so as to minimize the likelihood of investor default by examining a 

range of probabilities of price movements associated with common and uncommon events. For 

that reason the extreme value distribution is considered. It provides a precise model for the tail 

of the distribution of price changes.9 Using the non-parametric estimation approach developed 

by Hill (1975), the margin level ML(p, T) is computed as follows : 

                                                

9 See Embrechts et al (1997) for a presentation of extreme value theory. 
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(3) 

1

( , ) th n
ML p T r

N p

α� �= ⋅� �⋅� �
 

where rth is the tail threshold price change associated with the beginning of the sample of 

tail observations, N the number of observations of price changes in the database, n is the number 

of order statistics used to compute the tail parameter α. The tail parameter measures the degree 

of tail thickness. It represents the number of bounded moments: moments lower than α are finite 

and moments equal to and greater than α are infinite. Extreme value studies applied to financial 

time-series (see Jansen and de Vries (1991) and Longin (1996) for example) have found tail 

parameter estimates between 2 and 4 suggesting that not all moments of the price changes are 

finite. 

A result by Feller (1971) for the tail behavior under time-aggregation scales the results 

by using a T1/α rule: 

(4) 
1

( , ) ( ,1)ML p T T ML pα= ⋅  

Importantly the tail parameter α remains invariant to the aggregation process and also 

has implications for empirical benefits in its actual estimation. Dacarogna et al (1995) have 

shown that high-frequency tail estimation has efficiency benefits due to their fractal behavior. In 

contrast, low frequency estimation suffers from negative sample size effects. Intuitively a large 

(high) frequency data set has more observable extremes that a small (low) frequency one over 

the same time interval thereby allowing for stronger inferences of these rare events. Furthermore 

for ease of computation, the scaling procedure does not require further estimation, but only 

involves parameters from the high-frequency analysis, shown to provide the most detailed 

information on futures price movements. 
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2.3 Historical distribution 

The simplest way to calculate margins is as quantiles relying on the historical 

distribution of returns. This is also the method with the least model risk. The historical 

distribution provides margins representing a quantile using the full set of price changes ordered 

in ascending fashion: 

(5) ( , ) min , 1n

n
ML p T r p

N
� �= ≥ −� �
� �

 

Note that there is no scaling law associated with the historical distribution and that we 

are limited to in-sample margin estimation. 

2.4 The GARCH process 

All statistical models presented above are based on unconditional distributions and 

cannot reflect current market conditions. As first noted by Hsieh (1991), modeling the 

conditional heteroskedasticity is a key point in the margin setting context. As market conditions 

may vary substantially over time, Hsieh suggests that the conditional density function may be 

used in a dynamic margin setting process. In order to take into account current market 

conditions a conditional process such as a GARCH process is used to address issues relating to 

the dynamic features of futures contracts volatility (see Cotter (2001)).10 To model the time-

varying behavior of price changes suggested by the previous analysis, we use the GARCH 

model developed by Bollerslev (1986) given by: 

(6) � �
= =

−− ++=
p

i

q

j
jtjitiot

1 1

22 σβεαασ  

                                                

10 See Hsieh (1993) for further applications of GARCH processes in modelling conditional density 
functions. Hsieh (1991) notes that the popularity of these models is due to their ability to capture the 
dependence structure of financial returns. Various potential explanations are given for this dependence 
structure resulting in non iid behaviour including deterministic chaos, non-stationarity and non-linear 
stochastic processes. 
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for .1,0,,0 ≤+≥ jiji βαβαα  

The unconditional level of volatility is related to α0, persistence in volatility of the 

innovations in 2
it −ε  given by αi and the persistence in past volatility 2

jt −σ  given by βj. 

A single lag GARCH (1, 1) model is applied here to the price series at the end of the 

sample during December 2000. Assuming the conditional distribution is Gaussian, results in 

scaling using the T  rule outlined earlier. 

3. Data analysis 

3.1 Data 

The empirical analysis is based on transaction prices for the FTSE 100 futures contract 

trading on the LIFFE exchange (data are obtained from Liffedata). This exchange has made a 

clear distinction, between contracts that are either linked to an underlying asset or developed 

formally on the basis of links to the recently developed European currency, the euro, and those 

that remain linked to factors outside the currency area. The FTSE 100 represents the most 

actively traded example of the latter asset type. 

Data are available on the stock index contract for four specific delivery months per year, 

March, June, September and December. Prices are chosen from those contracts with delivery 

months on the basis of being the most actively traded using a volume crossover procedure. The 

empirical analysis is completed for sampling frequencies of 5 minutes, 1 hour and 1 day. The 

first interval is chosen so as to meet the objective of analyzing the highest frequency possible 

and capturing the most accurate risk estimates but also avoids microstructure effects such as bid- 

ask effects. For the daily frequency, the price changes are computed by taking different starting 

(and ending) times to define the day: the beginning of the “day” can start from 9 am (the 

opening of the trading day) to 5 pm (the closing of the trading day). Nine different time-series of 
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daily price changes are then obtained. Log prices (or log prices to the nearest trade available) for 

each interval are first differenced to obtain each period’s price change. The period of analysis is 

for the year 2000 involving 247 full trading days corresponding to an average life span of an 

exchange traded futures contract. The FTSE 100 futures daily interval encompasses 113 5-

minute trading intervals and nine hourly trading intervals. A number of issues arise in the data 

capture process. First, all holidays are removed. This entails New Year’s (2 days), Easter (2 

days), May Day (1 day), spring holiday (1 day), summer holiday (1 day), and Christmas (2 

days). In addition, trading took place over a half day during the days prior to the New Year and 

Christmas holidays and these full day periods are removed from the analysis. 

3.2 Basic statistics 

Daily price changes defined with different time-intervals 

In addition to examining daily price changes using closing prices that are the norm in 

margin setting through the marking to market system, daily price changes can also be defined 

with different time-intervals. Basic statistics are reported in Table 1 and a time-series plot for 

two of these time-intervals, using opening prices and closing prices are presented in Figure 1. 

Whilst the mean price changes remain reasonably constant, other moments are more diverging 

suggesting the dynamics for different intervals vary. For instance, skewness goes from -0.09 to -

0.47 and the kurtosis statistic goes from being platykurtic (-0.32) to leptokurtic (1.52). Also the 

dispersion of various quantiles is considerable. Again dependency varies according to the 

different time-intervals. Inferences for the squared price changes are similar although greater in 

magnitude. However it can be observed that both time-series have similar time-varying features 

evidencing volatility clustering with periods of high and low volatility but the diverging features 

are clearly demonstrated as suggested by the magnitude of realizations. For example, the 

maximum squared price change is equal to 9.79 for 4 pm and 34.13 for 9 am. 
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Price changes defined with different frequencies 

Basic statistics are reported in Table 2 for price changes (Panel A) and for squared price 

changes (Panel B) defined with different frequencies. We find different statistical behavior 

according to the frequency of measurement with very strong dependency, excess kurtosis and 

clear lack of normality recorded at the highest intraday level (5-minute intervals). To begin, 

concentrating on the first four moments of the distribution, we find that kurtosis increases as the 

frequency increases. For price changes, the (excess) kurtosis is equal to 0.26 for a 1-day 

frequency, 1.54 for a 1-hour frequency and 254.50 for a 5-minute frequency. The high kurtosis 

(greater than the value equal to 0 implied by normality) gives rise to the fat-tailed property of 

futures price changes. It is also illustrated by the probability density function and QQ plots of 

the shapes of price changes for different frequencies given in Figure 2. The extent of fat-tails is 

strongest for 5-minute realizations supporting the summary statistics and this would impact tail 

quantiles (margins) for this frequency. Also, the magnitude of values for these realizations can 

be very large as indicated by the scale of the density plots. These features generally result in the 

formal rejection of a Gaussian distribution using the Kolmogorov-Smirnov test.11 Deviations 

from normality are strongest at the highest frequency. The other moments emphasize the 

magnitude and scale of the realizations sampled at different frequencies. On average, price 

changes were negative during the year 2000 and unconditional volatility increases for interval 

size. Selected quantiles reinforce divergences in magnitude at different frequencies. Similar 

conclusions can be made for the proxy of volatility, the squared price changes, although the 

skewness and kurtosis are more pronounced. Moreover, autocorrelation changes dramatically 

according to frequency of estimation with much more dependency being recorded for 5-minute 

price changes. For instance, the Ljung-Box test statistic is 180.90 for 5-minute price changes, 

                                                

11 Whilst a formal rejection of normality for the full distribution of daily price is not recorded at common 
significance levels the tail behaviour in Figure 2 clearly indicates a fat-tailed property. 
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strongly rejecting the hypothesis of iid behavior, whereas in contrast this hypothesis is not 

rejected at daily frequency (at 5% confidence level). This is also verified for squared price 

changes. 

3.3 Extreme value analysis 

Tail parameter estimates using different time-intervals to compute daily price changes 

are presented in Table 3 for the left tail (Panel A) and the right tail (Panel B). Following 

Huisman et al (2001) the point estimates are calculated using the weighted least squares 

technique that minimizes the small-sample bias (see the appendix for details of the estimation 

process). The point estimates range from 2.57 to 6.34 and the values are generally in line with 

previous findings (see Cotter (2001)). As the tail parameter is positive, the extreme value 

distribution is a Fréchet distribution that is obtained for a fat-tailed distribution of price changes. 

The tail parameter is also estimated with higher frequency (Panel C). The tail parameter 

value seems to be stable under the temporal aggregation. It tends to increase as we move to 

higher frequency indicating a fatter tail recorded at intraday levels but this is not statistically 

significant. As expected, the precision is also much improved by using 5-minute and 1-hour 

price changes with lower standard errors. For example, for the left tail, the tail estimates with 

standard error in parentheses are: 2.77 (0.01) for 5-minute intervals, 2.83 (0.04) for 1-hour 

intervals and 3.11 (0.66) for daily intervals.  

We also use the tail parameter estimates to test if the second and the fourth moment of 

the distribution are well defined. For classical confidence level (say 5%), we are unable to reject 

the hypothesis that the variance is infinite in any scenario, whereas we are able to reject the 

hypothesis that the kurtosis is infinite in many scenarios. 
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3.4 Conditional estimation 

Time-varying behavior is described from fitting the GARCH model to both intraday 

price changes at 5-minute and 1-hour intervals and daily price changes from different time-

intervals at the end of December 2000.12 The GARCH estimates consistently indicate that the 

conditional distributions exhibit persistence, with past volatility impacting on current volatility 

as it is typical of GARCH modeling at daily intervals.13 Furthermore the conditional 

distributions vary according to the time intervals analyzed that will give rise to different margin 

requirements.  

4. Model-based margin requirements 

This section presents empirical results for margin requirements obtained with daily price 

changes (4.1) and 5-minute and 1-hour price changes scaled to one day (4.2). In our analysis of 

margin requirements we are interested in two separate questions: should margin requirements be 

set with closing prices alone? Is there a justification for implementing intraday margin calls? We 

now turn to these questions. 

4.1 Margin requirement based on daily price changes 

Table 4 presents margin requirements obtained with daily price changes for a long 

position (Panel A) and for a short position (Panel B). Margin requirements are computed for a 

given probability. Four different values are considered: 95%, 99%, 99.6% and 99.8% 

                                                

12 Our application is given for illustrative purposes only. We could also have fit the GARCH model for 
full timeframe to obtain daily conditional margins throughout the year 2000. 
13 For instance the parameter estimates based on daily closing prices are: α0 = 0.01, α1 = 0.01, β1 = 0.96. 
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corresponding to average waiting periods of 20, 100, 250 and 500 trading days.14 Thinking of 

risk management for financial institutions, probabilities of 95% and 99% would be associated 

with ordinary adverse market events modeled by value at risk models, and probabilities of 

99.6% and 99.8% with extraordinary adverse market events considered in stress testing 

programs. In the margin setting context, the probability reflects the degree of prudence of the 

exchange: the higher the probability, the higher the margin level, the less risky the futures 

contract for market participants, but the less attractive the contract for investors. 

Margin requirements are computed with the statistical models previously presented: 

three unconditional distributions (Gaussian, extreme value and historical) and a conditional 

process (the GARCH process). For the presentation of the results, the extreme value distribution 

will be the reference model as it presents many advantages (parametric distribution, limited 

model risk, limited event risk) and as the problem of margin setting is mainly concerned with 

extreme price changes. Beginning with the analysis of extreme value estimates, we first note 

that variation occurs in the estimates based on the different time-intervals to define daily price 

changes. For example, for a long position and a probability level of 95%, the estimated margin 

level ranges from 1.83% to 2.05% of the nominal position. For the most conservative level of 

99.8%, it ranges from 2.77% to 5.32%, almost double. Also there does not seem to be a 

systematic pattern to these deviations. For instance, for a probability of 95%, the minimum is 

obtained with 2 pm prices and the maximum for closing prices, and for a probability of 99.8%, 

the minimum is obtained with 3 pm prices and the maximum for 10 am prices. The same 

remarks apply to a short position. These findings suggest that the daily price change 

                                                

14 The average waiting period for a given quantile (margin level) represents the time we have to wait on 
average to observe a price change greater than the margin level. As explained by Longin (2000), for high 
levels of risk, the concept of waiting period is more meaningful than a probability. For example, the 
difference in probability between 99.6% and 99.8% appears very small while translated in terms of 
waiting period, the associated daily margin events occur on average every year and every two years, 
which is easier to understand and relate to. 
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distributions vary to some extent based on different time-intervals sampled suggesting separate 

tail behavior for each price series. 

Turning to the Gaussian estimates, some key insights are obtained. First, the measures 

are almost identical for long and short positions due to the assumption of a symmetric 

distribution of futures price changes and an average price change close to zero over the period 

considered. In contrast, the extreme value distribution and the historical distribution take 

account of the possibility of non-symmetric features in line with the oft cited stylized facts of 

financial time series, and verified for the FTSE 100 futures contract of diverging upper and 

lower distribution shapes. However, in line with all the estimates, diverging margin estimates 

occur according to the time-intervals used to define price changes. For example, for a long 

position and a probability of 95%, the estimated margin varies from 1.94% using 4 pm prices to 

2.21% using opening prices. Traditional comparisons of extreme value and normal risk 

estimates suggest the latter underestimates tail behavior due to its exponential tail decline that 

results in relatively thin-tailed features. These findings hold for the FTSE 100 contract for high 

probability levels of 99.6% and 99.8%. In contrast, for the relatively low probability level of 

95%, this conclusion cannot be sustained and this is due to this confidence level representing a 

common rather than extreme threshold. For instance, the probability of this event occurring 

using daily data is once every 20 trading days representing a typical event rather than an 

extreme one, although it is the latter events that need to be guarded against to avoid investor 

default. 

Then turning to the historical estimates, diverging margin requirements again occur 

according to the time-interval chosen with the largest (smallest) estimate on a long position at 

the 95% level happening at 1 pm (10 am). These estimates are based on using the historical 

price series gathered for the year 2000. The historical estimates are confined to in-sample 

inferences due to the limited number of price observations. This implies that margin setting 
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using the historical distribution that tries to avoid investor default may not be able to model the 

events that actually cause the default, whereas in contrast, extreme value theory specifically 

models these tail values. 

The margin requirements based on the unconditional distributions may be compared to 

the conditional estimates using the GARCH process. Again it is clear that estimation at different 

time-intervals necessitates diverging margins. For instance, the out-of-sample estimates 

measured at 11 am (3 pm) represent the largest (smallest) possible margin requirements for a 

long position. Comparing the extreme value and GARCH estimates provides information on the 

distinction between unconditional and conditional environments facing margin setters. Distinct 

patterns occur based on the volatility estimation for the last trading day of the sample 

(December 29, 2000). 

Thus this analysis suggests that Clearinghouses should consider setting margin 

requirements based on different time-intervals so as to avoid ignoring intraday dynamics. 

4.2 Daily margin requirement estimated with high-frequency price changes 

Table 5 presents daily margin requirements obtained with 5-minute and 1-hour price 

changes for a long position (Panel A) and for a short position (Panel B). Margin levels are 

scaled to one day (see Section 2 for the presentation of the scaling method) and compared to the 

ones obtained directly from daily price changes (average of daily margin levels obtained with 

daily price changes defined on different time-interval as presented in Table 4). Different 

statistical models are used: three unconditional distributions (the Gaussian distribution, the 

extreme value distribution and the historical distribution) and a GARCH process. The historical 

estimates are sometimes not available (na) due to the lack of a scaling formula or to data 

unavailability for out-of-sample inferences. 
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The general conclusion that we can draw from the results presented in Table 5 is that 

daily margin levels estimated with higher frequency (5-minute and 1-hour price changes) are 

consistently higher than margin levels directly obtained from daily price changes. For the 

Gaussian and the extreme value distributions, daily margin levels estimated with 5-minute price 

changes are always higher than daily margin levels directly obtained with daily data. This is also 

true for margin levels estimated with 1-hour price changes (except once at the 95% probability 

level for the extreme value distribution). For example for Gaussian margins on a long position 

the average scaled high-frequency margin levels are approximately 50% higher than daily 

margin levels, which is significant from an economic point of view. A t-test also shows that this 

difference is significant from a statistical point of view. Similar findings hold for the extreme 

value distribution. The rationale for these results is as follows: the iid assumption of future price 

changes, which is used for scaling margin levels computed with high-frequency data is not 

verified in practice. 

The Clearinghouse must address the implication of these findings. One way is to 

introduce intraday margins that require additional payments from futures traders based on 

intraday price movements. As we have seen, intraday price movements are not correctly 

reflected in daily margins using scaling laws and this would encourage the Clearinghouse to 

have an additional payments system for traders to protect against these (extreme) price 

movements. 

5. Summary and economic implications 

This paper takes into account the intraday dynamics of futures prices changes in margin 

setting. It then includes lost information that is unavailable with the traditional approach of 

using closing prices in a marking to market system. The intraday futures price movements are 

relied on in two ways. First, daily price changes defined with different time-intervals are used to 
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compute daily margin levels, and second high-frequency 5-minute and 1-hour price changes are 

used to compute intraday margin levels that are then scaled to give daily margin levels. 

This paper finds that intraday dynamics should be a key component in margin setting. 

Daily price movements measured at different intervals can have a very tenuous relationship 

suggesting that the common procedure of using only close of day prices neglects the dynamics 

that investors actually face in trading futures. Daily margin levels estimated with high-frequency 

data (5-minute and 1-hour price changes) are consistently higher than daily margin levels 

directly obtained from daily price changes. Under the basic assumption of an iid process for 

price changes, which is used for the scaling law, margin levels based on high-frequency data 

should be more precisely estimated (it is the case) but on average not different from margin 

levels directly obtained from daily price changes. 

The two economic issues pointed out in the introduction of this paper were about the use 

of closing prices to set daily margin levels and the justification of imposing intraday margins. 

Let us consider first the issue of setting daily margins. A margin level computed with closing 

prices may be substantially different from a margin level computed with another time-interval. 

The same result is obtained with the scaled daily margins from high-frequency price changes, 

which are substantially higher than the average margin level based on daily price changes. When 

deciding about the daily margin level and taking into account the intraday dynamics of price 

movements, the margin committee may consider margin levels computed with different time-

intervals. A conservative approach would lead to considering the highest margin level over all 

time-intervals. The margin committee may also set daily margin level based on scaled margin 

levels from high-frequency price changes. Note that the empirical study carried out in this paper 

shows that both approaches (highest daily margin level based on price changes computed with 

different time-intervals and scaled daily margin levels based on high-frequency price changes) 

would lead to very similar values for daily margin levels. Indeed both approaches take into 
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account the intraday dynamics in different but related ways. Let us consider now the issue of 

intraday margins. This paper shows that if the margin committee set daily margin levels by 

considering closing prices alone, it would to underestimate the margin level for a given level of 

risk. Then it makes sense to add intraday margins in order to take into account the extra risk due 

to the intraday dynamics. From a decision making point of view, the overall conclusion of this 

paper is that by not accounting for intraday dynamics the Clearinghouse may set inadequate 

margins resulting in unexpected high levels of default risk. 
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Appendix 

Estimation of the tail parameter 

 

This appendix describes the estimation procedure for the tail parameter of the extreme 

value distribution. 

We use the method developed by Hill (1975) to estimate the tail parameter and also to 

determine the distribution quantiles (margin levels). The Hill estimator is widely used in 

empirical studies as it performs well for most time-series (Hall and Welsh (1984)) and is more 

efficient than other estimators based on order statistics (Kearns and Pagan (1997)). It is used in 

our scaling procedure for the extreme value method (Dacarogna et al, 1995)The Hill estimator 

corresponds to the maximum likelihood estimator of the inverse of the tail parameter 1/α: 

(A1) ( )1
1

1 1
ln ln

n

N i N n
i

r r
nα + − −

=
= −�   

De Haan et al (1994) shows that this tail estimator is asymptotically normal. 

The issue in the estimation procedure is the choice of the optimal number of tail 

observations (n) to include in the estimator (see Danielson et al (2001) for a discussion). The 

dilemma faced is that there is a trade-off between the bias and variance of the estimator with the 

bias decreasing and the variance increasing with the number of tail observations used. In order 

to choose the optimal number of tail observations, we apply the regression method introduced 

by Huisman et al (2001): 
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For a weighted least squares regression of Hill estimates against associated numbers of tail 

estimates that minimizes heteroskedasticity in the regression’s error term. Huisman et al. (2001) 

find that the estimator works well from simulation of small samples (similar in size to that 

analyzed here for daily intervals). 
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Figure 1. FTSE 100 futures contract daily price changes and squared price changes 
defined with opening and closing prices. 
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Note: these figures represent the history of the price change and squared price change of the FTSE 100 
futures contract for the year 2000. Daily price changes are computed in two ways: from 9 am to 9 am on 
the following day (opening prices) and from 5 pm to 5 pm (closing prices). 
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Figure 2. Probability density function and QQ plot for the FTSE 100 futures contract 
price changes defined with different frequencies. 
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Note: these figures represent the probability density function and the QQ plots for price changes in the 
FTSE 100 futures contract for the year 2000. Three different frequencies are used to compute the price 
changes: 5 minutes, 1 hour and 1 day. 
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Table 1. Basic statistics for the FTSE 100 futures contract daily price changes defined with 
different time-intervals. 

Panel A. Price changes 

 Open 10 am 11 am 12 pm 1 pm 2 pm 3 pm 4 pm Close 
Mean -0.04 -0.04 -0.03 -0.03 -0.03 -0.03 -0.04 -0.03 -0.03 

Standard deviation 1.32 1.23 1.20 1.23 1.18 1.29 1.22 1.16 1.30 
Skewness -0.13 -0.10 -0.30 -0.47 -0.32 -0.13 -0.14 -0.09 -0.15 
Kurtosis 1.52 1.13 0.88 1.39 0.16 0.14 -0.05 -0.32 0.26 

          
0.05 0.04 0.05 0.06 0.04 0.03 0.04 0.03 0.04 Kolmogorov-Smirnov 

test of normality (0.10) (0.48) (0.11) (0.11) (0.46) (0.62) (0.57) (0.71) (0.31) 
          

26.29 26.29 34.98 32.83 34.25 29.83 41.28 36.47 31.68 Ljung-Box 
test of white noise (0.16) (0.16) (0.02) (0.04) (0.02) (0.07) (0.00) (0.01) (0.05) 

          
Minimum -5.84 -4.92 -4.74 -5.73 -4.48 -4.54 -3.60 -3.13 -4.38 
1st quartile -0.79 -0.86 -0.78 -0.76 -0.80 -0.79 -0.79 -0.80 -0.77 
2nd quartile -0.04 -0.01 0.02 -0.01 0.03 -0.02 -0.04 0.02 0.00 
3rd quartile 0.78 0.74 0.73 0.81 0.80 0.86 0.78 0.76 0.76 
Maximum 4.26 4.06 3.59 3.09 2.59 3.20 3.02 2.48 3.20 

 

Panel B. Squared price changes 

 Open 10 am 11 am 12 pm 1 pm 2 pm 3 pm 4 pm Close 
Mean 1.73 1.51 1.44 1.51 1.40 1.65 1.48 1.35 1.70 

Standard deviation 3.24 2.66 2.44 2.79 2.06 2.42 2.06 1.74 2.55 
Skewness 5.38 4.49 4.27 6.58 4.03 3.15 2.25 1.75 2.69 
Kurtosis 43.77 27.90 26.24 65.77 27.84 16.08 5.94 2.90 10.38 

          
0.30 0.29 0.28 0.29 0.25 0.25 0.24 0.22 0.25 Kolmogorov-Smirnov 

test of normality (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) 
          

44.01 34.91 21.78 21.00 44.36 31.70 55.00 40.73 29.85 Ljung-Box 
test of white noise (0.00) (0.02) (0.35) (0.40) (0.00) (0.05) (0.00) (0.00) (0.07) 

          
Minimum 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
1st quartile 0.09 0.13 0.13 0.14 0.13 0.18 0.16 0.12 0.14 
2nd quartile 0.63 0.62 0.58 0.60 0.64 0.72 0.63 0.60 0.58 
3rd quartile 2.05 1.70 1.74 1.94 1.85 1.86 1.95 1.76 2.21 
Maximum 34.13 24.24 22.46 32.87 20.06 20.60 12.93 9.79 19.17 

Note: this table gives the basic statistics and empirical quantiles for price changes (Panel A) and squared 
price changes (Panel B) defined with different time-intervals. It also presents the results of the 
Kolmogorov-Smirnov test for normality and the Ljung-Box Q-statistic for white noise with the p-value 
below in parentheses. To define the price change, the starting time, which is equal to the ending time on 
the following day, varies from 9 am (opening of the market) to 5 pm (closing of the market). Data are 
price changes of the FTSE 100 futures contract over the year 2000. 
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Table 2. Basic statistics for the FTSE 100 futures contract daily price changes defined with 
different frequencies. 

Panel A. Price changes 

 Frequency of price changes 
 5-minutes 1-hour 1-day 

Mean 0.00 -0.02 -0.03 
Standard deviation 0.11 0.30 1.30 

Skewness -1.44 -0.28 -0.15 
Kurtosis 254.5 1.54 0.26 

    
0.08 0.05 0.04 Kolmogorov-Smirnov 

test of normality (0.00) (0.00) (0.31) 
    

180.90 73.75 31.68 Ljung-Box 
test of white noise (0.00) (0.00) (0.05) 

    
Minimum -5.17 -1.57 -4.38 
1st quartile -0.05 -0.18 -0.77 
2nd quartile 0.00 -0.00 -0.03 
3rd quartile 0.05 0.16 0.76 
Maximum 4.34 1.29 3.20 

 

Panel B. Squared price changes 

 Frequency of price changes 
 5-minutes 1-hour 1-day 

Mean 0.01 0.09 1.70 
Standard deviation 0.21 0.17 2.55 

Skewness 107.99 5.24 2.69 
Kurtosis 12 815.78 46.5 10.38 

    
0.47 0.29 0.25 Kolmogorov-Smirnov 

test of normality (0.00) (0.00) (0.00) 
    

6 351.26 107.51 29.85 Ljung-Box 
test of white noise (0.00) (0.00) (0.07) 

    
Minimum 0.00 0.00 0.00 
1st quartile 0.00 0.01 0.14 
2nd quartile 0.00 0.03 0.65 
3rd quartile 0.01 0.09 2.21 
Maximum 26.73 2.46 19.17 

Note: this table gives the basic statistics and empirical quantiles for price changes (Panel A) and squared 
price changes (Panel B) defined with different frequencies. Three different frequencies are used to 
compute the price changes: 5 minutes, 1 hour and 1 day. The table also presents the results of the 
Kolmogorov-Smirnov test for normality and the Ljung-Box Q-statistic for white noise with the p-value 
below in parentheses. Data are price changes of the FTSE 100 futures contract over the year 2000. 
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Table 3. Tail parameter estimates and test of the existence of moments for the FTSE 100 
futures contract price changes. 

Panel A. Daily future price changes - Left tail 

 Open 10 am 11 am 12 pm 1 pm 2 pm 3 pm 4 pm Close 

Tail 
parameter α 

3.06 
(0.65) 

3.25 
(0.69) 

2.68 
(0.57) 

3.30 
(0.70) 

3.62 
(0.77) 

3.51 
(0.75) 

6.34 
(1.35) 

3.03 
(0.65) 

3.11 
(0.66) 

                    H0: 
α>2 

1.63 
(0.45) 

1.81 
(0.46) 

1.18 
(0.38) 

1.85 
(0.47) 

2.10 
(0.48) 

2.02 
(0.48) 

3.21 
(0.50) 

1.60 
(0.45) 

1.68 
(0.45) 

          H0: 
α>4 

-1.43 
(0.00) 

-1.08 
(0.00) 

-2.32 
(0.00) 

-0.99 
(0.00) 

-0.49 
(0.00) 

-0.65 
(0.00) 

1.73 
(0.46) 

-1.50 
(0.00) 

-1.33 
(0.00) 

 

Panel B. Daily future price changes - Right tail 

 Open 10 am 11 am 12 pm 1 pm 2 pm 3 pm 4 pm Close 
Tail 

parameter α 
2.58 

(0.55) 
3.63 

(0.77) 
4.34 

(0.93) 
3.77 

(0.80) 
4.20 

(0.90) 
3.48 

(0.74) 
4.96 

(1.06) 
4.08 

(0.87) 
3.64 

(0.78) 
          H0: 

α>2 
1.05 

(0.35) 
2.11 

(0.48) 
2.53 

(0.49) 
2.20 

(0.49) 
2.46 

(0.49) 
2.00 

(0.48) 
2.80 

(0.50) 
2.39 

(0.49) 
2.11 

(0.49) 
          H0: 

α>4 
-2.59 
(0.00) 

-0.48 
(0.00) 

0.37 
(0.14) 

-0.29 
(0.00) 

0.22 
(0.09) 

-0.70 
(0.00) 

0.91 
(0.32) 

0.09 
(0.04) 

-0.47 
(0.00) 

 

Panel C. High-frequency future price changes - Left and right tails 

 Left tail Right tail 
 5-minute 1-hour 1-day 5-minute 1-hour 1-day 

Tail 
parameter α 

2.77 
(0.01) 

2.83 
(0.04) 

3.11 
(0.66) 

2.42 
(0.01) 

2.71 
(0.04) 

3.64 
(0.78) 

       H0: 
α>2 

7.94 
(0.50) 

3.98 
(0.50) 

1.68 
(0.45) 

4.95 
(0.50) 

3.55 
(0.50) 

2.11 
(0.49) 

       H0: 
α>4 

-12.68 
(0.00) 

-5.61 
(0.00) 

-1.33 
(0.00) 

-18.64 
(0.00) 

-6.46 
(0.00) 

-0.47 
(0.00) 

Note : this table gives the tail parameter estimates for the left tail (Panel A) and the right tail (Panel B) of 
the distribution of daily price changes and for the left and right tails (Panel C) of the distribution of 5-
minute, 1-hour and daily price changes. It also provides a test of the existence of the moments of the 
distribution. The first line of the table gives the tail parameter estimate obtained with the method 
developed by Huisman et al (2001) with the standard error below in parentheses. The second and third 
lines give the results of a test of the existence of the second moment (the variance) and the fourth 
moment (the kurtosis) with the p-value below in parentheses. As the tail parameter corresponds to the 
highest moment defined for the distribution, the null hypotheses are defined as follows: H0: α > 2 and 
H0: α > 4. To define the daily price change, the starting time (which is equal to the ending time on the 
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following day) varies from 9 am (opening of the market) to 5 pm (closing of the market). Data are price 
changes of the FTSE 100 futures contract over the year 2000. 
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Table 4. Margin levels based on daily price changes for the FTSE 100 futures contract. 

Panel A. Long position 

Probability 
(waiting period) Model Open 10 am 11 am 12 pm 1 pm 2 pm 3 pm 4 pm Close 

Gaussian 2.21 2.06 2.00 2.05 1.97 2.15 2.05 1.94 2.17 
Extreme value 1.85 1.95 1.89 1.84 2.04 1.83 1.85 1.95 2.05 

Historical 1.90 1.87 2.23 2.08 2.34 2.14 2.04 2.28 2.28 
95% 

(20 days) 
GARCH 2.04 1.95 2.16 2.03 2.25 2.10 1.96 2.34 2.24 

           
Gaussian 3.11 2.90 2.82 2.89 2.78 3.03 2.88 2.73 3.05 

Extreme value 2.94 3.22 3.12 2.70 2.78 2.42 2.26 2.74 2.93 
Historical 2.98 3.23 3.06 2.76 2.90 2.89 2.51 3.19 3.25 

99% 
(100 days) 

GARCH 3.12 3.15 2.85 2.89 2.93 2.92 2.67 3.13 3.27 
           

Gaussian 3.54 3.30 3.21 3.29 3.16 3.45 3.28 3.11 3.48 
Extreme value 3.83 4.29 4.15 3.35 3.32 2.84 2.54 3.32 3.59 

Historical 3.59 3.39 3.41 3.01 3.01 3.10 2.71 3.31 3.45 
99.60% 

(250 days) 
GARCH 3.23 4.25 4.16 3.38 3.02 3.16 2.92 3.52 4.10 

           
Gaussian 3.84 3.58 3.48 3.57 3.43 3.74 3.55 3.37 3.77 

Extreme value 4.67 5.32 5.15 3.95 3.79 3.20 2.77 3.84 4.18 
Historical na na na na na na na na na 

99.80% 
(500 days) 

GARCH 4.03 4.46 4.81 3.82 3.44 3.28 3.14 3.74 4.14 

 

Panel B. Short position  

Probability 
(waiting period) Model Open 10 am 11 am 12 pm 1 pm 2 pm 3 pm 4 pm Close 

Gaussian 2.13 1.98 1.94 1.99 1.91 2.09 1.97 1.88 2.11 
Extreme value 1.70 1.76 1.80 1.65 1.96 1.74 1.77 2.06 1.94 

Historical 1.85 1.72 1.75 1.73 2.06 2.03 1.92 2.19 2.10 
95% 

(20 days) 
GARCH 1.66 1.63 1.76 1.72 1.94 2.06 1.89 2.21 2.18 

           
Gaussian 3.03 2.82 2.76 2.83 2.72 2.97 2.80 2.67 2.99 

Extreme value 2.69 2.91 2.98 2.41 2.67 2.31 2.16 2.89 2.77 
Historical 2.76 2.82 2.67 2.47 2.82 2.50 2.37 2.78 2.77 

99% 
(100 days) 

GARCH 3.08 2.97 2.65 2.40 2.61 2.49 2.30 2.79 2.86 
           

Gaussian 3.42 3.46 3.22 3.15 3.23 3.10 3.39 3.20 3.05 
Extreme value 3.87 3.87 3.97 2.99 3.18 2.71 2.42 3.51 3.40 

Historical 3.70 3.01 2.90 2.58 2.97 2.70 2.48 2.96 3.20 
99.60% 

(250 days) 
GARCH 3.51 3.10 2.82 2.64 3.38 2.80 2.33 2.92 2.89 

           
Gaussian 3.76 3.50 3.42 3.51 3.37 3.68 3.47 3.31 3.71 

Extreme value 4.80 4.80 4.93 3.53 3.63 3.05 2.63 4.06 3.96 
Historical na na na na na na na na na 

99.80% 
(500 days) 

GARCH 3.73 3.20 3.35 2.80 3.79 3.01 2.53 3.06 3.00 
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Note : this table gives the margin level for a long position (Panel A) and a short position (Panel B) for 
different probability levels ranging from 95% to 99.8% or equivalently different waiting periods ranging 
from 20 trading days (1 month) to 500 trading days (2 years). Different statistical models are used: three 
unconditional distributions (the Gaussian distribution, the extreme value distribution and the historical 
distribution) and a GARCH process. The historical estimates are not available (na) for out of sample 
inferences due to data unavailability. To define the daily price change, the starting time (which is equal 
to the ending time on the following day) varies from 9 am (opening of the market) to 5 pm (closing of the 
market). Data are price changes of the FTSE 100 futures contract over the year 2000. 
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Table 5: Daily margin levels based on 5-minute, 1-hour and 1-day price changes for the 
FTSE 100 futures contract. 

Panel A. Long position  

Frequency of price changes Probability 
(waiting period) Model 

5 minutes 1 hour 1 day 
Gaussian 3.07 2.52 2.07 

Extreme value 2.17 1.64 1.92 
Historical na na 1.75 

95% 
(20 days) 

GARCH 1.63 1.29 2.12 
     

Gaussian 4.34 3.52 2.91 
Extreme value 3.18 3.06 2.79 

Historical na na 2.67 
99% 

(100 days) 
GARCH 3.32 2.65 2.99 

     
Gaussian 4.95 4.00 3.31 

Extreme value 4.48 4.12 3.47 
Historical na na 2.90 

99.60% 
(250 days) 

GARCH 4.36 3.44 3.53 
     

Gaussian 5.37 4.33 3.59 
Extreme value 5.81 5.08 4.10 

Historical na na na 
99.80% 

(500 days) 
GARCH 5.37 4.33 3.87 

 

Panel B. Short position 

Frequency of price changes Probability 
(waiting period) Model 

5 minutes 1 hour 1 day 
Gaussian 3.07 2.32 2.00 

Extreme value 2.33 1.47 1.82 
Historical na na 1.93 

95% 
(20 days) 

GARCH 1.58 1.20 1.89 
     

Gaussian 4.34 3.32 2.84 
Extreme value 3.40 3.16 2.64 

Historical na na 2.66 
99% 

(100 days) 
GARCH 3.22 2.25 2.68 

     
Gaussian 4.95 3.80 3.25 

Extreme value 4.57 4.31 3.32 
Historical na na 2.94 

99.60% 
(250 days) 

GARCH 4.30 2.96 2.93 
     

Gaussian 5.37 4.13 3.53 
Extreme value 6.46 5.20 3.93 

Historical na na na 
99.80% 

(500 days) 
GARCH 5.16 3.20 3.16 
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Note : this table gives the daily margin levels for a long position (Panel A) and a short position (Panel B) 
for different probability levels ranging from 95% to 99.80% or equivalently different waiting periods 
ranging from 20 trading days (1 month) to 500 trading days (2 years). Three different frequencies are 
used to compute the price changes: 5 minutes, 1 hour and 1 day. Different statistical models are used: 
three unconditional distributions (the Gaussian distribution, the extreme value distribution and the 
historical distribution) and a GARCH process. The historical estimates are not available (na) due to the 
lack of a scaling formula or to data unavailability for out-of-sample inferences. Margin levels obtained 
with 5-minute price changes and 1-hour price changes are scaled to obtain daily margin levels. Margin 
levels obtained from daily price changes correspond to the average over the margin levels obtained with 
different time-intervals. Data are price changes of the FTSE 100 futures contract over the year 2000. 


