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Abstract 

We show that the seller’s optimal reserve price in an all-pay auction with 
complete information is higher than in a standard auction. We use our results to 
re-consider some findings of the literature that models lobbying games as all-
pay auctions. In particular, we show that the so-called Exclusion Principle 
appears to rely crucially on the implicit assumption of a “weak” (in terms of 
bargaining power) seller, and does not hold if she regards bidders’ valuations as 
iid according to a monotonic hazard rate. Our preliminary results for the case of 
independent but asymmetric bidders make it even more suspicious. 
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1. Introduction 

Auction models are prototypes of competitive settings, and they are used in several branches of 

economic literature. In particular, the so-called (first-price) all-pay auction is used (among others) 

by Hillman and Riley (1989), Baye et alii (1993) and Che and Gale (1998) to model the lobbying 

process. This type of auction fits the lobbying game well, since a lobbyist's contribution is not 

typically returned if his efforts are unsuccessful,1 and indeed this literature has elaborated a number 

of interesting results. In particular, Hillman and Riley (1989) prove that, if there is some asymmetry 

among bidders/lobbyists, the politically contestable rent is not totally dissipated even in the case of 

a large number of potential contenders. In addition, Baye et alii (1993) show that a seller/politician 

wishing to maximize political rents may find it in her best interest to exclude certain lobbyists from 

her "finalist" short list (so-called "Exclusion Principle"), particularly those lobbyists valuing the 

political prize most (in order to rise incentives to spend for the likely losers). Che and Gale (1998) 

also show that the imposition of an exogenous cap on individual lobbying contributions may have 

the adverse effect of increasing total expenditure (by increasing competition among lobbyists). 

The previous results contribute to the economic literature on the lobbying process, and in 

addition also to the pure theory of auction. From the former perspective, it is intriguing that some of 

them (namely the Exclusion Principle and the possibly adverse effect of a cap on expenditure) 

appear not to hold in the alternative class of models so-called à la Tullock (1980): see Fang (2002). 

From the latter perspective, it has to be stressed that the quoted literature refers to the case of 

complete information,2 which is a somewhat unusual assumption in auction theory. In fact, it is 

somewhat unclear which informational assumptions are made: in particular, the role and the 

information available to the designer (if any) of the auction are left unexplained. 

In this paper we start with placing the all-pay auction model with complete information in the 

context of the auction literature, and derive from this comparison some implications for the 

economic theory of lobbying (see Boylan, 2000 for a similar approach). In particular, we wish to 

argue that the previous results are implicitly but crucially based on the assumption that what would 

be called the “reserve price” in auction theory is null. In turn, this raises the questions of why the 

"seller" (say a politician) cannot set a positive reserve price, and of what information is ex ante 

available to her. The only consistent explanations seem to be that the politician who receives the 

lobbies' contributions does not know their preferences, or has very little bargaining power. After 

characterizing the equilibrium of the all-pay auction with a reservation price exogenously given, we 

                                                
1 This feature is also shared by other economic and social games, such as patent races and sports. 
2 Hillman and Riley (1989: pp. 29-30) also deal with the case of incomplete information among contenders, and Che 
and Gale (1998: p. 648) claim that their result would hold even under incomplete information if there were asymmetry 
among bidders. 
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show that the seller would prefer a strictly positive reserve price, which also increases the overall 

efficiency of the auction outcome (even if it might decrease the efficacy of the lobbying process 

through higher rent dissipation). This casts some doubts on the “adverse” results concerning the 

effects of caps on individual spending and of lobbyist exclusion, because they might disappear once 

the possibility that the reserve price is optimally set is taken into account. We then argue that more 

robust results (if any) should be based on the explicit assumption that the seller faces incomplete 

information while setting her reserve price, and investigate such a case by comparing the all-pay 

auction with other trading mechanisms. Our preliminary findings in this setting make even more 

suspicious the case for the Exclusion Principle. 

The paper is organized as follows: section 2 compares the (first-price) all-pay auction with 

complete information with the so-called "standard auctions" (see e.g. Klemperer, 2004: section 

1.1.2). Section 3 characterizes the equilibrium of the former under a positive reserve price 

exogenously given. Section 4 considers the way an optimal reserve price should be set by a seller 

facing incomplete information when using an all-pay auction rather than a “standard” auction or a 

take-it-or-leave-it offer (a “trading mechanism” sub-optimal for the seller if there is more than a 

single buyer). Section 5 discusses the value for the seller of additional competition on the bidders’ 

side and why our approach casts some doubt on the Exclusion Principle and on the result obtained 

by Che and Gale (1998) concerning the effect of caps on the lobbies' expenditure. Section 6 briefly 

concludes. Technical proofs are presented in the Appendixes. 

 

2. Reserve price, auction theory and lobbying games 

Consider the following setting: n risk-neutral3 agents (the “buyers”) bid for a prize (there is no 

resale possibility). Bidder i's (private) valuation of the prize is vi (i = 1, …, n), and we order bidders 

in such a way that v1 > v2 >…> vn-1 > vn > 0.4 The rules of the auction can include a reserve 

(minimum) price pr ≥ 0, i.e., a price below which the prize is not assigned. In an important 

contribution, Milgrom (1987) puts auction theory in the more general context of bargaining theory, 

and argues that (winner-pay) standard auctions (namely, the oral ascending or descending-bid and 

the first and second-price sealed-bid auctions) under complete information (i.e., assuming that every 

                                                
3 Agents’ risk neutrality is assumed throughout the paper: however, this assumption makes no difference for the case of 
the second-price sealed-bid auction, as it is well known. 
4 The possibility of ties in the valuations is ignored here. This can be justified by assuming that the vi are ex-ante 
continuously independently distributed, and so that case has a priori a zero probability. Moreover, for standard auctions 
the only relevant implication of ties is that v1 = v2 implies full rent dissipation, independently from the level of the 
reserve price (if not larger than v1) and from the number of contenders (on the contrary, in a all-pay auction ties may 
imply the existence of multiple Nash equilibria which are not necessarily revenue equivalent: see Baye et alii, 1996 and 
footnote 14 below). 
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details of the setting is common knowledge to all the participants, including the seller) lead to 

efficient outcomes. In particular, Milgrom (1987: Proposition 1, p. 7) argues that, under complete 

information, the set of perfect5 equilibrium outcomes of the standard auctions consists of the Core 

outcomes of the corresponding exchange game (together with the no-trade outcome if pr = v1), as 

the minimum price ranges from the "seller" evaluation of the good to be sold to the highest "buyer" 

evaluation.6 Indeed, while there are many Nash equilibria in those auction games, the only 

"sensible" ones (i.e., such that no agent ever uses weakly dominated strategies) seem to be those 

such that the prize is allocated to agent 1 for her bid of r = Max{pr,v2} (notice that a reserve price v0 

< pr < v2, where v0 ≥ 0 is the seller's valuation of the prize, would have no effect on the auction 

outcome). 

In particular, let us indicate with bi the bid of agent i. As it is well known, in the case of a 

second-price sealed-bid auction bi = vi, i = 1, …, n, does constitute a (weakly) dominant strategy 

equilibrium in which the prize goes to bidder 1 at a price r (as soon as pr ≤ v1). In the case of a first-

price sealed-bid auction, the typical equilibrium has b1 = r, and the strategies of the agents j = 3, …, 

n can be specified arbitrarily, provided that bj ∈ [pr,vj) with probability 1 (if pr > vj, agent j bids 

arbitrary on [0,pr)). The cumulative distribution function of b2, F2(b2), is continuous7 on a support 

(weakly) included in [0,v2] and first-order stochastically dominates F(b) = (v1 - v2)/(v1 - b). Notice 

that in both these auctions (and in the correspondent oral ones)8 the equilibrium payoffs are U1 = v1 

- r and Uj = 0, j = 2, …, n, while the total payment to the seller is r. Milgrom (1987: p. 8) then 

observes that, from the perspective of (cooperative) game theory, the seller's ability to set any 

particular reserve price and stick to it measures her bargaining power. 

What about an (first-price) all-pay auction version of the previous setting? In such a case, 

bidder i receives the prize if bi > Max{bj≠i} and in that case his payoff is vi - bi, whereas his payoff 

is - bi if he loses (ties are broken randomly). Assuming pr = 0, Hillman and Riley (1989), and Baye 

et alii (1993) and (1996) show that in the unique Nash equilibrium agent 1 uses the uniform 

distribution F1(b1) = b1/v2 on the support [0,v2], while agent 2 uses F2(b2) = 1 - v2/v1 + b2/v1 on the 

same support (note that this amounts to say that agent 2 randomises between b2 = 0 and the uniform 

distribution on [0,v2] with probabilities respectively 1 - v2/v1 and v2/v1). Agents j = 3, …, n bid bj = 0 

                                                
5 To avoid technical problems, Milgrom (1987: pp. 5-8) actually works with discrete bid spaces. 
6 Milgrom (1987: p. 3) also argues that, if the prize can be later resold, the outcome is stable and especially favourable 
to sellers in a relatively poor bargaining position with respect to the potential buyers. 
7 For pr < v2, agent 2 cannot play b2 ∉ [pr,v2) with a positive probability, since those strategies are (weakly) dominated 
for her: thus, she should bid between pr and v2 with probability 1. If pr > v2, then also F2(·) is arbitrary on a support ⊆ 
[0,pr). 
8 As it is well known, the descending ("Dutch") auction is strategically equivalent to the first-price sealed-bid auction, 
while in an ascending ("English") auction, similarly to a second-price sealed-bid auction, is clearly a dominant strategy 
for each bidder i to stay in the bidding until the price reaches her value vi (see e.g. Klemperer, 2004: section 1.1.4). 
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with probability 1. The prize is then given to agent 1 with probability 1 - v2/(2v1) > ½ and to agent 2 

with probability v2/(2v1) < ½ (note that in the latter event the result is not ex-post efficient, and thus 

it would not be stable in the case of a resale opportunity). Agent 1 receives a (expected) payoff of 

U1(v1, v2) = v1 - v2, while the (expected) payoffs of the other agents are zero; i.e., Uj(v1, v2) = 0, j = 

2, …, n. The expected total payment to the seller is p(v1, v2) = p1(v1, v2) + p2(v1, v2) = v2/2 + 

(v2/v1)(v2/2) = v2 (1 + v2/v1)/2 < v2, where pi is the expected payment of agent i =1,2. 

The previous results show that the outcome of an all-pay auction with a null reserve price does 

not belong to the Core of the corresponding exchange game (note that the expected social welfare is 

v2 < W(v1, v2) = v1 - v2 + p(v1, v2) < v1).9 From the perspective of the economic theory of lobbying, 

they illustrate the possibility that, even if the number of potential contenders is large, asymmetries 

among players might imply that the political rent is not fully dissipated (see Hillman and Riley, 

1989: pp. 18-19). In addition, note that ∂ p/ ∂ v1 < 0 and ∂ p/ ∂ v2 > 0 (p(⋅) is convex): indeed, Baye 

et alii (1993) show that a politician (the seller in the auction) wishing to maximize her political 

rents should be willing to select the two active lobbyists (the bidders) i* and i*+1 in order to Max 

p(vi, vi+1). This implies that she might find it in her best interest to exclude lobbyists from 1 to i*-1 

from her “finalists short list”, if she is allowed to (there is no point in excluding bidders from i*+2 

to n). This can be worthy to her because while the expected payment from any i ≠ 1 in the finalist 

list is necessarily less than the payment expected from 1 in the original auction, the expected 

payment from i+1 may rise with respect to that of 2 and more than compensate the decrease of the 

other component of total payment. This is the Exclusion Principle, which is intuitively based on the 

idea to raise (overall) incentives to spend for the active participants by putting them on more equal 

foots. More formally, the Exclusion Principle works by raising the equilibrium probability of 

winning of the less favourite contender (between the two who are active in equilibrium). From the 

perspective of the economic theory of lobbying, Baye et alii (1993: p. 290) argues that the politician 

(the seller), under plausible circumstances, has an adverse incentive to preclude lobbyists most 

valuing the prize from participating in the lobbying game. 

The idea of handicapping the favourite is simple, interesting and it has some counterpart both 

in the auction literature with incomplete information (if agents’ valuations are not identically and 

independently distributed: see e.g. Myerson, 1981 and Klemperer, 2004: pp. 21-8) and in the sport 

practice (e.g., in golf competitions).10 However, note that bidder 1's exclusion decreases (weakly) 

                                                
9 For the sake of simplicity, in computing social welfare we ignore v0 and use the gross seller utility given by p (net 
utility would be given by p - v0). 
10 Sport event organizers are typically interested in some "competitive balance" among players: a famous example 
comes from the history of the Giro d'Italia ("Tour of Italy"), the Italian most important cycling stage-race. It is reported 
that at the beginning of the twentieth century cyclist Alfredo Binda was so much stronger than his possible competitors 
(he had already won the Giro five times) that the organisers paid him not to participate. 
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ex-post efficiency (it gives a positive probability to the allocation of the prize to agent j > 2 and no 

chance to 1), and tends11 to decrease the expected social welfare (of course the outcome is not in the 

Core). Moreover, there might be other, possibly more efficient, ways (for a seller with some power 

to affect the auction rules) to motivate the less favourite contenders (for example offering, whether 

possible, multiple (divided) prizes: see Moldovanu and Sela, 2001). One such a way is investigated 

in Che and Gale (1998). They introduce an (symmetric) exogenous cap m on bids and show that, in 

a setting with two contenders, the Nash equilibrium essentially12 remains unique. However, while 

the expected utilities, payments and probability of winning of the agents if m ∈ (v2/2,v2) are the 

same than without any cap (the cap has of course no effect if m > v2),13 for m < v2/2 the unique 

equilibrium is b1 = b2 = m, so that the expected total payment (2m) increases for m ∈ (v2(1 + 

v2/v1)/4,v2/2). The intuitive reason is that if the cap is small enough it reduces the ability of agent 1 

to pre-empt his weaker competitor. In this case the prize is allocated randomly either to bidders 1 or 

2 with probability 1/2: note that this increases the probability of ex-post inefficiency just because it 

raises the probability that 2 wins (which motivates him to pay more). Moreover, it always decreases 

expected welfare with respect to the case of no cap. Che and Gale (1998: p. 648) also show that 

similar circumstances can arise even if there are more than 2 potential contenders. They argue that 

limits on individual expenditure (such as the ones imposed by the USA Congress to the lobbies in 

the case of election campaigns, or due to limited financial endowments) may increase total 

expenditure and lower social surplus. 

To conclude this section, we remember the careful reader that under incomplete information 

(i.e., if the valuation of each bidder is private information to himself), the picture of auction theory 

looks much more complex and even the properties of the standard auctions heavily depend on the 

assumptions made on the informational aspects: see e.g. Klemperer (2004). However, in the 

benchmark case of (private) valuations ex ante identically and independently distributed (iid) 

according to a common, strictly increasing and atomless distribution H(v) with risk neutral agents, 

all (winner-pay) standard auctions (and many non-standard ones as the first-price all-pay auction) 

yield the same expected revenue to the seller and result in each bidder making the same expected 

payment as a function of his information. This is the famous Revenue Equivalence Theorem: see 

e.g. Klemperer (2004: p. 17). A corollary of this result is that, under the same assumptions, all the 

previous auctions are optimal for the seller if she imposes the optimal reserve price. Under the 

technical condition (see e.g. Krishna, 2002: Appendix A) that H(v) is continuous and has a 

                                                
11 A sufficient but not necessary condition is v2 > v1/2. 
12 There are multiple equilibria for the non-generic cases of m = v2/2 and m = v1/2. 
13 Note that, with a standard auction (and a null reserve price), an increasingly tight cap would decrease monotonically 
the expected revenue of the seller whenever m ≤ v2 (in the equilibrium the prize is given randomly to some agent vi, 
such that vi > m, for a price m). 
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monotonic hazard rate (i.e., if λ(v) = h(v)/(1 - H(v)) is an increasing function of v, where h(⋅) is the 

density function which corresponds to H(⋅)), in a standard auction the optimal reserve price rp̂ * for 

a seller is defined by the condition rp̂ * = v0 + 1/λ( rp̂ *) > v0, and is thus strictly positive: see e.g. 

Krishna (2002: pp. 25-6). The optimal reserve price p� *(n) in an all-pay auction with incomplete 

information is then given by p� *(n) = rp̂ *(H( rp̂ *))n-1 > 0: see e.g. Klemperer (2004: p. 43). Note 

that p� *(n) is monotonically decreasing with respect to n, and lim p� *(n) → 0 for n → ∞, while rp̂ * 

does not depend on n. 

 

3. The all-pay auction with complete information and a reserve price 

The results concerning the all-pay auction with complete information we quoted in section 2 have 

been derived assuming a null reserve price. However, together Milgrom (1987) analysis and the 

results derived under incomplete information at the very least suggest that it would be interesting to 

know what happens to the equilibrium outcomes under a positive reserve price exogenously given. 

This is the goal of this section. In fact, it turns out that the Nash equilibrium is unique. In particular, 

if v1 ≥ pr ≥ v2, very much as in the case of a standard auction, the prize is allocated to agent 1 for 

here bid of r = pr, while the other agents bid zero with probability 1 (if v1 = pr agent 1 is indifferent 

to receive the prize and there is another Nash equilibrium in which with probability 1 he bids b1 = 0 

too). 

Things are more interesting if pr < v2. The relevant results are summarized in Proposition 1. 

Proposition 1. Consider an (first-price) all-pay auction with complete information (no resale 

possibility). Suppose v2 ≥ pr ≥ 0. Then, in the unique Nash bidding equilibrium: i) F1(b1) = b1/v2 on 

the support [pr,v2]; ii) F2(b2) = 1 - v2/v1 + b2/v1 on the support {0 ∪ [pr,v2]}; iii) Fj(0) = 1, j = 3, …, 

n. 

Proof: see Appendix 1. Note that Proposition 1 says that agent 2 randomises between b2 = 0 and the 

uniform distribution on [pr,v2] with probabilities respectively 1 – (v2 - pr)/v1 and (v2 - pr)/v1), and 

that agent 1 randomises between b2 = pr and the uniform distribution on [pr,v2] with probabilities 

respectively pr/v2 and 1 - pr/v2. The equilibrium cumulative distribution function of agents 1 and 2 

are illustrated in Figure 1. 

Also note that, again very much as in the case of a standard auction, and exactly as in the case 

without a positive reserve price, agent 1 receives an (expected) payoff of U1(v1, v2, pr) = v1 - v2, 

while the (expected) payoffs of the other agents are zero. However, the prize is now won by agent 1 
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with probability 1 – (v2
2 - pr

2)/(2v1v2) > 1 - v2/(2v1); i.e., the introduction of a positive reserve price 

raises the probability of an ex-post efficient outcome by raising the probability that the prize is 

allocated to agent 1. Moreover, the expected total payment to the seller is given by (v2 ≥ pr): 
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(note that p~ (v1, v2, pr) is continuous (and differentiable) for any v2 ≥ pr ≥ 0).14 Equation (1) shows 

that, as it should be expected, the payment by agent 1 increases (on expectation), while the payment 

of agent 2 decreases, with respect to the case of a null reserve price. In particular, the increase is 

given by (pr
2/2)(v2

-1 – v1
-1): note that p~∂ / ∂ pr > 0 and that p~ (v1, v2, pr) goes continuously from p(⋅) 

to v1 as pr goes from 0 to v1 ( p~  = 0 if v1 < pr and p~  = pr if v1 > pr ≥ v2). This is described in Figure 

2. Note, finally, that since W(v1, v2, pr) = v1 - v2 + p~ (v1, v2, pr), also the expected social welfare 

increases with respect to the case of a null reserve price. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                
14 For v1 = v2 ≥ pr > 0 there is more than 1 Nash equilibrium, and equation (1) does not apply to all of them (see footnote 
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FIGURE 1: The equilibrium distribution functions for pr < v2 
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4. The optimal reserve price for a seller facing incomplete information 

Section 3 shows that the outcomes of the (first-price) all-pay auction with complete information do 

not coincide with the outcomes of the standard auctions if pr < v2, and are not efficient (they do not 

belong to the Core). Following Milgrom (1987), we might say that this appears to describe the case 

of a “weak” seller in terms of bargaining power (indeed, so weak that she seems ready to accept less 

than v0, unless the latter value is “sufficiently” small; i.e., unless v0 < p~ (v1, v2, pr)). On the contrary, 

it is clear that a fully-informed “strong” seller would use pr > v2, and in fact pr = v1 (i.e., she would 

make a take-it-or-leave-it offer to agent 1). Accordingly, we would like to argue that the only 

assumptions consistent with the use made in the quoted literature of a complete information setting 

are that the seller, in contrast with the bidders, either is very weak (and cannot commit to a positive 

reserve price) or she does not know their valuations. 

The second case has been recently investigated by Menicucci (2005) and Bertoletti (2005), the 

latter being a companion paper of the present one. Menicucci (2005) strikingly show that, for some 

information structures and no reserve price, the Exclusion Principle even applies to the case in 

which the seller regards the bidders’ private valuations as iid. Namely, for the distributional 

structures he considers, excluding from the all-pay auction with complete information among the ex 

pr 

FIGURE 2: The expected revenue as a function of pr
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ante symmetric bidders all but two of them (randomly selected) increases the seller’s revenue. 

Menicucci’s example uses a discrete distribution with “small” (the seller is almost certain about the 

bidders’ valuations) uncertainty. However, Bertoletti (2005) (still assuming a null reserve price) 

show that his result cannot apply to the class of iid continuous distributions with a monotonic 

hazard rate. 

In the following we similarly investigate the case of the optimal reserve price for a seller 

facing incomplete information. In such a setting, p~ (v1, v2, pr) is the revenue the seller expects ad 

interim (before bidding takes place but after the definition of a possible “short list” of auction 

participants), where from her point of view v1 and v2 are respectively the first (highest) and the 

second (second-highest) order statistics of n stochastic variables (see e.g. Krishna, 2002: Appendix 

C). We generalize the assumptions of Bertoletti (2005) by assuming that v1 and v2 are jointly 

continuously distributed on the support [v, v ]2, v  > v ≥ 0, according to a density function g(v1, v2) 

which is strictly positive for v1 > v2 > v.15 It follows that the seller should set the optimal reserve 

price by maximizing with respect to pr:16 
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where PE(pr) = E{ p~ (v1, v2, pr)} (the ex ante expected value of p~ ) is a continuous and 

differentiable function, G1(⋅) and G2(⋅) are the (marginal) distributions functions of respectively v1 

and v2, g1(⋅) is the density function of v1 and γ(⋅) = g1(⋅)/(G2(⋅) - G1(⋅)). Of course, G2(pr) - G1(pr) = 

Prob{v2 < pr < v1}. We call γ the generalized hazard rate, since it is equal to the hazard rate λ (see 

section 2) of H if the bidders’ valuations are iid according to H. The role played by it in auction 

theory comes from the fact that E{v1 - v2} = E{1/γ(v1)}, as it is easily seen (thus the expected value 

of the inverse of the generalized hazard rate measures the agents’ components of the ex ante 

expected social welfare). Note that G2 ≥ G1 and thus γ ≥ 0, and lim γ(v) → ∞ for v → v . Also note 

                                                
15 Note that, obviously, g(⋅) depends on the joint distribution of the bidders’ valuations: see Appendix 4 for the case of 
independent bidders’ valuations. 
16 For the sake of simplicity, in the following we assume v0 = 0. 
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that PE( v ) = 0, and PE(v) > 0. 

A bit of computation also shows that:  
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where ϕ(⋅) = (⋅) – 1/γ(⋅). We call ϕ the standard virtual value, because obviously E{ϕ(v1)} = E{v2}, 

so that the expectation of the standard virtual value measures the seller’s (ex-ante) expected total 

payment EP̂  in a standard auction with complete information and no reserve price (see A.5 in 

Appendix 2 and Krishna, 2002: section 5.3). Note that lim ϕ(v) → v  for v → v . Since g1(v) = 0 

and g1( v ) > 0, (3) implies that dPE( v )/dpr < 0, and dPE(v)/dpr > 0 if v > 0 (otherwise dPE(v)/dpr = 

0). Thus the optimal reserve price pr* is larger17 than v, smaller than v , and must satisfy 

dPE(pr*)/dpr = 0. To give an example, suppose that each vi, i = 1, …, n, is uniformly iid on the 

support [0,1]. In this case g(v1, v2) = (n2 – n)(v2)n – 2 (see Appendix 4 and e.g. Krishna, 2002: p. 

267), and then (3) becomes: 
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which is somehow difficult to solve explicitly. However, it is easy to see that, if n = 2, pr* must 

satisfy lnpr* = - (1 + pr*)-1, and thus it is larger than E{vi} = ½. This expected value would also be, 

under incomplete information, the optimal reserve price rp̂ * in a standard auction, which in turn is 

larger than the optimal reserve price p� * = 1/4 of the correspondent all-pay auction (see section 2). 

It is also clear that pr* is on the contrary lower than the price, say rp *, a seller in a strong 

bargaining position should ask (simultaneously) to two agents by a take-it-or-leave-it offer, if their 

valuations are uniformly iid on [0,1] (the latter price maximizes pr(1 – pr
2), and more generally pr 

(1 – G1(pr))). The obvious reason is that, in contrast with the case of standard auctions, with 

complete information in an all-pay auction the expected revenue is an increasing function of pr 

even if pr < v2. Similarly, in the case of a take-it-or-leave-it offer, the revenue is exactly pr even if 

pr < v2 (see Figure 2), while p~∂ / ∂ pr < 1. 

In fact, the previous results hold for any joint density function g(⋅) (and any n ≥ 2) such that 

the standard virtual value is monotonic (obviously, a sufficient condition for this is the 

monotonicity of the generalized hazard rate). The economic content of this technical assumption is 
                                                
17 See Appendix 2 and footnote 25. 
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to guarantee that in a standard auction (with no reserve price) the seller indeed ex ante values more 

the larger value of v1 (remember that v2 matters to her). We assume that such a regularity condition 

holds. Since v2 > p~ (v1, v2, pr) > pr for any v2 > pr, the seller also strictly gains (in expected terms) 

by being able to organize an auction, and with complete information among the bidders more by a 

standard auction than by an all-pay auction. These results are summarized in Proposition 2. 

Proposition 2. Consider an auction setting with n ≥ 2 bidders who have complete information. 

Suppose that the seller regards bidders’ valuations as such that v1 and v2 are continuously 

distributed, and call PE, EP̂  and EP  the revenues she expects ex ante by running either an all-pay 

auction, or a “standard auction”, or by using a take-it-or-leave-it offer, with respectively optimal 

reserve prices given by pr*, rp̂ * and rp *. Then EP̂ ( rp̂ *) > PE(pr*) > EP ( rp *), and EP̂ ( rp̂ *) 

is also the revenue expected by the seller in an optimal second-price sealed-bid auction with 

incomplete information. Suppose that the standard virtual value ϕ(x) = x – 1/γ(x) is monotonic: 

then rp * > pr* > rp̂ *. 

Proof: see Appendix 2. Note that a special case arises if, as in Bertoletti (2005), the seller regards 

bidders’ valuations (here denoted by vj, where j = 1, … , n indicates the bidders whose valuations 

are not ex ante ordered) as iid according to a continuous cumulative distribution function H(⋅) on 

the support [v, v ] (the assumption of the Revenue Equivalence Theorem). Then rp̂ * does not 

depend on n, as we have seen in section 2.18 The intuition for this result is that, roughly speaking, 

an increase in pr causes a marginal expected revenue for the seller which only depends on [1 – 

G1�2(pr)] (where G1�2(⋅) = (H(⋅) - H(v2))/(1 – H(v2)) is the distribution function of v1 conditional on 

v2, and does not depend on n) in the case of a standard auction, while there is an additional 

marginal expected benefit in the case of the two other exchange mechanisms which depends on 

G2(⋅) (that in turn does depend on n). Finally, note that, in such a special case, by the Revenue 

Equivalence Theorem, EP̂ ( rp̂ *) is also equal to the revenue expected by a seller in any optimal 

standard auction under incomplete information. 

 

5. Some implications for the economic theory of lobbying 

The literature which uses the all-pay auction with complete information to model the lobbying 

process (Hillman and Riley, 1989, Baye et alii, 1993 and Che and Gale, 1998) appears to have 

                                                
18 It is also easy to see that *rp  increases with respect to n. 



 13 

assumed (somehow implicitly) that the reserve price is null. The previous sections show that this 

amounts to assume that the seller (the politician), if fully informed, is in a very weak bargaining 

position, so that the resulting outcomes are not efficient. While this may occasionally be the case, it 

seems clear that in the general case the politician will be able to set a positive reserve price, since 

this monotonically increases her expected payoff. Indeed, in the opposite polar case of a politician 

with a strong bargaining power, we should expect a reserve price at least equal to v2 (if not v1), and 

thus an efficient result. In such a case, there will not generally be full rent dissipation (unless in the 

extreme cases of either v1 = v2 or pr = v1), independently from the number of competitors. But, 

clearly, the Exclusion Principle does not apply, since it will always be better for the politician to use 

a reserve price large enough (pr ≥ v2) rather than to exclude from the “finalists short list” some of 

the lobbyists valuing most the political prize. 

However, the situation is more complex if the politician is not strong enough to set a reserve 

price pr ≥ v2. Since p~∂ / ∂ v1 < 0 and p~∂ / ∂ v2 > 0, it is still possible that the exclusion of some agents 

is in the interest of the politician. In particular, she should choose i, j (> i) and pr in order to 

maximize p~ (vi, vj, pr) under the “bargaining” constraints she faces. Notice that, if the reserve price 

that the politician can adopt does not depend on the agents she selects, she will always choose the 

largest possible reserve price, say pr
+, and also agent i+1 when he chooses agent i (things are very 

much as in Baye et alii, 1993). But, in such a case, it cannot be optimal to exclude agent from 1 to i-

1 if pr
+ ≥ vi+1 (since p~ (vi, vi+1, pr) > pr), which implies that there will be no exclusion at all if pr

+ ≥ 

v3. Moreover, the assumption that a fully informed politician can credibly exclude some lobbyist 

from her “short list” while she is unable to ask him a price not larger than his valuation does not 

seem particularly palatable as a bargaining feature. 

Similarly, one might conjecture that a symmetric cap on the individual bids would always be 

matched by the reserve price set by an informed politician with a bargaining power large enough 

(i.e., pr = m). Thus, a cap would always decrease the total spending with respect to the case of no 

cap, decreasing the efficiency of the auction (but possibly raising overall efficiency if campaign 

spending is per se socially harmful: see Che and Gale, 1998). However, while this is certainly so if 

m ∈ (v2,v1), for smaller (binding) values of m the effect of a cap on the reserve price optimal for the 

seller still need to be investigated.19 In particular, Che and Gale (1998: p. 648) show that, if the 

reserve price is null, the perverse effect they identified arises when vk/k > m > vk+1/(k + 1) for some 

k < n. In such a case, the revenue expected by the politician is km, which can be (arbitrary) close to 

vk, and then possibly larger than p(v1, v2). But, again, a politician with some bargaining power might 

                                                
19 In an unpublished note D. Menicucci shows that the adverse effect of introducing a cap might arise even if there is a 
positive reserve price exogenously given. 
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be able to set pr ≥ vk, raising her revenue at least (if v2 > pr) to p~ (v1, v2, vk) > vk. Thus, the 

imposition of a cap might de facto decrease overall spending, once the optimal reserve price set by 

the politician is kept into account.  

In fact, we have argued in section 4 that a more interesting assumption is that the seller (the 

politician) does not know the contenders valuations when she sets her reserve price. In such a 

setting, results from the case of the standard auctions under incomplete information appear to 

suggest that, as in Bertoletti (2005), the seller should not find generally useful to exclude 

participants with independent valuations. For example, Bulow and Klemperer (1996) proved that an 

English auction with n + 1 bidders and no reserve price is always more profitable than any 

negotiation with just n participants, if valuations are independent.20 To grasp the idea in our setting, 

consider the case of a seller that can either make a take-it-or-leave-it offer to a buyer whose 

valuation for the prize is uniformly distributed on [0,1], or to run an all-pay auction with complete 

information for two participants whose valuations are iid uniformly on the support [0,1]. The first 

opportunity yields her an expected payoff of 0,25 (as we know, she should optimally ask a “reserve 

price” equal to ½). In the second case she should expect the larger payoff of: 
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(the seller would get EP̂ = 1/3 if she could use a standard auction), and even more by using 

optimally a positive reserve price. Can this result be generalized? The answer is certainly yes if 

bidders’ valuations are ex-ante iid with a monotonic hazard rate. In particular, the following 

proposition holds. 

Proposition 3. Consider an all-pay auction with complete information among bidders and any 

given reserve price. Suppose that the bidders’ valuations are ex-ante iid according to a strictly 

increasing continuous distribution H(·) with a monotonic hazard rate. In this case the seller 

maximizes her expected revenue by getting the largest possible number of actual participants. 

Proof: see Appendix 3 (it follows Bertoletti, 2005). 

Proposition 3 shows that the Exclusion Principle cannot apply if the seller regards the bidders’ 

valuations as iid according to a monotonic hazard rate (a condition satisfied by many distributions). 

This implies that E{v1 - v2} decreases with respect to the number of bidders and this, in turn, 

                                                
20 Bulow and Klemperer (1996) also report results for the more general case of ex ante so-called “affiliated” valuations. 
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implies that a larger n cannot harm the seller (for a discussion see Bertoletti, 2005),21 whatever is 

the reserve price adopted. However, we believe that a fair assessment of the Exclusion Principle 

should rather refer to the case of valuations which are not identically distributed. Even in those 

cases, the results by Bulow and Klemperer (1996) about the value for the seller of additional 

(independent) competition on the bidders’ side and the following examples motivate the conjecture 

(whose proof is left for future work) that the seller will generally not find profitable to exclude the 

contender “more eager” to buy, once she can set optimally her reserve price. 

Suppose that there are three possible participants, and everybody knows that valuations are v3 

= 40, v2 = 38,22 and that v1 is distributed on [47, v ] according to a continuous, independent 

cumulative distribution function H1(⋅) with density function h1(⋅). It is also common knowledge that 

the agents know the realized value of v1. If pr = 0, the seller should expect an equilibrium revenue 

of less than p(47, 40) ≈ 37,02 when all participate. If agent 1 is excluded, this gives the seller an 

expected payoff of p(40,38) = 37,05 but, clearly, she can do better by excluding none, setting pr = 

47 and receiving that amount for sure. In fact, if 1/h1(47) > 47, she should set the higher reserve 

price such that pr = 1/λ1(pr), and expects an even larger revenue equal to (1 – H1(pr))/λ1(pr). Indeed, 

clearly no exclusion which shifts downwards the entire support of v1 can be optimal for the seller if 

she can freely set a reserve price. Similarly, suppose that, while it is common knowledge that v3 = 

38, and that v1 and v2 are known to the agents, the seller just knows that the valuations of the latter 

participants are ex ante independently distributed respectively according to H1(v1) and H2(v2) with 

the same support [40, v ] and H1(v) ≤ H2(v). Again, by excluding agent 1 but setting no reserve price 

the seller cannot achieve more than 37,05. However, she should expect no less than 40 by optimally 

setting her reserve price pr ≥ 40 and excluding no agent. Moreover, whatever reserve price larger 

than 40 she might set, she would get a larger expected payoff by excluding agent 2 rather than agent 

1. 

Let us now go back to the case in which both v2 and v3 are iid uniformly on [0,1], while v1 is 

independently distributed on the same support with H1(v) < v for 0 < v < 1. By excluding agent 1 

and optimally setting her reserve price for the remaining two agents the seller cannot achieve more 

than: 
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21 Note that, with iid bidders’ valuations, the conditional expectation E1�2{v1 - v2} is nothing but the so-called mean 
residual life of vi at v2 (see e.g. Shaked and Shanthikumar, 1994: section 1.D), and this is decreasing if λ is monotonic. 
22 These numbers are taken by Baye et alii (1993: p. 293). 
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where EP̂ (1/2) is the payoff she could get by running a standard auction. However, by excluding no 

agent and optimally setting her reserve price she can get more than: 
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where EP (1/2) is the payoff she could get by a take-it-or-leave-it offer of 1/2. Indeed, it is intuitive 

and easy to see that, if potential bidders’ valuations are independent, associated to a larger bidders’ 

group there are distributions for the first and the second order statistics such that they first-order 

stochastically dominate the corresponding distributions associated to a smaller bidder group (see 

Appendix 4 and Shaked and Shanthikumar, 1994: section 1.B.4). This immediately implies (see A.5 

and A.7) larger values for EP̂  and EP  when the set of bidders is larger.23. The inequalities in (8) 

even show that it might well be that EP ( rp *; n + 1) > EP̂ ( rp̂ *; n) and then, a fortiori, PE(pr*; n + 

1) > PE(pr*; n), where we have used a notation which stresses the dependence of the seller’s 

expected revenue on the set of bidders (however, the former inequality does not hold for any n even 

if bidders’ valuations are uniformly iid). 

Finally, we speculate that, as in the case of iid bidders’ valuations, a key question is the effect 

of enlarging the set of bidders on E{v1 - v2},24 but this appears hard to characterized in the general 

case, since the enlargement also affects the generalized hazard rate γ. In particular, with a common 

support for the independent bidders’ valuations, 1/γ is an average of the different 1/λj = (1 - Hj)/hj 

whose (variable) weights are the normalized values of the so-called reverse hazard rates σj(⋅) = 

hj(⋅)/Hj(⋅): see Appendix 4. Thus, even a monotonic generalized hazard rate would not be enough to 

guarantee that E{v1 - v2} decreases when the set of (independent but not identical) bidders enlarges. 

However, an especially simple case arises if there are only two types of bidders, say s and w, with 

Hs(⋅) = (Hw(⋅))θ, θ > 1: following Krishna (2002: section 4.3), we call them the strong (s) and the 

weak (w) bidders, since Hs likelihood-ratio stochastically dominates Hw (see e.g. Krishna, 2002: 

Appendix B and Shaked and Shanthikumar, 1994: section 1.C). In such a case it is easy to see that 

weights in the average that defines the generalized hazard rate are constant and equal respectively to 

θns/(θns + nw) and nw/(θns + nw) (where ns and nw are the numbers of the strong and the weak 

bidders, with n = ns + nw), and that the addition of any type of bidder generates a distribution for v1 

                                                
23 Note that, if the standard value is monotonic, EP̂ ( rp̂ *) = E{Max{ϕ(v1),0}} and EP ( rp *) = E{Max{ψ1(v1),0}} (see 
Appendix 2), where the set of bidders affects both functions ϕ and ψ1 and the distribution of v1 (however, with bidders’ 
valuations iid, neither γ nor then ϕ depend on n, while a raise in n decreases both λ1 and ψ1: see Appendix 4 and Shaked 
and Shanthikumar, 1994: section 1.B.4). 
24 Note that, up to the second term of its Taylor expansion with respect to v1 at the right of v2, p~  ≈ v2 – (v1 - v2)[1 – 
(pr/v2)

2]/2. 
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such that g1(v1; n + 1) likelihood-ratio stochastically dominates g1(v1; n): see (A.14). Moreover, the 

monotonicity of λw is then sufficient to guarantee the monotonicity of γ.  

Under these assumptions, a sufficient condition for getting a decrease E{v1 - v2} by the 

addition of one strong bidder is: 

 { } { }]);(/1[/])1;(/1[)( nv
dv
d

nv
dv
d

vH s γγ +< , (9) 

as it can be seen by taking the difference of the expected values of the generalized hazard rate 

before and after the addition, and integrating by parts. Since computation shows that d(1/λw)/dv > 

d(1/λs)/dv, it is clear that (9) is satisfied and accordingly that adding a “strong” (as defined) 

independent bidder to the set of bidders does decrease the expected difference of {v1 - v2}. Note 

that, by the properties of likelihood-ratio stochastic dominance, such an addition decreases both λ1 

and γ and thus raises both rp̂ * and rp *. Simulations using the uniform distribution on [0,1] for Hw 

indeed suggest that it also always increases PE. 

 

6. Conclusions. 

In this paper we have characterized the equilibrium of (first-price) all-pay auctions under complete 

information and a positive reserve price, and compared it with that of standard auctions. As it is 

intuitive, a fully informed seller with some bargaining power should set a positive reserve price, 

since this is profitable for him (and increases overall efficiency). However, once the possibility that 

the reserve price is optimally set is taken into account, it is unclear if some interesting recent 

findings in the economic theory of lobbying which uses the all-pay auction framework still apply. 

Namely, in order to increase her total revenue, the fully-informed seller (of a political rent) might 

find better to adapt her reserve price rather than to exclude a lobbyist especially eager “to buy” (the 

so-called Exclusion principle). Similarly, the effects of imposing a cap on the individual campaign 

contributions become dubious, since a tightening of the cap, that might increase the overall 

spending, should also change the optimal reserve price. In other words, the previous results appear 

to apply to the case of a “weak” (in terms of bargaining power) seller, who is unable to stick to a 

reserve price (in spite of the fact that she is assumed to be fully informed and also able to select the 

participants to her “short list”). 

We have also argued that an appealing model should assume that the seller faces incomplete 

information when setting her optimal reserve price, and characterized such an optimal reserve price 

under the assumption of a monotonic standard virtual value. Future work will have to assess if some 

(if any) of the results derived by assuming a fully informed seller can be confirmed in such a 
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setting. However, if the seller regards the bidders’ valuations as iid according to a monotonic hazard 

rate, the Exclusion principle cannot, and our preliminary results for the case of independent 

valuations, as well as suggestions from the auction literature with incomplete information about the 

value for the seller of additional competition on the bidders’ side cast further doubts on it. 

 

Appendix 1 

Proof of Proposition 1. Clearly, for each agent i the set of (weakly) undominated strategies is given 

by {0 ∪ [pr,vi)}. Moreover, it can be shown that in equilibrium no bidder plays bi ∈ (pr,vi), and no 

more than one agent bid pr, with a positive probability. This is so because if at least two of them do 

the latter, both would have an incentive to move the probability mass slightly higher, so increasing 

their payoffs (the conditional probability of winning would jump, and so the payoff). If exactly one 

agent i has a mass point at some bi ∈ (pr,vi), then no other agent would place density immediately 

below that bid (it would be better to move that density above the mass point). But then agent i 

would do strictly better by moving that mass down (see Che and Gale, 1998: p. 645, Lemma 1, and 

Hillman and Riley, 1989: pp. 22-23, Proposition 1, for a formal proof). Thus, all equilibrium 

cumulative distribution function Fi(bi) must be continuous on (pr,vi). 

Now note that agent 1 can secure himself a payoff equal to v1 - v2 > 0 by bidding b1 = v2 with 

probability 1. It follows that his equilibrium strategy support cannot include b1 ∈ {[0,pr) ∪ (v2,v1)}. 

Suppose that there is an agent j ≠ 1 who gets in equilibrium a positive expected payoff. Then it must 

be the case that he bids bj > pr with probability 1 (he cannot neither bid zero nor bid pr with positive 

probability, because otherwise he would get respectively a null and a negative payoff, while he 

should be indifferent among all bids that belong to the support of his own equilibrium cumulative 

distribution function Fj(bj)). And it must also be the case that his infimum bid does coincides with 

the infimum bid of agent 1, say b-, because otherwise at least one of them would get a negative 

payoff by bidding his own infimum bid. In fact, we have found a contradiction, because even by 

bidding b- at least one of them must get a negative payoff (the conditional probability of winning is 

zero). Thus no agent other than 1 can get a positive payoff in the equilibrium, or bid pr with a 

positive probability. 

In addition, any agent different from 1 bidding more than pr with a positive probability must 

have an “infimum” bid (≥ pr) not smaller than b- (otherwise he would get less than zero from that 

bid), and at least one must bid b- (otherwise it would pay to someone to move down some density). 

Similarly, at least two agents must share the maximum bid, say b+, larger than pr. Let us now 

suppose that two agents different from 1, say j and h, bid more than pr with a positive probability. It 

must then be the case that: 
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for any b > pr belonging to the support of both Fj(⋅) and Fh(⋅). This implies that, for all such a b: 
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which implies that Fh(⋅) strictly first-order stochastically dominates Fj(⋅) if j < h. Let k the largest 

agent number among those bidding in equilibrium more than pr with positive probability. This 

implies that the maximum bid larger than pr belongs to the support of both F1(⋅) and Fk(⋅). In turn, 

this implies that: 

 0)()( 1 =−=−=−= +++++ bvbbFvbbbwins kProbv kkkk , (A.3) 

but then by bidding b+ with probability 1 agent 2 would get a positive payoff, unless both k = 2 and 

b+ = v2. 

It follows that in equilibrium only agent 1 and 2 are active, with agent 1 using F1(b1) on a 

support [b-,v2], while F2(b2) has possibly support {0 ∪ [b-,v2]}. Since it must be the case that for any 

b ∈[b-,v2]: 

 212112 )(   ,0)( vvbbFvbbFv −≥−=− , (A.4) 

we can conclude that b- = pr, that F2(b2) = 1 - v2/v1 + b2/v1 has in fact the support {0 ∪ [pr,v2]}, and 

that agent 1 uses F1(b1) = b1/v2 on the support [pr,v2]. Q.E.D. 

 

Appendix 2 

Proof of Proposition 2. In the case of a standard auction the seller would set the reserve price by 

maximizing: 
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Note that EP̂ (pr) > PE(pr) for any pr < v  (as it is clear from Figure 2). Again, EP̂ ( v ) = 0, and 

EP̂ (v) > 0. Indeed, (A.5) implies that: 
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which in turn says that d EP̂ ( v )/dpr < 0 and d EP̂ (v)/dpr = 0. Thus, also in the case of standard 

auctions, the optimal reserve price rp̂ * is generally25 in the interior of the support [v, v ] and, under 

the assumption of a monotonic standard virtual value, is uniquely identified by the condition 

ϕ( rp̂ *) = 0. Also note that, clearly, the revenue in (A.5) does coincide with that expected by a 

seller running a (winner-pay) second-price sealed-bid auction under incomplete information and a 

reserve price. Thus, if the reserve price were optimally set, through the Revenue Equivalence 

Theorem it would also be equivalent to the revenue expected by the seller in any optimal standard 

auction with incomplete information. Note that the right-hand side in (A.6) does coincide with the 

first term in the right-hand side in (3), while the second term in the latter expression is always 

positive for pr ∈ (v, v ). It follows that necessarily pr* > rp̂ *. 

Similarly, by using a take-it-or-leave-it offer the seller would maximize: 
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 (A.7) 

with respect to pr. Note that EP (pr) < PE(pr) for any pr < v , EP ( v ) = 0 and EP (v) = v. 

Computation shows that: 
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where ψ1(⋅) = (⋅) – 1/λ1(⋅) is the virtual value of v1 (it is the standard virtual of a single agent with 

ex ante valuation distributed according to G1: see e.g. Krishna, 2002: section 5.2.3) and λ1(⋅) = 

g1(⋅)/(1 - G1(⋅)) his hazard rate (note that ϕ(v1) > ψ1(v1) for v1 < v). (A.8) implies d EP ( v )/dpr < 

                                                
25 With a monotonic generalized virtual value the optimal reserve price *ˆ rp  is equal to v only if ϕ(v) ≥ 0. 
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0, and d EP (v)/dpr > 0. Thus, once again the optimal “reserve” price rp * is in the interior of the 

support [v, v ]. Note that the first term in first expression of the the right-hand side in (A.8) does 

coincide with the first term in the right-hand side in (3), while the second term in the latter 

expression is always smaller than the correspondent term in (A.8) for pr ∈ (v, v ). It follows that 

necessarily rp * > pr* if the standard virtual value is monotonic, where the former reserve price 

is uniquely determined by the condition ψ1( rp *) = 0. Obviously, EP ( rp *) < PE(pr*) < 

EP̂ ( rp̂ *). Q.E.D. 

 

Appendix 3 

Proof of Proposition 3. Since the density function of the joint distribution of the first and second 

order statistics (see Appendix 4 and e.g. Krishna, 2002: p. 267) of n independent draws from H is 

given by: 
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(where I(⋅)(·) is the appropriate indicator function), the density function of v1 conditional on v2 is 

given by: 
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on the support [v2, v ] (note that it does not depend on n). Clearly, E{ p~ (v1, v2, pr)} 

=
2vE {

21 vvE { p~ (v1, v2, pr)}}, with obvious notation for the previous expectations. Now consider, for 

any given pr, the function t(⋅): 
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and note that it is continuous, and differentiable for any pr ≠ v2. Clearly, t(⋅) increases with respect 

to v2 if pr ≥ v2. 

Now consider the case pr ≤ v2 and compute the derivative 
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Then, by using the convexity of p~ (⋅) with respect to v1: 

)}.
)(
)(

1)(
22

1
({]

)(1
)(

)(
)(

- [1)
22

1
(

)(1
)(

                 

(A.13)           )()()1(
))(1(2

)(
)()

22
1

( 
)(1

1
                 

)(  )()]
2
1

2
)(([

)(1
)(

)(
),,(~

)(1
1),(

1

2
2
1

2

1

2
1

2

1

1

2
2
1

2

1
2

1

1

2

11212
1

2

2

2
11

1

2
2
1

2

2

22112
1

2

212
2

2
11

2

21

22

2

21

22

22

22

v
v

v
p

v
v

Edv
vH

vh
v
v

v
p

dv
vH

vh
v
v

dvvhvv
v
p

vH
vh

dvvh
v
v

v
p

vH

vvhdvvh
v
p

vvv
vH

vh
dvvh

v
pvvp

vHv
pvt

r
vv

v

v

r
v

v

v

v

r
v

v

r

v

v

r
v

v

rr

λ
λ

λ
λ

−−+=
−

−+
−

=

}−−
−

++−{
−

=

}−−−+
−

+
∂

∂
{

−
≥

∂
∂

��

��

��

 

Thus 
21 vvE {p(v1, v2)} is an everywhere increasing function of v2 if the hazard rate is monotonic. 

Finally, since G2(v2; n + 1) ) first-order stochastically dominates G2(v2; n) for any number n of 

bidders with independent valuations (where Gi(vi; n) is the distribution function of vi, i = 1,2, for n 

draws from independent random variables: see Appendix 4), any reduction in n decreases the 

expected revenue of the seller if the hazard rate of H(⋅) is monotonic. Q.E.D. 

 

Appendix 4 

Consider the joint distribution of the first and second order statistics of n independent continuous 

random variables vj, j = 1, …, n, whose distributions are indicated with Hj(⋅) (hj(⋅) is the 

corresponding density function) on the common support [v, v ]. Clearly, G1(v1) = ∏
=

n

j

j vH
1

1 )( , and 

computation shows that: 
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Note that Gi(vi; n) first-order stochastically dominates Gi(vi; m) for any n > m, i = 1,2, and that 1/γ is 

an average of the different 1/λj = (1 - Hj)/hj whose weights are the values of the so-called reverse 

hazard rates weights σj = hj/Hj divided by Σσj. Moreover, if the random variables are iid according 

to H and h, then 1/γ = (1 - H)/h and g1(vi; n + 1) even likelihood-ratio stochastically dominates g1(vi; 

n): see e.g. Krishna (2002: Appendix B) and Shaked and Shanthikumar (1994: section 1.C). 
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