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Abstract

I offer an approach linking a welfare criterion to the “sustainable devel-
opment potential” of the economy. This implies a dependence of a criterion
on the information about the current state. I consider the problem for the
Dasgupta-Heal-Solow-Stiglitz model with externalities. The economy-linked
criterion is constructed on an example of the maximin principle applied to
a hybrid level-growth measure. This measure includes as special cases the
conventional measures of consumption level and percent change as a mea-
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1 Introduction

Groth et al (2006) argue that the notion of regular growth should be more

general than that of exponential growth. In this paper, I obtain the patterns

of feasible and optimal sustainable growth for the extended Dasgupta-Heal-

Solow-Stiglitz (DHSS) model (Dasgupta and Heal 1974; Solow 1974; Stiglitz

1974) with an essential nonrenewable resource under the standard Hartwick

Investment Rule (Hartwick 1977). The extension is that the Hotelling Rule

is modified by some phenomena whose total influence can be expressed in

terms of an equivalent tax or subsidy.1 I show that the feasible patterns

of growth for this economy are between the constant consumption and the

quasiarithmetic growth with parameters depending on the price elasticities

of demand for the resource and capital. The approach implies that the final

expression for the optimality criterion and therefore the optimal growth paths

for the economy are defined via the economy’s technological parameters and

the initial values for the resource reserve, the rate of the resource extraction,

and capital.

Previous results (Bazhanov 2008a & 2008b) have shown that if a crite-

rion is not linked to the initial state of a specific (non-optimal) economy,

then the economy guided by this criterion can enter either an inferior or

1There is extensive literature discussing a discrepancy between the standard Hotelling
Rule and the observed data. The Rule implies that the path of the resource extraction must
be decreasing and the resource price must grow at the same rate as the rate of interest.
However, this is not the case in the real economy (survey can be found in (Gaudet 2007)).
Gaudet (2007) considered different phenomena such as changes in the cost of extraction,
durability, peculiarities of the market, and uncertainties. These phenomena can influence
both the price dynamics and the pattern of extraction, but they were not considered by
Hotelling in his seminal paper (1931). Therefore, the introduction of these effects into the
model of Hotelling can reconcile his approach with the observed behavior of the market
price and extraction for different kinds of nonrenewable resources including oil.
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unsustainable pattern of growth.2 Both these outcomes can be considered

as unacceptable. This implies that a criterion for formulating a long-term

sustainable development program in the specific economy should depend on

available information about the current state. In other words, the prefer-

ences should be adjusted to opportunities. Then, the optimal path should

be dynamically corrected with the updates in this information in order to be

consistent with the criterion.

The economy-linked criterion is constructed in this paper on an example

of the maximin principle applied to a hybrid level-growth utility measure

which I call “geometrically weighted percent.” The use of the maximin in the

problems of intergenerational justice implies that some social welfare measure

should be maintained constant over time. Therefore, it is natural to use this

convenient property of the maximin for formulating the long-run programs

of sustainable development.3 The hybrid measure, to which the maximin is

applied in this paper, includes as particular cases the level of consumption

and the rate of growth. In general case it includes all intermediate forms

for measuring the level and/or the rate of growth of consumption. This

family of measures implies a corresponding family of patterns of optimal

growth that can vary from stagnation and quasiarithmetic growth to linear

2Koopmans (1965) examined the results of application of various forms of utilitarian
criterion to a simple model with a specific technology and a pattern of population growth.
The rationale of his research was the idea that “one may wish to choose between principles
on the basis of the results of their application. In order to do so, one first needs to know
what these results are. This is an economic question logically prior to the ethical or
political choice of a criterion.”(p. 226) “Ignoring realities in adopting ‘principles’ may
lead one to search for a nonexistent optimum, or to adopt an ‘optimum’ that is open to
unanticipated objections” (p. 229).

3Solow (1974) applied the (Rawls 1971) maximin to the level of consumption as a simple
social welfare measure that implied the constant-per-capita-consumption criterion. On the
other hand, there is a conventional practice to formulate some long-run development goals
in terms of constant percent change of GDP (e.g. World 1987, p. 169, p. 173).
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and exponential growth. Using this approach, I answer the question: what is

the best pattern of growth from this family that a specific economy with the

given initial conditions can maintain forever? The approach differs from the

conventional methodology in resource economics in that usually the optimal

economy is being constructed under the given criterion.

The paper is structured as follows. Sections 2 and 3 introduce the as-

sumptions about the Hotelling Rule and describe the model. The new re-

sults presented in the paper include: the methodology of specification of the

generalized criterion for the given initial conditions (Section 4); the closed

form solutions for the optimal paths of tax, the Hotelling Rule modifier, the

rates of extraction, capital, and per capita consumption (Section 4); the con-

dition defining the feasible patterns of sustainable growth (Section 5); the

unacceptable consequences of applying the criterion beyond its feasible limits

(Section 6); the optimal paths dynamically consistent with the updates in

reserve estimates (Section 9). The findings are illustrated with the numerical

examples based on the current world oil extraction data (Sections 7-9). The

conclusion is in Section 10.

2 The Hotelling Rule assumptions

I divide here the phenomena modifying the Hotelling Rule in two groups:

(a) “natural” processes; for example, technical progress and the worsening

quality of resources that influence the cost of extraction;

(b) “externalities”, which are the result of the specific market structure

(common property), insecure property rights, or global warming as a result

of burning the resource.4

4Externality connected with global warming is a very interesting special case because
it modifies not only the Hotelling Rule but also the production function and/or the utility
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I assume that

(1) the effects from the first group are “uncontrollable” essential parts

of the process of the resource extraction and they must be included in the

modification of the Hotelling Rule as a necessary condition of efficient (in

terms of consumption) extraction.5

(2) The influence of the phenomena from the second group can be elim-

inated by institutional changes and environmental policies influencing the

resource demand (Caillaud et al. 1988; Pezzey 2002), including compensat-

ing tax in such a way that the resulting resource extraction will bring more

social welfare to the economy. Hence, I am going to consider the effects of

the second group separately from the effects of the first one and call them

the “distortions” of the Hotelling Rule or “externalities.”

(3) All the effects from the second group (“distortions”) can be expressed

in terms of equivalent amount of tax/subsidy.

For example, insecure property rights lead to shifting extraction from the

future towards the present (Long 1975) or to “overexploitation” (in terms of

consumption lost) which is happening also in a common property situation.

I assume that the same effect can be obtained by subsidizing production

connected with the use of the resource. Thus, I will consider all the “ex-

ternalities” or “distortions” in the same terms of tax/subsidy including the

subsidies themselves.6

(Stollery 1998; Hamilton 1994). I think that this case deserves separate consideration.
5The necessity of the Hotelling Rule for efficient extraction is shown e.g. in (Dasgupta

and Heal 1979).
6In fact, subsidies were being applied to stimulate oil use not only in the past but even

today “the world fossil fuel industry is still being subsidized by taxpayers at more than
$210 billion per year” (Brown 2006).
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3 The model

The analysis is based on the DHSS model with zero population growth, zero

extraction cost, and with the Cobb-Douglas production function7

q(t) = f(k(t), r(t)) = kα(t)rβ(t) (1)

where q - output, k - produced capital, r - current resource use, α, β ∈ (0, 1),
α+β < 1, are constants. The assumption about technical changeA(t) or TFP

(Total Factor Productivity) exactly compensating for capital depreciation δk

allows for considering the basic DHSS model with no capital depreciation and

no technical progress. At the same time, this assumption makes it possible

to examine correctly various patterns of growth in the economy. The pattern

of this specific TFP is considered in Section 8.

Without losing generality, assume that population equals to unity and

then the lower-case variables are in per capita units. Then r = −ṡ, s - per
capita resource stock (ṡ = ds/dt). Prices of per capita capital and the resource

are fk = αq/k and fr = βq/r where fx = ∂f/∂x. Per capita consumption is

c = q − k̇.
The assumptions imply that in general case the Hotelling Rule can be

written as follows:

ḟr(t)

fr(t)
= F [fk(t)] + τ(t) (2)

where F - “natural” modification of the Hotelling Rule, τ - distortion by the

externalities. In the simplest case, which will be examined below, F (fk) ≡ fk.
Then the Hotelling Rule (2) for τ ≡ 0 with the Hartwick Rule k̇ = rfr implies

7There is mixed empirical evidence about the elasticity of factor substitution between
capital and resource including the results showing that this value is rather close to unity
(Griffin and Gregory 1976; Pindyck 1979), which means that the use of the Cobb-Douglas
production function is not implausible in this framework.
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for our economy constant consumption over time (Hartwick 1977). In general

case, for τ 9= 0, equation (2) follows
dk̇

dt
= ṙfr + rḟr = ṙfr + r (fkfr + τfr) (3)

and ċ = fkk̇ + frṙ−
··
k . Substituting (3) for

··
k we have ċ = fkk̇ + frṙ − ṙfr−

rfkfr −τrfr = −τrfr which goes to zero if τ/(rfr) = τ/(βq) goes to zero

with t→∞. Realizing some declining “program” path for modifier τ we can
approach the sustainable and efficient path of extraction in a desirable way.

Equation (3) and the saving rule also follow

ḟr
fr
= β fk +

ṙ

r
1− 1

β
= fk + τ

or fk(β − 1) + ṙ
r
(β − 1) = τ that gives

α
q

k
+
ṙ

r
=

τ

β − 1 . (4)

Then

q̇

q
= α

k̇

k
+ β

ṙ

r
= β α

q

k
+
ṙ

r
=

β

β − 1τ (5)

that means that

1) for our economy, growth is associated with negative τ(t);

2) GDP percent change q̇/q → 0 with any τ(t)→ 0.

According to assumption 3 (Section 2), modifier τ(t) can be expressed in

terms of tax/subsidy. This implies that there exists a Pigovian tax T (t) such

that for F (fk) ≡ fk equation (2) can take the form8

ḟr + Ṫ

fr + T
=
ḟr
fr
− τ = fk (6)

8This dynamic efficiency condition was used in (Hamilton, 1994) in the form ṅ/n = fk
for the net rent per unit of resource n = fr − c− T with c - marginal cost of extraction.
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This equation can be rewritten as follows:

ḟr + Ṫ

fr + T
− ḟr − τfr

fr
= 0

or, for fr(fr + T ) 9= 0, we have ḟfr + Ṫ fr − ḟrfr − T ḟr + τfr(fr + T ) = 0.

This implies (for fr 9= 0 and ḟr
fr
− τ = fk) the dynamic condition for the tax

Ṫ − Tfk + τfr = 0 (7)

General solution of (7) is

T (t) = e fk(t)dt T − τfre
− fk(t)dtdt (8)

The equation (7) and its solution (8) can be considered with the two types

of initial conditions, associated with the two different interpretations of the

equation (6).

Initial condition I. If we are looking for the path of tax T (t) corresponding

to the “program” decrease in distortion τ(t) then we will set T (0) = T0. Since

we introduce T (t) as a new tax, which will compensate for the distorting

phenomena, and which

(a) is continuous,

(b) was not applied before (T (t) = 0 for t ≤ 0 ),
then we will assume that T0 = 0 which gives us Ṫ (0) = −τ(0)fr(0).
Initial condition II. If we want to estimate the effect of the distorting

externalities in terms of tax/subsidy at the current moment t = 0, which

means that we want to find T (0), then we will assume that the distorting

combination of externalities is continuous at t = 0, and we can estimate

Ṫ (0) = Ṫ0, which implies T (0) = τ(0)fr(0) + Ṫ0 /fk(0).

In problem I (equation (7) with the initial condition I), the observable

resource price at t = 0 is fr(0) while in problem II (equation (7) with the
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initial condition II), the observable price is fr(0) + T (0) and fr(0) is the

value which price would be without distorting externalities expressed via the

tax/subsidy T (0).

4 The economy-linked criterion
and the optimal paths

In (Bazhanov 2008a) I have shown that an economy can enter an inferior path

if it follows a criterion that is not linked to the “potential” of the economy.

The potential of the economy is expressed in the properties of the produc-

tion function and the initial state. On the other hand, non-linked criterion

can imply an unrealizable or unsustainable optimal path for some specific

economy. For example, the constant GDP percent change implies exponen-

tial growth that cannot be sustained infinitely under the assumptions of the

essential nonrenewable resource and a plausible pattern of technical change

(Dasgupta and Heal 1979). Another example is Stollery’s (1998) combination

of the constant-utility criterion (U(c, T ) = c1−γT−1/(1 − γ) = const where

T = T [r(t)] is the atmospheric temperature) with the global temperature

rising exponentially with the resource extraction. This combination implies

unsustainable behavior of the economy unless the rates of extraction decline

very quickly in the initial period (Bazhanov 2008b).

In order to avoid these unacceptable consequences, I construct the economy-

linked criterion on an example of the maximin principle applied to a general-

ized level-growth utility measure.9 The use of the maximin in the problems

of intergenerational justice implies that some social welfare measure must be

constant over time. Therefore, it is natural to use this property of the max-

9This approach was also considered in (Bazhanov 2007).
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imin for the problems connected with formulating the long-run programs of

sustainable development.10 The closed form solutions for the optimal paths

of the Hotelling Rule modifier, tax, consumption, capital, and extraction are

provided in Lemma 1, Proposition 1, and Corollary 1.

Solow (1974) showed that the maximin applied to the LEVEL of con-

sumption implies constant consumption and no growth in output. I apply

the same approach to a more general measure which takes into account not

only the LEVEL of consumption but also the rate of its change.11 I intro-

duce a variant of generalized measure of consumption that includes as the

specific cases conventional measures for the LEVEL or for the GROWTH of

consumption depending on the values of parameters. Then I examine which

values of these parameters correspond to the optimal paths in the Cobb-

Douglas economy with a nonrenewable resource, externality, and the tax,

internalizing the externality in the optimal way.

The expression ċγcμ is considered here as an example of a hybrid level-

growth measure. The maximin applied to this expression implies that already

this expression, not consumption per se, must be constant over time. Assume

for simplicity that μ = 1−γ and then we obtain the constant-utility criterion

10One can claim that the overall wealth of an economy could be higher as a result of
the alternate ups and downs, however, I will stick here to the evidence that “loss aversion
favors social arrangements that provide a steady improvement of rewards or benefits over
time, in preference to schedules in which the same total benefit is handed out in equal or
diminishing quantities” (Kahneman and Varey, 1991, p. 152).
11There are findings supporting the idea that for estimating a consumer’s perception

of consumption and, consequently, the utility, it is not enough to calculate a vector of
measurable static indicators. “We can ask, ... how well a person’s life is going and whether
that person is...better off than he or she was a year ago” (Scanlon 1991, p. 18). There
is also evidence that has “documented the claim that people are relatively insensitive to
steady states, but highly sensitive to changes” and that “the main carriers of value are
gains and losses rather than overall wealth” (Kahneman and Varey 1991, p. 148). Here I
take into account prehistory of consumption in the form of derivative ċ.
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or the criterion of just growth12 of consumption in a form13 of

ċγc1−γ = U = const (9)

which implies quasiarithmetic growth

c(t) = c0(1 + ϕt)γ (10)

where ϕ = U/c0
1/γ
/γ.

Hence, the social planner in our case keeps the combination ċγc1−γ con-

stant over time with the conventional restriction on the resource reserve
∞
0
r(t)dt = s0, production function in a form (1), with the Hotelling Rule

modified in a form (2), resource rent investing saving rule k̇ = βq, and non-

negative capital, output, and consumption.

Note that criterion (9) includes constant consumption as a specific case

for γ = 0. More general expression ċγcμ includes as specific cases

(a) conventional function for measuring the utility of the LEVEL of un-

limitedly growing consumption c1−η/(1 − η) for γ = 0, μ = 1 − η, and

U = U(1− η);

(b) percent change as a conventional measure of the GROWTH of con-

sumption for γ = 1 and μ = −1;
(c) a sample value function which relates value to an initial consumption

c and to a change of consumption ċ (Kahneman and Varey, 1991, p. 157):

V (ċ, c) = bċa/c for ċ > 0, where a < 1 and b > 0;V (0, c) = 0;V (ċ, c) =

−Kb(−ċ)a/c for ċ < 0, where K > 1.

The important property of criterion (9) is that it allows for the growth

of the economy and that the parameters of the criterion must be specified
12For γ > 0 this version of criterion is applicable only to growth (ċ > 0) because at the

steady states (ċ = 0) this expression is always zero (not sensitive to the LEVEL).
13This form can be written as follows (ċ/c)γc = U which implies that the decline in the

rate of growth in our hybrid utility is compensated by the growing level of consumption.
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for the economy’s initial conditions. This means that using this criterion,

we can consider numerical examples that resemble the behavior of the real

economy. The importance of the mechanism of matching of the criterion for

just allocation of some scarce resource to the context was emphasized, for

example, in (Konow 2003): “the most significant challenge to . . . any theory

. . . is to incorporate the impact of context on justice evaluation, and much

work remains in this regard.”

The expressions for the optimal paths in the Cobb-Douglas economy with

the specific initial conditions are provided in the following Lemma 1, Propo-

sition 1, and Corollary 1.

Lemma 1. For the economy q = kαrβ with the resource rent investing

saving rule k̇ = βq and the Hotelling Rule modified in a way ḟr/fr = fk + τ ,

the unique path of the Hotelling Rule modifier

τ(t) =
β − 1
β

1

λ1t+ λ0

is socially optimal with respect to criterion (9) with γ = 1/λ1 and U =

(1− β)q0/λ
1/λ1
0 .

Proof. Condition (9) implies for our economy that ċγc1−γ = (1−β)γ q̇γ(1−
β)1−γq1−γ = (1− β)q̇γq1−γ = U or

q̇γq1−γ = U/(1− β) (11)

The equation (10) gives us q = c/(1− β) = c0(1 +ϕt)γ/(1− β) and from

the equation (5) we have q̇ = βqτ/(β − 1). Substituting for q̇ we obtain
β

β − 1qτ
γ

q1−γ =
β

β − 1τ
γ

q =
U

1− β

Then substitution for q gives us

β

β − 1τ (1 + ϕt)
γ

=
U

c0
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or

τ =
U

c0

1
γ β − 1

β

1

1 + ϕt
=

β − 1
β

ϕγ

1 + ϕt
=

β − 1
β

1

1/(ϕγ) + t/γ

where we have λ0 = 1/(ϕγ) and λ1 = 1/γ. Substitution for ϕ into the

expression for λ0 gives us the expression for U via λ0 and λ1

Proposition 1. Let the economy q = kαrβ follow the Hartwick Invest-

ment Rule k̇ = βq; the Hotelling Rule is modified in a way ḟr/fr = fk+τ and

the initial conditions are: q̇0/q0 - the initial rate of growth; q0 = q(0) = kα0 r
β
0

- the initial output where k0 = k(0), r0 = r(0), and s0 = s(0) are the initial

values of capital, the resource extraction and the reserve estimate.

Then the unique path of tax, introduced at t = 0 with T (0) = 0 in the

following way:

T (t) = β [k(t) (1 + λ1)]
α qβ−10

1/β

1− (tλ1/λ0 + 1)(β−1)/(βλ1)

is socially optimal with respect to criterion (9) with γ = 1/λ1 and U =

(1 − β)q0/λ
1/λ1
0 = c0/λ

1/λ1
0 . The optimal tax implies the following optimal

paths of capital and the resource use:

k(t) = k0 +
βq0

λ
1/λ1
0 (1 + λ1)

(λ1t+ λ0)
(1+1/λ1) − λ

(1+1/λ1)
0

r(t) =
q0

λ
1/λ1
0

1/β

(λ1t+ λ0)
1/(βλ1) k−α/β

where λ0 = q0/q̇0, λ1 = λ1(s0).

Proof: Appendix 1.

Corollary 1. In conditions of Proposition 1, the optimal path of con-

sumption implied by (9) is

c(t) = c0 1 +
q̇0
q0
t

γ

13



i.e. the optimal slope of the consumption path at each moment of time is

defined by the initial GDP percent change; the rate of growth is defined by

γ = 1/λ1(s0);

the expression for the Hotelling Rule is

ḟr(t)/fr(t) = fk(t) +
β − 1
β

1

λ1(s0)t+ q0/q̇0

where λ1(s0) is uniquely defined from the equation

s0 =
λ1 + 1

(λ1 + 1)(α− β)− 1 + β
· k0r0
q0

× 1 + (1− β) k0βq̇0(λ1 + 1)− β2q20 (12)

× 2F0 1,
β(λ1 + 2)− 1
β(λ1 + 1)

, [ ] , βq20 − k0q̇0(λ1 + 1) (λ1 + 1)β2

where 2F0(·) is the hypergeometric function with 2 upper parameters and an
empty list of lower parameters.

Proof is the result of straightforward substitution of the expressions for

U, λ0, and λ1(s0) obtained in Lemma 1, Proposition 1, and Appendix 2.

5 Compatibility of the criterion with the ini-
tial conditions

Before considering the numerical examples, I will examine possible limita-

tions of criterion (9) that can prevent us from calibrating the model on the

data from the real economy. It is known, that in the particular case of this

criterion, for γ = 0 (constant consumption), we cannot use in our numeri-

cal examples the data from a growing economy with the growing extraction

r(t) because in this case the initial value of change of rate of extraction ṙ(0)

must be negative and it is strictly defined by the initial values of the rate

of extraction r(0), reserve s(0), and technological parameters α and β. That

14



is why the economy pursuing this specific type of intergenerational justice

must adjust its extraction and saving during some transition period in order

to switch to the optimal path in finite time (Bazhanov 2008a).

In general case (γ > 0), the economy is already allowed to have different

patterns of sustainable growth, and the specific type of growth corresponds

to the specific set of initial data. This implies that the economy’s initial

conditions are already not strictly fixed by the criterion but they can belong

to some range or satisfy some restricting relationship. In Appendix 1, I

have shown that for the ratio ṙ/r to be negative (declining extraction) in

the long run, the value of λ1 must be greater than 1/α − 1, which implies
γ < 1/(1/α − 1) = α/(1− α) (for α = 0.3 we have γ < 0.43). Now we will

examine how the value of λ1 is restricted by the requirement of convergence

of the integral ∞
0
r(t)dt. We can express r(t) as follows:

r(t) = q1/βk−α/β

= q1/β k(λ1t+ λ0)
−1/(αλ1) +

βq

1 + λ1
(λ1t+ λ0)

((λ1+1)/λ1−1/(αλ1))
−α/β

Convergence of this integral is defined by the behavior of the second term

in bracket, since limt→∞(λ1t+ λ0)
−1/(αλ1) = 0. This gives us the convergence

condition [α2(λ1 + 1)− α] /(αβλ1) > 1 or

λ1 > (1− α)/(α− β) (13)

For example, it requires λ1 > 14 (γ < 0.0714) for α = 0.3 and β = 0.25

while the requirement of negative ratio ṙ/r implies only λ1 > (1 − α)/α =

2.333. Note that the combination of condition (13) with the requirement of

declining extraction (λ1 > (1− α)/α > 0) implies α > β (Solow, 1974).

Inequality (13) shows that in our model the value of γ must be less than

(α−β)/(1−α) regardless of the values of initial conditions. This restriction
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Figure 1: Patterns of feasible growth for the Cobb-Douglas economy with α =
0.3 are between the constant (γ = 0) and the path with γ = (α− β)/(1−α)

prevents our model with the Cobb-Douglass technology from the patterns of

growth that are close to linear if α < 0.5. The economy can realize only some

variants of quasiarithmetic growth including stagnation (γ = 0). The set of

these feasible sustainable paths is located in Figure 1 between the constant

(γ = 0) and the path for γ = (α− β)/(1− α).

Condition (13) gives us only the lower bound for finding λ1. The exact

value of λ1 must be defined as the solution of equation
∞
0
r(t,λ1)dt = s0.

Therefore, the question of existence of this solution is in our case the main

source of possible incompatibility of criterion (9) with some sets of the initial

conditions. Hence, I will define the applicability of a criterion for formulating

a long-run (sustainable) development program for the specific economy in the

following way.

Definition 1 We will say that a criterion is applicable for a long-run devel-
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opment program14 in an economy q = f(k, r) with the given initial state

if there exists at least one optimal with respect to this criterion program

kq∗, k∗, r∗l that satisfies the economy’s initial conditions.

The answer to the question about the applicability of criterion (9) for a

long-run program in the DHSS economy is formulated in the following

Proposition 2. Criterion ċγc1−γ = const is applicable for a long-run

development program in the economy q = kαrβ with k̇ = βq if the initial

reserve s0 satisfies the condition

s0 ≥ k0r0
q0(α− β)

(14)

where q0, k0, and r0 are the initial values of output, capital, and the rate of

extraction.15

Proof. In Appendix 2, I have shown that the following formula can be

used for defining λ1 as a good approximation to the solution of the equation
∞
0
r(t,λ1)dt = s0 with respect to λ1 :

λ1 =
(1− α)s0q0 + k0r0
(α− β)s0q0 − k0r0 (15)

This formula captures the main peculiarities of behavior of the exact solution.

In particular, it shows that the denominator can be zero for some sets of

parameters, which follows the value of λ1 going to infinity. This implies that

denominator must be positive or s0 > k0r0/ [q0(α− β)] , which coincides

with the condition (14). This means that the value of λ1(s0) is a decreasing

function from infinity at the minimal value for s0 = k0r0/ [q0(α− β)] to the

minimal value λ1min = (1− α)/(α− β) for s0 going to infinity (Fig. 2).

14A criterion can be applicable for selecting the best path among the feasible paths in
an economy, but it can be not applicable for a long-run development program because the
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Figure 2: λ1 as a function of the initial reserve s0

Indeed, considering the limiting case for the path of extraction with λ1

going to infinity (corresponds to the smallest possible s0), we obtain

r∞(t) lim
λ1→∞

r(t,λ1) = lim
λ1→∞

q0

λ
1/λ1
0

1/β

(λ1t+ λ0)
1/(βλ1) k−α/β

= q
1/β
0 [k0 + βq0t]

−α/β

The total amount of reserve, extracted along this path is

∞

0

r∞(t)dt =
q
1/β
0

βq0 1− α
β

[k0 + βq0t]
1−α/β |∞0 = −

q
1/β
0 k

1−α/β
0

q0 (β − α)
=

k0r0
q0 (α− β)

which is the greatest lower bound for the feasible reserve s0

optimal path that it implies can be not realizable in this economy in the long run.
15I do not consider here the initial condition for investment k̇(0) since for simplicity I

assume that the economy follows the Hartwick Saving Rule and so this initial condition is
always satisfied.
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If the initial conditions in an economy do not satisfy (14), then the econ-

omy needs a transition period for adjusting its patterns of extraction and

saving in order to meet the minimum requirements expressed in (14) and

then it can enter a sustainable path (Bazhanov 2008a).

It would be interesting to analyze the practical applicability of the hybrid

measure in general form ċγcμ if we had had some opportunities for γ to be

close to unity for the plausible values of α. However, our analysis for the

simple case with μ = 1 − γ and with the conventional value of α = 0.3

(see e.g. Nordhaus and Boyer 2000) shows that the DHSS economy in our

framework can exhibit only the patterns of quasiarithmetic growth that are

closer to constant than to linear function (γ � 1).

Moreover, these patterns of sustainable growth, including constant con-

sumption as a specific case, are affordable not for all initial conditions in

the economy. If the economy overuses the resource having relatively small

amount of its reserve, then it needs some transition period to adjust the

extraction and saving in order to have an opportunity to enter a sustain-

able path in finite time. This result implies the impossibility of exponential

growth for the DHSS model and therefore the inconvenience of the percent

change as a measure for sustainable growth.

This follows an important practical application of the hybrid measure.

This expression can be called geometrically weighted percent, and it can be

used as a measure for sustainable growth of some economic indicators e.g.

social welfare function or NNP (Hartwick 1990) instead of regular percent

change. The rate of regular percent change declines for sustainable growth if

this growth is not exponential. Indefiniteness of the rate of this decline makes

regular percent an inconvenient and even a misleading measure for sustain-

able development. For example, this inherently unsustainable indicator was
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used as a necessary condition for sustainability even in such a seminal doc-

ument for sustainable development as the Brundtland Report (World 1987):

“The key elements of sustainability are: a minimum of 3 percent per capita

income growth in developing countries” (p. 169) and “annual global per

capita GDP growth rates of around 3 percent can be achieved. This growth

is at least as great as that regarded in this report as a minimum for reason-

able development” (p. 173). Besides contradictions with the environmental

goals, which were noticed e.g. in (Hueting 1990), measuring growth in GDP

percent change conflicts with theoretical possibility of realization of this pro-

gram. In this sense, geometrically weighted percent in the form of (9) is more

convenient for formulating the long-run economic goals because maintaining

this expression constant implies feasible and sustainable growth.

6 An economy with declining output and/or
small reserve s0

In order to complete the analysis of applicability of the economy-linked cri-

terion in the form of (9) to formulating long-run development programs, I

will show that this criterion leads to unacceptable implications for the cases

when an economy has declining output (q̇0/q0 < 0) at the initial moment

and/or γ < 0.16 The optimal paths of consumption for these cases can be

obtained by plotting the formula for consumption in Corollary 1.

For a growing economy (q̇0/q0 > 0) with γ < 0 criterion (9) implies op-

timal consumption asymptotically approaching zero (Fig. 3a). If the econ-

omy’s output is declining at the initial moment and γ > 0, then we obtain

that the optimal paths of consumption must be decreasing to zero in finite

16Negative γ for the Cobb-Douglas technology is equivalent to the initial conditions not
satisfying (14).
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Figure 3: Unacceptable paths of consumption, optimal with respect to crite-
rion (9): (a) growing economy and γ < 0; (b) declining economy and γ > 0

time for all positive γ. However, for the even integer values of γ > 1, the op-

timal path after hitting zero must have unbounded polynomial growth (Fig.

3b). Note again that γ > 1 cannot be obtained in the DHSS model for the

conventional values of α. In the last, presumably the most pessimistic case

where the economy has declining output and can rely only on negative γ, we

obtain that criterion (9) requires the consumption to be growing to infinity

in a finite period (Fig. 4). This scenario can be realized only in the short

run because growing consumption with decreasing output implies negative

investment and subsequent collapse.

Hence, the only case when criterion (9) leads to ethically acceptable paths

of consumption is growing output at the initial moment and γ > 0 (or sat-

isfaction of condition (14)). The paths of consumption for this case are

depicted in Figure 1.
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Figure 4: Paths of consumption, assumed by criterion (9) for declining econ-
omy and γ < 0

7 Numerical example

I will start with problem II, which estimates the effect of the distorting

externalities in terms of tax/subsidy at the current moment t = 0. Assume

that the distorting combination of externalities is continuous at t = 0, and

that it is constant or Ṫ0 = 0, which implies T (0) = τ(0)fr(0)/fk(0).

The primary initial values are: α = 0.3, β = 0.25, GDP percent change

q̇0/q0 = 0.03, the initial rate of extraction r0 = 3.6243, the initial reserve

s0 = 2 · 180.4722 = 360.9444,17 and the rate of extraction is growing with

ṙ0 = 0.1. This gives us the other initial values (see (Bazhanov, 2006b) for

17I use the world oil extraction on January 1, 2007 as r0 and the world reserves as s0
(Radler, 2006): r0 = 72, 486.5 [1,000 bbl/day] ×365 = 26, 457, 572 [1,000 bbl/year] (or
3.6243 bln t/year); s0 = 1, 317, 447, 415 [1,000 bbl] (or 180.4722 bln t). I use coefficient
1 ton of crude oil = 7.3 barrel. According to the report of Cambridge Energy Research
Associates (CERA, 2006), actual world reserves (3.74 trillion barrels) are about three
times more than the conventional estimate being published in December issues of Oil &
Gas Journal. I use in the example the “average” of the two estimates.
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the estimation of k0)

k0 =
q̇

q 0

1

β
− ṙ0
r0

/ αrβ0

1
α−1

= 8.5174

and λ0 = q0/q̇0 = 33.3333. This follows q0 = kα0 r
β
0 = 2.6236, c0 = (1−β)q0 =

1.9677, q̇0 = (q̇0/q0) q0 = 0.0787, τ(0) = (q̇0/q0) (β− 1)/β = −0.09. For these
values, condition (14) is satisfied (for our example s0min = 235.3)18 and we

have q0/k0 = 0.308, the rate of interest fk(0) = αq0/k0 = 0.092 and the

resource price (which would be in problem II without distortions) fr(0) =

βq0/r0 = 0.18097. Note that ḟr(0) = fr(0) (q̇0/q0 − ṙ0/r0) = 0.0004 (price is
growing but very slowly). The assumption Ṫ0 = 0 implies T (0) = −.1763.
This means that for our simplified economy

1) the distortions are equivalent to the influence of subsidy rather than

tax;

2) the observable price fr(0)+T (0) = 0.0047 is about 38.4 times less than

it would be without externalities.

We turn to solving problem I where we will estimate the optimal tax T (t)

and the paths of capital and extraction. This problem implies that there is

no tax at the initial moment (T0 = 0) which gives us Ṫ0 = 0.016 (growing

optimal tax). Then we estimate λ1 = 60.1119 using the feasibility condition
∞
0
r(t)dt = s0 (Appendix 2). This gives us the optimal path of capital that

is very close to linear (solid line in Fig. 8), k(t) = 8.16 + 0.0101 · (60.11t +
33.33)1.0166, and the paths of the resource extraction (solid line in Fig. 9) and

18If we take s0 equal to 180.4722 bln t (Oil & Gas Journal estimate) then condition
(14) will be not satisfied or our model of the world economy will be not compatible with
the sustainable growth in the sense of criterion (9) and it will need a transition period in
order to adjust the initial state.
19Numerical calculation of the integral gives λ1 = 60.11; the expression via the hyper-

geometric function (Appendix 2) implies λ1 = 72.33, and the approximate formula (15)
gives λ1 = 42.1.
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Figure 5: Technical progress compensating for capital depreciation

tax (solid line in Fig. 7). Quasiarithmetic growth of consumption is depicted

in solid line in Fig. 10.

8 Technical progress compensating
for capital depreciation

The assumption about no capital depreciation and no technical progress can

be interpreted as an equivalent assumption about the specific TFP that ex-

actly compensates for the decay of capital. Then the path of this technical

progress can be constructed in order to estimate its plausibility. In other

words, our assumption implies that

q(t) = A(t)kαrβ − δk

and technical progress A(t) is such that A(t)kαrβ − δk = kαrβ. This follows

A(t) = 1 + δk1−αr−β

Substituting for r = r (λ1t+ λ0)
1/(βλ1) k−α/β where r = q1/β and q = q0/λ

1/λ1
0

we have

A(t) = 1 +
δ

q

k

(λ1t+ λ0)
1/λ1

+
βq

1 + λ1
(λ1t+ λ0)
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which is asymptotically linear with the slope δβ/ (1 + λ1) . For our example,

given δ = 0.1, the slope is 0.1 · 0.25/(1 + 60.11) = 0.000409 (Fig. 5).

9 Variable reserves and dynamic corrections

The amount of reserve s0 was considered so far as a constant, though in

practice the value of the proven recoverable reserve is being updated annually.

This value decreases because of the extraction and it can increase due to

the discovery of new oil fields and due to the changes in oil prices and in

extracting technologies. Nevertheless, in many theoretical problems we can

consider s0 as all the amount of the reserve including proven, unproven, and

as yet not discovered so we can assume correctly that s0 is a constant in these

problems. However, if we are going to estimate numerically the path of tax

which depends on s0 and which controls the economy in the optimal way,

we should estimate s0 as accurately as possible. Otherwise, the economy

will follow an inferior path in the case of underestimation of s0 or it will

overconsume if s0 is overestimated.

In this section, I will examine a procedure of dynamic policy correction

that will depend on the information about the changes in the resource re-

serves. The paths of our economy are defined by the value of s0 (via λ1(s0))

at the initial moment t = 0. With time, we obtain additional information

about s0 that was not available at the initial moment. Using this informa-

tion at each moment t > 0 we will reestimate s0 which will imply the dynamic

correction of the tax and of all the paths in the economy.

Assume that with time our revaluation of s0 is growing and asymptotically

approaches a constant s0, for example, in the following way (Fig. 6):

s0(t) = s0 − e−wt(s0 − s0) (16)
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Figure 6: Information updates about the reserve estimate

I will take for the numerical example s0(0) = s0 = 2 · 180.4722 = 360.94

[bln t] and s0 = limt→∞ s0(t) = 3 · 180.4722 = 541.41 (CERA’s reserve esti-
mate). The parameter w here is w = 0.001. Then we can make use of the

explicit expression (15) for λ1(s0). Substituting (16) for s0 in (15) and then

substituting it into (9) we obtain the measure of the optimal sustainable

growth which is dynamically responding to the new information about the

reserves. Substitution of the dynamically changing λ1(s0(t)) implies corre-

sponding updates in paths of tax, capital, extraction, and consumption (Figs.

7 - 10, time in years). The paths corresponding to the precommitment pol-

icy with s0(t) ≡ s0 are depicted as a solid line, precommitment paths with
s0(t) ≡ s0 (assuming that we know everything about reserves at the initial
moment) are in crosses, and the dynamically updated paths are in circles.

We can see that the reaction of the economy on the larger amount of the

initial reserve (s0(t) ≡ s0, paths in crosses) is rather plausible. The level

of tax is lower, the levels of capital and rates of extraction are higher and,

as a result, the level of the optimal per capita consumption is also higher.
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Figure 7: The optimal paths of tax: (a) in the short run; (b) in the long run.
For fixed reserve s0 - as a solid line; for fixed reserve s0 = 1.5s0 - in crosses;
dynamically changing path - in circles

Figure 8: The optimal paths of capital: (a) in the short run; (b) in the long
run. For fixed reserve s0 - as a solid line; for fixed reserve s0 - in crosses;
dynamically changing path - in circles

27



Figure 9: The optimal paths of extraction: (a) in the short run; (b) in the
long run. For fixed reserve s0 - as a solid line; for fixed reserve s0 - in crosses;
dynamically changing path - in circles

Figure 10: The optimal paths of consumption: (a) in the short run; (b) in
the long run. For fixed reserve s0 - as a solid line; for fixed reserve s0 - in
crosses; dynamically changing path - in circles
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Note that the criterion linked to the initial conditions combined with the

assumption about modification of the Hotelling Rule in a generalized way

can imply hump-shaped optimal paths of extraction. This result implies the

notion of the normative resource peak. This peak can be compared with

the one, being forecasted from the point of view of “physical possibility” of

reaching the maximum level of extraction.20

One could expect that if an economy chooses an inferior path at the initial

point due to the lack of knowledge about the reserve, then the difference

in consumption with respect to the optimal “full-knowledge” path (line in

crosses, Fig. 10) will only increase with time unless we correct the saving

rule. However, the example shows that under the standard Hartwick Rule the

consumption in the economy with the dynamically defined parameters (line in

circles) is asymptotically “catching-up” to the optimal level of consumption

in the process of updating the information about the reserve. The maximum

difference in consumption during this process is less than 5%.

Another implication of the dynamically updated parameters is that the

level of U in criterion (9) becomes variable (U(t) = c0/λ
1/λ1(s0(t))
0 ). This could

undermine the argument about convenience of the geometrically weighted

percent as a measure for sustainable growth. However, in our numerical ex-

ample with substantially changing information about the reserve, the change

in U is nothing more then 5% (from U(0) = 1.81 to U(∞) = 1.71), which is
negligible in comparison with the mismeasurements in the real economy.

20The theories of estimating the “physical” oil peak have been developing since the work
of geologist M.K. Hubbert (1956). A methodology different from the Hubbert’s oil-peak
approach was used in the CERA’s report (CERA 2006) according to which the world oil
reserves are about three times larger than the conventional estimates and the “physical”
oil peak is not expected before 2030. However, the optimal paths of extraction obtained
in this paper imply that the normative oil peak must be much closer, namely, in 6 months
even for the CERA’s reserve estimate.
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10 Concluding remarks

This paper has shown that from all patterns of growth offered in (Groth et al

2006) as regular growth, the extended Dasgupta-Heal-Solow-Stiglitz (DHSS)

model can realize for the conventional value of α = 0.3 only the (sustainable)

paths of quasiarithmetic growth that are much closer to constant consump-

tion than to linear function (Fig. 1). The DHSS model is extended here

by the assumption that the Hotelling Rule is modified by the phenomena

that total influence can be expressed in terms of an equivalent tax or subsidy

(Sections 2 and 3). I interpreted the absence in the model of both techni-

cal change (TFP) and capital depreciation as presence of the specific TFP

exactly compensating for the capital decay (Section 8).

The approach linking the optimality criterion to the economy’s “abilities

to grow” (Section 4) is described on an example of the maximin applied to

a generalized level-growth measure (geometrically weighted percent). The

parameter of this measure (γ = 1/λ1) was calibrated on the economy’s tech-

nological parameters (the price elasticities of demand for the resource and

capital) and the initial conditions. In this framework, I have obtained the

closed form solutions for the optimal paths of the Hotelling Rule modifier, tax

internalizing the externalities, capital, the resource extraction, and per capita

consumption under the standard Hartwick Investment Rule. I have derived

the closed-form expression for the dependance of the parameter, specifying

the criterion (λ1), on the reserve estimate. This formula was used to examine

the optimal paths dynamically responding to the updates in the information

about the reserve estimates (Section 9).

The assumption about the generalized form of the Hotelling Rule modifier

made it possible to calibrate the model on the world oil extraction data.
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In particular, this modification allowed for nondecreasing extraction in the

initial period. This property of the problem introduces the notion of the

normative oil (resource) peak. It turned out that in the framework of this

paper the optimal oil peak must be in 2-6 months depending on the amount

of reserve. In other words, the socially-optimal oil peak is much closer to the

initial moment than the various forecasts of the “physical” oil peak which

show for how long the rates of extraction can grow (Sections 7 and 9).

It would be interesting to apply

(1) the economy-linked criterion for the problem with the specific exter-

nality like Stollery’s (1998) and Hamilton’s (1994) global warming where the

rising temperature affects not only the Hotelling Rule but also the utility

and/or the production function;

(2) the methodology of linking a criterion to the specific economy for

different hybrid measures and different criteria of justice;

(3) the methodology of linking a criterion to the specific economy with

the specific patterns of endogenous technical change.

I think these problems deserve separate consideration.
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12 Appendix 1 (Proof of Proposition 1)

Lemma 1 gives the optimal pattern of the Hotelling Rule modifier

τ(t) =
β − 1
β

1

λ1t+ λ0

Indeed, equation (5) implies

q̇

q
=

β

β − 1τ =
1

λ1t+ λ0

which gives us λ0 = q0/q̇0 (for q̇0 9= 0) and (solving it for q(t)) q(t) =

q (λ1t+ λ0)
1/λ1 where the constant of integration q is defined from the initial

condition q(0) = q0 :

q =
q0

λ
1/λ1
0

= (q̇0/q0)
1/λ1 q0

Then q̇(t) = q (λ1t+ λ0)
1/λ1−1 and expression q̇γq1−γ with γ = 1/λ1 gives us

q̇γq1−γ = q1/λ1 (λ1t+ λ0)
(1/λ1−1)/λ1 q1−1/λ1 (λ1t+ λ0)

(1−1/λ1)/λ1

= q = const = U/(1− β)

We can rewrite q(t) as follows q(t) = q0 (1 + tλ1/λ0)
1/λ1 .

Given expression for q and the saving rule k̇ = βq (λ1t+ λ0)
1/λ1 we have

the path for capital

k(t) = k +
βq

1 + λ1
(λ1t+ λ0)

(1+1/λ1)

where the initial condition k(0) = k0 gives us the constant of integration

k = k0 − βqλ
(1+1/λ1)
0 /(1 + λ1) = k0 − βq0λ0/(1 + λ1). Then we have

k(t) = k0 +
βq

(1 + λ1)
(λ1t+ λ0)

(1+1/λ1) − λ
(1+1/λ1)
0
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The modified Hotelling Rule in form of (4) gives an equation for r(t)

ṙ

r
=

τ

β − 1 − αq/k =
1

β (λ1t+ λ0)
− α

q (λ1t+ λ0)
1/λ1

k + βq
1+λ1

(λ1t+ λ0)
(1+1/λ1)

=
k + βq

1+λ1
(λ1t+ λ0)

(1+1/λ1) − αβq (λ1t+ λ0)
(1+1/λ1)

βk (λ1t+ λ0) +
β2q
1+λ1

(λ1t+ λ0)
(2+1/λ1)

or

ṙ

r
=
k + βq 1

1+λ1
− α (λ1t+ λ0)

(1+1/λ1)

βk (λ1t+ λ0) +
β2q
1+λ1

(λ1t+ λ0)
(2+1/λ1)

(17)

which implies21

r(t) = r1(λ1t+ λ0)
1/βλ1 k(1 + λ1) + βq (λ1t+ λ0)

(1+1/λ1)
−α/β

= r(λ1t+ λ0)
1/βλ1k−α/β

where the constant of integration r can be defined via the initial value of

extraction r0 : r = r0λ
−1/βλ1
0 k + βqλ

(1+1/λ1)
0 /(1 + λ1)

α/β

. The more simple

expression for r can be obtained using the production function q = kαrβ

which gives us r = q1/β.Given the expression for r(t) we can adjust parameter

λ1 using the feasibility and efficiency condition s0 =
∞
0
r(t)dt (Appendix 2).

Note that equation (17) implies that ṙ/r→ 0 with t→∞ and in order to

obtain feasible behavior of r(t) it is necessary that the ratio ṙ/r is negative

for t big enough. Assuming λ1 > 0 we can see that for t big enough the

denominator in (17) is positive and the nominator is negative if and only if

α > 1/(1 + λ1) or λ1 > 1/α − 1 which justifies our assumption about the
sign of λ1 for α ∈ (0, 1). This condition for λ1 = λ1(s0) can be interpreted

as a possibility condition for realization of the economy-linked optimal (in a

21Actually in our problem we can obtain r(t) in more simple way just expressing it from
q(t), since we know already expressions for q(t) and k(t). The expression for r(t) in this
case is the same.
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sense of criterion (9)) paths for the economy with technological parameter α

and reserve s0.

In order to express explicitly the path of tax from formula (8): T (t) =

exp fk(t)dt T − τfr exp − fk(ξ)dξ dt I will consider the following

integral which for the case of the Hartwick Rule is

fk(t)dt = α
q

k
dt =

α

β

k̇dt

k
=

α

β
ln k + C1

It implies that exp fk(t)dt = C2k(t)
α/β and

τfr exp − fk(ξ)dξ dt =
1

C2

βq(1 + λ1)
α/β

r
(λ1t+ λ0)

β−1
βλ1 + C3

which gives us

T (t) = k(t)α/β T − βq(1 + λ1)
α/β

r
(λ1t+ λ0)

β−1
βλ1 (18)

where T = T (C2, C3). Since q = q0/λ
1/λ1
0 and r = q1/β, and given T0 = T (0)

we have T = T0k
−α/β
0 + βq1−1/β(1 + λ1)

α/βλ
(β−1)/(βλ1)
0 or

T = T0k
−α/β
0 + βq

(β−1)/β
0 (1 + λ1)

α/β

Substituting it into (18) we obtain

T (t) = k(t)α/β T0k
−α/β
0 + β(1 + λ1)

α/βq
(β−1)/β
0 1− (λ1

λ0
t+ 1)(β−1)/(βλ1)

which for T0 = 0 gives us the expression formulated in the proposition
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13 Appendix 2 (Estimation of λ1(s0))

The value of λ1 can be expressed via reserve estimate s0 using the feasibility-

efficiency condition ∞
0
r(t,λ1)dt = s0. The first approach to find λ1(s0) is

to calculate the integral ∞
0
r[t,λi1(s0)]dt numerically

22 inside of an iterative

procedure which in general case can be described as follows.

(1) Set λ01 = (1− α)/(α− β) + λ, where λ > 0 (arbitrary).

(2) Adjust λi1 = λi1 λi−11 ,
∞
0
r[t,λi−11 (s0)]dt− s0 starting with i = 1 in

such a way that ∞
0
r[t,λi1(s0)]dt− s0 → 0 (with desirable accuracy) with

i→∞ and then we will have λi1 → λ∗1 assuming that λ
∗
1 exists.

In order to check the accuracy of numerical integration with the infinite

upper limit we can transform this operation to integration with a finite limit.

For this the integral should be rewritten as follows

∞

0

rdt = q1/β
∞

0

βq

1 + λ1
(λ1t+ λ0)

λ1+1
λ1

− 1
αλ1

−α/β
dt−

∞

0

∆rdt

(19)

where

∆r =
βq

1 + λ1
(λ1t+ λ0)

λ1+1
λ1

− 1
αλ1

−α/β

− k (λ1t+ λ0)
−1/(αλ1) +

βq

1 + λ1
(λ1t+ λ0)

(1+1/λ1−1/(αλ1))
−α/β

The first integral in (19) can be expressed in elementary functions and inte-

gral ∞
0

∆r(t,λ1)dt converges much faster than the original one and so it can

be calculated with finite upper limit with the desirable accuracy. It implies

∞

0

r(t,λ1)dt = (1 + λ1)
α/βq

(1−α)/β
0

(βλ0)
(β−α)/β

(1 + λ1)(α− β) + β − 1 − q
1/β

∞

0

∆rdt

22I used procedure _d01amc in Maple.
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where ∞
0

∆rdt = limA→∞
A

0
∆rdt. For our numerical example it is enough

to take A = 103 in order to have the error of integration about 1%.

As the second approach to find λ1(s0) I will use sequential integration of

r(t,λ1) by parts which will follow representation of s0 as a series. For this

I will express r in the following way r = q1/βk−α/β = (1/β)1/β k̇1/β−1k̇k−α/β.

Denote u = k̇1/β−1 and dv = k−α/βk̇dt. Then

∞

0

rdt = (1/β)1/β
∞

0

udv = (1/β)1/β uv −
∞

0

vdu

= (1/β)1/β − k̇
1/β−1
0 k

1−α/β
0

1− α/β
− 1− β

β − α
I2

where I2 =
∞
0
k1−α/βk̇1/β−2

..

k dt. Substituting for
..

k= βq (λ1t+ λ0)
1/λ1−1 =

(βq)λ1 k̇1−λ1 we have I2 = (βq)
λ1 I3 where I3 =

∞
0
k1−α/βk̇1/β−1−λ1dt. Since

k/k̇(1+λ1) = kk̇−1−λ1+(βq)−λ1/(1+λ1) then k1−α/βk̇1/β−1−λ1 = k−α/βk̇1/βk/k̇(1+λ1) =

k−α/βk̇1/β kk̇−1−λ1 + (βq)−λ1/(1 + λ1) . It implies I3 = k
∞
0
k−α/βk̇1/β−1−λ1dt+

(βq)−λ1/(1+λ1)
∞
0
k−α/βk̇1/βdt. The second integral, expressed via the orig-

inal one, equals to β1/β
∞
0
rdt. Then the original integral is

∞

0

rdt = (1/β)1/β −k
1−α/β
0 k̇

1/β−1
0

1− α/β
− 1− β

β − α
(βq)λ1 (20)

× (βq)−λ1

(1 + λ1)
β1/β

∞

0

rdt+ kI4

where I4 =
∞
0
k−α/βk̇1/β−(λ1+1)dt. Expressing ∞

0
rdt from (20) we obtain

∞

0

rdt =
λ1 + 1

(λ1 + 1)(−α/β + 1)− 1 + 1/β (1/β)
1/β (21)

× −k1−α/β0 k̇
1/β−1
0 − (1/β − 1) (βq)λ1 kI4

Integrating I4 by parts with u = k̇1/β−1−(λ1+1), dv = k−α/βk̇dt and applying
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the same substitutions we have

I4 =
λ1 + 1

(λ1 + 1) (−α/β)− 1 + 1/β
× −k1−α/β0 k̇

1/β−1−(λ1+1)
0 − (1/β − 1− (λ1 + 1)) (βq)λ1 kI8

where I8 =
∞
0
k−α/βk̇1/β−2(λ1+1)dt. Substituting for I4 in (21) we obtain

∞

0

rdt =
λ1 + 1

(λ1 + 1)(−α/β + 1)− 1 + 1/β (1/β)
1/β

× −k1−α/β0 k̇
1/β−1
0 − (λ1 + 1) (1/β − 1)

(λ1 + 1) (−α/β)− 1 + 1/β (βq)
λ1 k

× −k1−α/β0 k̇
1/β−1−(λ1+1)
0 − (1/β − 1− (λ1 + 1)) (βq)λ1 kI8

Integrating I8 by parts with u = k̇1/β−1−2(λ1+1), dv = k−α/βk̇dt we have

I8 =
λ1 + 1

(λ1 + 1) (−α/β − 1)− 1 + 1/β
× −k1−α/β0 k̇

1/β−1−2(λ1+1)
0 − (1/β − 1− 2(λ1 + 1)) (βq)λ1 kI12

which gives us

∞

0

rdt =
λ1 + 1

(λ1 + 1)(−α/β + 1)− 1 + 1/β (1/β)
1/β

× −k1−α/β0 k̇
1/β−1
0 − (λ1 + 1) (1/β − 1)

(λ1 + 1) (−α/β)− 1 + 1/β (βq)
λ1 k

× −k1−α/β0 k̇
1/β−1−(λ1+1)
0 − (λ1 + 1) (1/β − 1− (λ1 + 1))

(λ1 + 1) (−α/β − 1)− 1 + 1/β (βq)
λ1 k

× −k1−α/β0 k̇
1/β−1−2(λ1+1)
0 − (1/β − 1− 2(λ1 + 1)) (βq)λ1 kI12

This makes visible the pattern of expressions for integrals I4, I8, I12, . . . and

so (multiplying fractions by −β) we can show that the original integral is
∞

0

rdt =
λ1 + 1

(λ1 + 1)(α− β)− 1 + β
· β(1−1/β)
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× k
1−α/β
0 k̇

1/β−1
0 +

(λ1 + 1) (1− β)

(λ1 + 1)α− 1 + β
(βq)λ1 k

× k
1−α/β
0 k̇

1/β−1−(λ1+1)
0 +

(λ1 + 1) (1− β [1 + (λ1 + 1)])

(λ1 + 1) (α+ β)− 1 + β
(βq)λ1 k

× k
1−α/β
0 k̇

1/β−1−2(λ1+1)
0 +

(λ1 + 1) (1− β [1 + 2(λ1 + 1)])

(λ1 + 1) (α+ 2β)− 1 + β
(βq)λ1 k

× k
1−α/β
0 k̇

1/β−1−3(λ1+1)
0 + . . .

Substituting for q,λ0, and for k̇0 = βkα0 r
β
0 we obtain

∞

0

rdt =
λ1 + 1

(λ1 + 1)(α− β)− 1 + β
· k0r0
q0

× 1 +
(λ1 + 1) (1− β)

(λ1 + 1)α− 1 + β
· k · [βq̇0

+
(λ1 + 1) (1− β [1 + (λ1 + 1)])

(λ1 + 1) (α+ β)− 1 + β
· k · (βq̇0)2

+
(λ1 + 1) (1− β [1 + 2(λ1 + 1)])

(λ1 + 1) (α+ 2β)− 1 + β
· k · (βq̇0)3 + . . .

This gives us a closed form solution for our integral as a series

∞

0

rdt =
λ1 + 1

(λ1 + 1)(α− β)− 1 + β
· k0r0
q0

× 1 +
∞

i=1

k(λ1)βq̇0(λ1 + 1)
i

·
i−1

j=0

1− β [1 + j(λ1 + 1)]

(λ1 + 1)(α+ jβ) + β − 1

The series can be expressed via special functions,23 namely,

i−1

j=0

1− β [1 + j(λ1 + 1)]

(λ1 + 1)(α+ jβ) + β − 1 = [−β (λ1 + 1)]
i Γ i− 1− β

β (λ1 + 1)
/Γ − 1− β

β (λ1 + 1)

23The expression of the series via special functions can be obtained in Maple.
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and then

∞

0

rdt =
λ1 + 1

(λ1 + 1)(α− β)− 1 + β
· k0r0
q0

× 1 + (1− β)βk(λ1)q̇0(λ1 + 1) (22)

× 2F0 1,
β(λ1 + 2)− 1
β(λ1 + 1)

, [ ] ,−k(λ1)q̇0β2(λ1 + 1)2

where 2F0(·) is the hypergeometric function with 2 upper parameters and
empty list of lower parameters. Substituting for k = k0 − βq20/ [q̇0(1 + λ1)]

(Appendix 1) we obtain equation (12) in Corollary 1. For our numerical

example the second term in bracket {·} equals to 0.247 and so, taking into
account the existing uncertainty in reserve estimate, we can consider as a

good approximation for the value of reserve the following formula

s0 =
∞

0

rdt =
λ1 + 1

(λ1 + 1)(α− β)− 1 + β
· k0r0
q0

which gives an explicit expression for λ1(s0) :

λ1 =
(1− α)s0q0 + k0r0
(α− β)s0q0 − k0r0

This formula captures the main peculiarities of behavior of the exact solution.

Particularly, it has the same horizontal and vertical asymptotes as the closed

form solution (22) (Fig. 11).
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Figure 11: Dependence of reserve s0 (the value of integral
∞
0
r(t,λ1)dt) on

λ1: closed form solution (22) - in circles; approximate formula - solid line
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