
MPRA
Munich Personal RePEc Archive

A Damped Diffusion Framework for
Financial Modeling and Closed-form
Maximum Likelihood Estimation

Li, Minqiang

30. July 2008

Online at http://mpra.ub.uni-muenchen.de/11185/

MPRA Paper No. 11185, posted 19. October 2008 / 00:12

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Papers in Economics

https://core.ac.uk/display/7305157?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://mpra.ub.uni-muenchen.de/
http://mpra.ub.uni-muenchen.de/11185/


A Damped Diffusion Framework for Financial Modeling and

Closed-form Maximum Likelihood Estimation

Minqiang Li ∗†

Georgia Institute of Technology, GA 30308, USA

July 30, 2008

ABSTRACT
Asset price bubbles can arise unintentionally when one uses continuous-time diffusion processes
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the diffusion or drift function. Oftentimes, certain solutions to the valuation PDE can be ruled out
by requiring the solution to be a limit of martingale prices for damped diffusion models. Monte Carlo
study shows that with finite time-series length, maximum likelihood estimation often fails to detect
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Starting from Bachelier’s 1900 thesis on the theory of speculation, it has become standard practice

to model financial quantities such as stock prices and short-term interest rates using continuous-time

processes, in particular diffusion processes. Famous models include the geometric Brownian motion

model frequently used for stock prices and the Vasicek (1977) and Cox-Ingersoll-Ross (1985) (henceforth

CIR) models for short rates. These models share the feature that strong and unique solutions exist. That

strong solutions exist is an attractive property for financial modeling since we would want a financial

quantity at a future time to depend only on the shocks in the process specification up to that time.

Another popular model that nests these models as special cases is the constant elasticity of variance

(CEV) model in which the diffusion coefficient is a power law function of the state variable with any non-

negative exponent. The CEV process has been used extensively by researchers to model different financial

quantities. For example, Cox (1975, 1996) and Cox and Ross (1976) use the CEV process to model stock

prices as an alternative to geometric Brownian motion. Beckers (1980), Emanuel and MacBeth (1982),

Schroder (1989), among others, have also used the CEV process to model stock prices. Chacko and

Viceira (2003), Jones (2003a), and Aı̈t-Shahalia and Kimmel (2007), among others, study stochastic

volatility models in which the stock price volatility follows a CEV process. Chan, Karolyi, Longstaff

and Sanders (1992), among others, study CEV models for short rates. Andersen and Andreasen (2000),

among others, considers forward LIBOR market models with a CEV volatility.

However, the CEV process has a variety of drawbacks, including: (i) with linear mean-reverting drift

and an exponent between 1 and 3/2, the second and higher-order moments of the invariant distribution

are infinite; (ii) consistent with this, simulated sample paths from the process take on extremely large

values with non-trivial probabilities; and (iii) with this process for either the underlying stock price

or stochastic volatility, the martingale approach for option pricing can fail. These drawbacks will be

discussed in more detail in the next section.

To overcome the first two drawbacks, Aı̈t-Sahalia (1996a) proposes a flexible specification in which the

drift is a non-linear function of the state variable. The nonlinear drift helps produce global stationarity

of the process if the exponent of the power law diffusion is greater than 1. On the other hand, Conley,

Hansen, Luttmer and Scheinkman (1997) point out that if the existence of a stationary density is what one

wants in the model specification, then a mean-reverting drift is not necessary. In fact, when interest rates

are high, the increased volatility of the diffusion process could be a mechanism to induce stationarity.

Conley et al. call this phenomenon “volatility-induced stationarity.” Also, by using various methods,

Chapman and Pearson (2000), Jones (2003b), and Li, Pearson and Poteshman (2004) all present evidence

that the nonlinearity in the drift function might be spurious for the short-rate data.

Instead of modifying the linear drift as in Aı̈t-Sahalia (1996a), this paper takes a new unified approach

by proposing a damped diffusion framework. The idea is to damp the drift function and/or the diffusion
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function of a diffusion process so that the damped diffusion process is better behaved. As we will see,

the choice of damping functions is quite flexible. For example, in the case of short-rate modeling, we can

keep the linear drift while damping the diffusion function so that it approaches a more sensible model

as the interest rate goes to infinity. Another nice feature of this framework is that the solution to any

model in this framework is strong unique with modest conditions on the damping functions.

The damping idea can be applied to a broad class of financial models, for example, models of stock

prices, the term structure of interest rates, forward rates, and stochastic volatility. In the case of derivative

pricing, one important application of the damped diffusion framework is to preserve the usual martingale

pricing approach. Through concrete examples, we show that damping either the drift or the diffusion

function can help establish equivalence of measure changes and break many types of asset price bubbles,

such as stock future bubbles, bond price bubbles and option price bubbles. Furthermore, in two cases

where the martingale pricing approach fails and the asset valuation partial differential equation (PDE) has

infinitely many solutions, introducing successively weaker damping allows us to rule out certain solutions

if we require the solution be a limit of well-behaved martingale prices. In the case of CIR short-rate

process and linear premium function ψ0 + ψ1r, while Heston, Loewenstein and Willard (2007) show that

Cox, Ingersoll and Ross’s (1985) conjecture that a nonzero ψ0 always leads to arbitrage is in general not

true, our result shows that in some weaker sense, any positive ψ0 can be allowed.

In contrast to the Vasicek and CIR models, models in the damped diffusion framework usually do not

have explicit transition densities. Fortunately, this shortcoming is partially overcome by Aı̈t-Sahalia’s

(1999, 2002) series expansion method. We take a closer look at this approximation and point out some

nice properties of the expansion coefficients in this method, including the symmetry, differentiability and

invariance properties. In Appendix B, we provide the expansion coefficients for the log-densities of many

frequently used processes in financial modeling. It should be very helpful to researchers who need to

perform maximum likelihood estimation since these processes are frequently used to model short rates,

stock prices, and many other financial quantities. We then demonstrate that the damped diffusion model

we proposed can be easily estimated using Aı̈t-Sahalia’s series approximation method. However, through

a Monte Carlo experiment, we show that with finite time-series length, maximum likelihood estimation

often fails to detect the damped diffusion function while fabricates nonlinear drift function.

The paper is organized as follows. Section I describes some drawbacks of the CEV process in modeling

financial quantities and introduces the damped diffusion framework as a way to overcome those drawbacks.

In Section II, we show through several examples that by damping either the drift or diffusion function, we

can preserve the martingale pricing approach in asset pricing and break many types of asset price bubbles.

Section III points out some nice properties in Aı̈t-Sahalia’s approximation method. This is followed by a

maximum likelihood estimation of common short-rate models and a Monte-Carlo experiment of the finite

sample bias of the nonlinear drift model and the damped diffusion model. Section IV concludes.
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I. The CEV Process and the Damped Diffusion Framework

A. Drawbacks of the CEV process

The CEV process dXt = µ(Xt)dt+σXρ
t dWt with µ(x) = κ(m−x) is quite popular in financial modeling

Despite its popularity, the CEV process has some drawbacks. We now discuss those in some detail.

First, the CEV model does not necessarily have the same mean-reverting behavior as the CIR model.

For the special case µ(x) = κx with κ > 0, Emanuel and MacBeth (1982) (p.536) shows that the mean

of Xt does not grow exponentially as expected.1 This undermines the very attractiveness of using a linear

mean-reverting drift.

Another issue is that if 1 < ρ ≤ 1.5, the steady-state variance is infinite. In fact, in the steady state,

EXν
t is infinite for any ν ≥ 2ρ−1. Different authors have obtained values of ρ larger than 1 using different

approaches, including nonparametric estimation, generalized method of moments and Bayesian analysis.

Jones (2003a) uses the CEV process to model stochastic volatility and finds an exponent of 1.33. The

infinite variance introduces some difficulties in econometric estimation. For example, the usual generalized

method of moments estimation requires the moments to exist in the first place to perform the estimation.

Also, much of the asymptotic analysis in econometrics requires that the Fisher information matrix be

well-defined in order to guarantee convergence.

The unusually large unconditional probability for the interest rate to be at a very high level translates

to large probabilities for sample paths to reach very high levels during a finite period. To examine this,

we do a Monte Carlo study of the maximum of sample paths. We use the Euler scheme with time step

1/3000 (roughly corresponding to every two hours) to simulate 200,000 sample paths of length 20 years

starting at X0 = 7.5%. The parameters used are those from Table I. That is, κ = 0.0886, m = 0.0842,

σ = 0.7792 and ρ = 1.4812. Out of these sample paths, 2.90% reach a maximum higher than 50%,

0.82% reach a maximum higher than 100%, and 0.27% reach a maximum higher than 200%. In fact,

there are 14 paths that have a maximum higher than 5000%! Durham (2003) considers the CEV1

model dX(t) = αdt + β1X(t)β2dW (t), and shows that adding additional flexibility to the drift function

beyond a constant term provides negligible benefit (in terms of the value of the likelihood function). Not

surprisingly, the CEV1 model is more ill-behaved than the mean-reverting CEV model. In fact, with his

estimates, there are now 103 paths that have a maximum higher than 5000%.2

Another severe drawback of the CEV model is that if we use the CEV process for the underlying

stock price, there can exist multiple solutions for the call option price when the exponent is greater than

one. This leads to the possibility of arbitrage and the breakdown of the martingale pricing approach.

1Interestingly, they also discusses an “immeasurable” modification of tail method very similar to the damped diffusion
idea in this paper to overcome the explosion problem. See also Davydov and Linetsky (2001).

2Using other higher-order schemes as in discussed in Kloeden and Platen (1992) does not change the quantitative results
at all.
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As shown in Cox and Hobson (2005) and Heston, Loewenstein and Willard (2007), when this happens,

many standard results can fail. For example, put-call parity can be violated, option prices are no longer

convex in the strike price, call prices may not approach zero when strikes approach infinity, etc. Cox

and Hobson (2005) and Heston, Loewenstein and Willard (2007) interpret the breakdown of martingale

pricing as bubbles in the financial markets. Similar complications can also occur when one uses the CEV

process for the volatility process in a stochastic volatility model, as discussed in Sin (1998) and Lewis

(Chapter 9, 2000). In the words of Heston, Loewenstein and Willard (2007), “(t)hese counterfactual

implications for option values provide a persuasive rationale for specifying models without bubbles in

many applications.”

B. The Damped diffusion framework

The idea of the damped diffusion framework is to modify the drift and/or the diffusion function of a

continuous-time diffusion process with a damping function so that the modified process is more appropri-

ate than the original process. In this section, we will only consider modifying the diffusion function since

we are working on a linear-drift CEV process. Damping the diffusion function is in some ways similar

to Aı̈t-Sahalia’s (1996a) nonlinear drift approach to regularizing the CEV short-rate process. However,

the drift and diffusion in the nonlinear model do not satisfy the usual linear growth and Lipschitz con-

ditions. Also, there is no convincing evidence that the short rate in actual data has a nonlinear drift.

As Durham (2003) and others have argued, the diffusion rather than the drift is the critical component.

On the other hand, a simple mean-reverting linear drift is more appealing than a constant drift. Thus

we keep the linear drift but apply a damping function to the diffusion function somewhere above the

maximal observed level of the interest rate path. The philosophy of using a damped diffusion function is

that from the actual sample path only, it is very hard to infer precisely what the true diffusion function

is at interest rate levels much higher than the realized maximum.3

The most important application of the damped diffusion framework is to rule out asset price bubbles

arising from the failure of martingale pricing approach, as discussed in detail in Heston, Loewenstein,

and Willard (2007) and others. We devote the entire Section II to demonstrate this claim. The reason is

that damping functions can help to make the solution of a PDE unique and to make a local martingale a

genuine martingale by satisfying the Novikov condition. This is a very strong economic rationale for the

damped diffusion framework as Proposition 2.1 of Heston, Loewenstein, and Willard (2007) shows that

3Another approach to regularizing the CEV process is to introduce two reflecting boundaries at two regular points of
the process. However, this approach requires careful handling of the boundary conditions because those boundaries can be
reached with positive probabilities. In the damped diffusion framework, positive infinity is a natural boundary and we can
handle it just as we normally do. Also, there is no easy extension of Aı̈t-Sahalia’s series approximation for the transition
density in the reflecting boundary approach. Finally, Goldstein and Keirstead (1997) show that while it is sometimes
convenient to put reflecting boundaries on the spot rate process, reflecting boundaries can not be put on the forward rate
dynamics without generating arbitrage opportunities.
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having equivalent martingale measures is equivalent to the nonexistence of bond and stock price bubbles.

The damped diffusion framework also has another more explicit economic rationale. As a thought

experiment, suppose that the interest level becomes extraordinarily high. In this case the Federal Reserve

Board has two ways to help it go down. One possibility would be to make people to believe that the

(expected) future interest level will decline quickly. This translates roughly to the nonlinear drift function.

Another possibility, which might be operationally easier, is to limit very short-time fluctuations. For

example, the Federal Reserve might not allow the ratio of interest rate volatility to the interest rate level

to become unbounded (which happens in the CEV process). This roughly translates to a damped diffusion

function, since within a short time changes in the interest rate level are dominated by the diffusion term.

The power of the damping idea can be clearly seen in the following proposition. It says that for

any time-homogeneous univariate diffusion process, we can perform a “minimal” modification on its drift

and diffusion functions so that the new process has a strong unique solution and does not explode near

boundaries. In other words, as far as only regularizing a process is concerned, any diffusion process with

smooth drift and diffusion functions can be regularized by the damping idea.

Proposition 1 Let dXt = f(Xt)dt + g(Xt)dWt be a diffusion process defined on domain (a, b) with

smooth drift and diffusion functions. Here either a or b could be infinite. For any A > a, B < b, and

ε > 0, there exist smooth functions f̃ and g̃ which are small modifications of f and g in the sense that
∫ B

A

|f(u)− f̃(u)|+ |g(u)− g̃(u)| du < ε, (1)

and the stochastic differential equation dX̃t = f̃(X̃t)dt + g̃(X̃t) dWt has a strong unique solution on

(possibly slightly smaller) domain (ã, b̃). Furthermore, X̃t does not explode to either ã or b̃.

If the original drift and diffusion functions are nonzero except on a few discrete points, then Df ≡ f̃/f

and Dg ≡ g̃/g are well-defined damping functions. Proof of the above proposition is in Appendix A and

contains a construction of the new functions f̃ and g̃ based on mollification. However, in real applications

where the explicit forms of f and g are most likely known, the search for the damping function might be

much easier, as the following important special case shows. We will use this damped diffusion process to

estimate the Federal fund rate process in Section III. Specifically, let

dXt = κ(m−Xt)dt + σ(Xt)dWt, σ(x) = σ1x
1/2D1(x) + σ2x

ρD2(x), (2)

where ρ ≥ 1, σi ≥ 0, and the Di(x) are two continuously differentiable damping functions.4 Proposition 2

shows that this model is very well behaved with suitable Di(x). Proof is in Appendix A.5

4There is not much benefit from considering a model in which the first exponent is between 1/2 and 1 because for
the usual values of x between 0 and 0.25, the function xν with 1/2 < ν < 1 can be expressed almost exactly as a linear
combination of x1/2 and xρ with some ρ ≥ 1.

5The same damping idea can also be applied to σ(x) =
√

β0 + β1x + β2xβ3 proposed by Aı̈t-Sahalia (1996b), with
essentially the same proof.
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Proposition 2 Assume that xρD2(x) ≥ 0 is globally Lipschitz and there exists constant M > 0 such

that 0 ≤ D1(x) ≤ M and xD′
1(x) ≤ M for 0 ≤ x < ∞. Then for the damped superimposed CEV process

in equation (2) with exponent ρ ≥ 1, we have the following statements:

1. the solution, if it exists, is strong unique in the sense that if X
(1)
t and X

(2)
t are two solutions, then

they are indistinguishable, i.e., P [ X(1)
t = X

(2)
t for ∀t ∈ [0,∞) ] = 1.

Further assuming that the diffusion function σ(x) satisfies the linear growth condition, then the unique

strong solution exists, and

2. EXt = m + (x0 −m)e−κt starting from any x0 > 0 and Xn
t is integrable for any positive integer n.

3. The process is nonexplosive: 1) there exists C > 0 depending only on model parameters, such that

lim supt→∞ log Xt/t ≤ C, a. s.; 2) let ξ = inf{t > 0 : Xt = ∞}, then P [ξ = ∞] = 1.

Notice Proposition 2 does not require the damping functions be monotone decreasing. As an example,

consider D1 = 0 and D2 = exp(−αxβ) with α > 0 and β > 1. In this process the diffusion approaches 0

as x →∞. As another example, a diffusion σ1x
1/2 + σ2x

ρ exp(−αxβ) with ρ ≥ 1 will approach the CIR

model as x →∞. The third example that might be of interest is a damped diffusion function σxρ/(1+αxρ)

with α > 0 which approaches a constant value, thus mimicking the behavior of the Vasicek model when

the interest rate is high. All the above examples satisfy the conditions in the above proposition.

To understand the effect of damping, we consider a particular model with D1(x) = D2(x) = e−8x4

and ρ = 3/2. The damping function e−8x4
is very close to one when 0 ≤ x < 0.2 and very close to 0

when x > 0.8. In the middle, it gradually decreases from a value close to one to close to zero. We perform

the same Monte Carlo study that was carried out for the CEV process. The parameters used are those

estimated from maximum likelihood in Table I. Out of 200,000 sample paths, 6.99% reach a maximum

higher than 30% before 20 years, and 2.04% reach a maximum higher than 50%. There is no path that

has a maximum greater than 80%. We see that damping has the effect of regularizing the CEV process.

The idea of damping could be applied in other cases. For example, we could introduce a damping

function when performing a Monte Carlo study by simulating sample paths from a certain diffusion

process. Introducing a damping function can prevent extreme values to be reached just by pure chance

and thus acting as a safeguard mechanism. The damped diffusion framework should also be useful in

stochastic volatility models in order to eliminate wild behavior similar to that discussed for short-rate

CEV models. If one specifies a CEV process for the volatility process in either the real world or the

risk-neutral world, and if the estimated exponent ρ is larger than one, there might be a need to regularize

the volatility process. Thus, it might be useful to apply a damping function to the diffusion function of

the variance or volatility process. The damped diffusion framework might also be useful with multi-factor

term structure models if we use the CEV process for some of the factors.
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II. Asset Price Bubbles and the Damped Diffusion Framework

The martingale pricing approach is one of the cornerstones of modern asset pricing theory. However,

sometimes the martingale pricing approach can fail if one models financial quantities as diffusion processes.

The damped diffusion framework introduced in the last section is very useful to preserve the martingale

pricing approach and rule out asset price bubbles. We consider two different types of failures of martingale

pricing approaches, both of them arising from process explosions when performing a measure change.

A. Explosion from measure Q to QS

One risk-neutral stock price process people often consider as an alternative to the usual geometric Brow-

nian motion process is the following CEV process:

dSt = rStdt + σSα
t dWQ

t , (3)

where r and σ are constants. We will focus on the case α > 1. The above SDE has a strong unique

solution and does not explode to infinity. In addition, letting the current time be 0, the transition density

for stock price τ -time ahead is as follows (Emanuel and MacBeth (1982):

p(τ, Sτ |S0) = 2(α− 1)k
1

2(1−α) (x0x
1−4α
τ )

1
4−4α e−x0−xτ · I 1

2(α−1)
(2
√

x0xτ ), (4)

where

k =
r

σ2(1− α)(e2r(1−α)τ − 1)
, x0 = kS

2(1−α)
0 e2r(1−α)τ , xτ = kS2(1−α)

τ , (5)

and Iq(·) is the modified Bessel function of the first kind with order q.

An immediate shortcoming of this model is that although locally the rate of return is always r, the

forward stock price, defined as the expected future stock price under the above transition density, is not

F 1 ≡ S0e
rτ . Instead, we have

F 2 ≡
∫ ∞

0

p(τ, Sτ |S0)SτdSτ = F 1

(
1− Γ(v, x0)

Γ(v, 0)

)
, (6)

where Γ(v, u) =
∫∞

u
e−zzv−1dz is the incomplete gamma function. This was realized by Emanuel and

MacBeth (1982, p. 536), but they did not obtain the above explicit expression. A proof of the above

equation is in Appendix A. That F 1 and F 2 are different shows that
∫ t

0
σSα

u dWQ
u is not a true martingale,

but rather a strict local martingale. Related with this problem, the martingale pricing approach using the

stock price deflated measure QS breaks down. Fix τ > 0. Let us examine the asset-or-nothing component

of the call option price e−rτEQ[Sτ · 1{Sτ≥K}]. Since the measure QS is defined by dQS

dQ
∣∣
T
≡ e−rT ST

S0
, by

Girsanov theorem, the QS-Brownian motion is given by dWQS

t = dWQ
t − σSα−1

t dt. This gives the QS-
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dynamics of the stock price as dSt = (rSt + σS2α−1
t )dt + σSα

t dWQS

t . However, if α > 1, the measures Q

and QS are not equivalent,6 so it is no longer true that e−rτEQ[Sτ · 1{Sτ≥K}] = S0EQ
S

[1{Sτ≥K}].

There are many awkward consequences of the above results. For example, since the forward price is

no longer S0e
rτ , it is difficult to interpret r globally. Most importantly, Heston, Loewenstein and Willard

(2007) show that there will be multiple solutions to the valuation PDE of the call option price G (page

366).7 They give two explicit solutions G1 and G2 and show that both solutions have weird behavior.

We refer the reader to Heston, Loewenstein and Willard (2007) for more details. For our purpose, it is

important to notice that limS0→∞G1/S0 = 1 while limS0→∞G2/S0 = 0, and limK↑∞G2(K) = 0 while

limK↑∞G1(K) = S0EQ
S[

1{Sτ=∞}
]

> 0.8

In this paper, we are more interested in possible ways to fix these problems. It turns out that the

damped diffusion framework can be used to preserve the forward price (and thus the usual put-call

parity) and also preserve the martingale option pricing. The following proposition shows the measure

change from Q to QS is equivalent with suitably chosen damping functions. Furthermore, there exists a

well-defined call option price as the damping gets weaker and weaker.

Proposition 3 Assume that the stock price under the risk-neutral measure Q follows the damped diffusion

process dS = rSdt + σSαDλ(S)dWQ, where Dλ(S) is a smooth damping function for any fixed λ > 0.

Assume further that gλ(S) ≡ σSαDλ(S) is globally Lipschitz in S, and there exists M > 0 such that

gλ(S) < MS for all S > 0. Then, the following statements hold:

1. The stock price process under Q has a strong unique solution and is nonexplosive.

2. For any λ > 0, the time τ forward stock price is S0e
rτ and the put-call parity holds.

3. Let QS be a new measure induced by using the stock price as the numeraire. Then the measure change

from Q to QS is equivalent for any λ > 0. In particular, the stock price process under QS has a strong

unique solution and is nonexplosive.

4. Fix λ > 0 and a strike K. Let Gλ be the call option price with damping parameter λ. Then Gλ is the

unique solution to the valuation PDE with at most polynomial growth in S. Similarly for the put option

price Pλ.

5. Assume further that gλ(S) is convex in S for any λ > 0 and for fixed S > 0, Dλ(S) is decreasing in λ.

For fixed t, S and K, Gλ increases to a fixed limit G̃ as λ ↓ 0+. Similarly Pλ increases to a limit P̃ . In

addition, (S −Ke−rτ )+ ≤ G̃ ≤ S, ∂G̃/∂S ≥ 0, limS→∞ G̃/S = 1 and G̃− P̃ = S −Ke−rτ .

6This follows from the fact that Yt ≡ S2−2α
t follows a CIR process dYt = kY (θY − Yt)dt − σY

√
YtdWQS

t with kY =
(2α− 2)r, θY = (2α− 3)σ2/2r and σY = (2α− 2)σ, which explodes to 0 by Feller’s condition.

7Notice that equation (7) in Heston, Loewenstein and Willard (2007) contains two minor typos in their expression
(xz1−α)1/4−α and does not agree with Emanuel and MacBeth (1982). The parameter u in Heston, Loewenstein and
Willard (2007) should be equal to x0 instead of 2x0 as it is now. Also, equation (10) in Heston, Loewenstein and Willard
(2007) has an extraneous term rp in it.

8In an earlier version of this paper, we show that even if we restrict the solution to satisfy limK→∞G = 0, it is still not
unique. However, the solution becomes unique if we fix its tail behavior. Statements and proofs of the above claims are
available upon request.
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The above proposition is interesting. It shows that one can use the CEV model without damping

as long as one keeps in mind that the CEV model should be interpreted as a limit of nicely-behaved

martingale pricing models. To reflect this implicit limit procedure, the forward price should be taken

as F 1 instead of F 2. In addition, out of the linear combinations of G1 and G2, the only possible solution

which can serve as a limit of martingale prices is G1 since otherwise we would have limS→∞ G̃/S < 1.

This limiting procedure also solves the anomaly when K = ∞. For K = ∞, instead of taking the the

limit of G1(K) as K →∞, we should take the limit of Gλ(∞) as λ → 0+, which is 0. The order of taking

limits is important here.

One question remains on whether we can actually find a damping function Dλ(S) so that gλ(S) has

the stated properties because otherwise the above proposition would be vacuous.9 The answer is yes. One

can easily show that the following particular damping function will satisfy the conditions in the above

proposition (including the one in statement 5):

Dλ ≡
( 1

1 + λS(α−1)/β

)β

, (7)

where the parameter β is any fixed constant such that β > α − 1. The parameter λ > 0 controls the

strength of damping. As λ → 0+, the damping gets weaker and weaker. Furthermore, as S → +∞,

the diffusion function of the damped diffusion model approaches that of a geometric Brownian motion

model. We want to emphasize that it is not necessary to choose the above particular parametric form of

the damping function for the following proposition to work, although this particular choice does allow us

to prove the proposition through explicit computation.

While the damping idea proposed here is largely on theoretical grounds, in practice one often implicitly

incorporates a damping function. For example, in solving PDE’s numerically through finite difference

methods, one often truncates the state space so that one only discretizes a bounded region, based on the

belief that the truncation will introduce negligible effect. The truncation can be thought of as an extreme

form of damping the diffusion function. Our preliminary analysis using extreme parameters shows that

the numerical solution one gets for the CEV model often approximates G1 instead of G2.

B. Explosion from measure P to Q

B.1. Specifying risk-preference directly

The failure of martingale pricing approach can also happen during a measure change from the real world

measure P to the risk-neutral measure Q. This comes about because under the risk-neutral measure,

the drift of the real-world process will be modified after taking into account investors’ risk preferences.

9The requirement that gλ(S) is convex is important for statement 5. While the usual comparison theorem compares
diffusion processes with different drift functions, we need to compare diffusion processes with different diffusion functions.
The comparison theorem in Hajek (1985) requires convexity on the diffusion functions. However, if one is only interested
in exclude asset price bubbles with a fixed damping function, then convexity is not needed.
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The following example in Lewis (2000) illustrates this point. Suppose the stock price process follows a

stochastic volatility model dSt = rStdt +
√

VtStdBPt with the real world variance process given by

dVt = b(Vt)dt + a(Vt)dW P
t , (8)

where W P is a Brownian motion under the real world measure P. We assume that the real world

variance process is well-behaved and in particular, nonexplosive. Lewis (2000) shows that under usual

economic assumptions (for details, see Lewis, Chapter 7) who is facing a pure investment problem (no

consumption) with a distant horizon, then under the risk-neutral measure Q, the variance process becomes

dVt = b̃(Vt)dt + a(Vt)dWQ
t , where the drift function is changed to b̃(V ) = b(V ) − (1 − γ)%

√
V a(V ) +

a2(V )u′(V )/u(V ), and where % is the correlation between the two Brownian motions driving the stock

and variance processes, γ is the parameter in the power utility U(W ) = W γ/γ, and u(V ) is the first

eigenfunction of the operator L defined as Lu ≡ −a2(V )u′′/2 − b(V )u′ − γ(1 − γ)V u/2. For the CIR

process, Lewis shows that the effect of risk adjustment is to change the mean reverting parameter and long

run mean parameter while keeping their product constant (p.234). With suitable risk parameter values

so that the Feller condition for the new process is satisfied, the new process is nonexplosive. However,

Lewis shows that for many well-behaved real world variance processes, the corresponding risk-neutral

variance process will become explosive. In these cases, the usual martingale pricing approach fails.

The damped diffusion framework can be applied immediately to preserve the martingale pricing

formula, thus avoiding the calculation of the correction term due to explosion. For example, we could

introduce a damping function for the real world variance process so that the asymptotic behavior of a(V )

as V → 0 or ∞ is that of the CIR model. Then the risk adjustment on the real-world process should

approach the adjustment for the CIR process when V → 0 or ∞, which is well-behaved. This implies

that there will be no volatility explosion in the risk-neutral variance process.

If we are concerned that V might explode to infinity under Q, another approach is to damp a(V )

using an exponential damping function. If the large V behavior of u′(V )/u(V ) is mild relative to the

damping, then the large V behavior of b̃ is similar to that of b(V ), thus ensuring the risk-neutral process is

nonexplosive too. Lewis worked out u′(V )/u(V ) for the operator L of many processes, including geometric

Brownian motion, the GARCH diffusion, the CIR process, and the inverse Feller process. For all these

processes, the large V behavior of u′(V )/u(V ) is polynomial growth at most so an exponential damping

will work. For the damped CEV variance process where b(V ) = κ(m− V ) and a(V ) = ξV ρ exp(−αV β),

due to the damping, in the large V limit the eigenvalue problem Lu = ζu is roughly κ(m − V )u′ =

(ζ + γ(1 − γ)V/2)u if we ignore the −a2(V )u′′/2 term. Solving this equation gives a large V behavior

of u(V ) ∼ V η1eη2V log V for some constants η1 and η2, implying slower than polynomial growth for

u′(V )/u(V ). If the damping is strong in that 2β À η2, the large V behavior of u(V ) reinforces our

ansatz of throwing away the u′′ term in the analysis. Thus an exponential damping is able to prevent the
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corresponding risk-neutral processes from being explosive for all the above real world processes. Similar

methods can be used to prevent volatility explosion to 0.

B.2. Specifying the market price of risk function directly

Another more common way to connect the measure P and Q is through specifying the market price of risk

function Υ, which is directly related to the exponent process L of the Radon-Nikodym derivative Λ. That

is, ΛT ≡ dQ/dP|T = exp(LT −〈L,L〉T /2), where L is defined by dL = −ΥdW P. This puts restrictions on

the form Υ can take in order to make P and Q equivalent. The following example is discussed in Heston,

Loewenstein and Willard (2007).

Let the interest rate process under P be

dr = α(β − r)dt + σ
√

rdW P, (9)

where 2αβ > σ2 so that both boundaries are unattainable. Now if we specify the market price of risk

as Υ(r) = Ψ(r)/(σ
√

r), where the “risk premium” function Ψ(r) = ψ0 + ψ1r is linear and ψ0, ψ1 > 0,

then under Q, the interest rate process becomes dr = α̂(β̂ − r)dt + σ
√

rdWQ, where α̂ = α + ψ1,

β̂ = (αβ − ψ0)/(α + ψ1) and dWQ = dW P + Υdt.

However, if ψ0 and ψ1 are such that 2α̂β̂ < σ2, the interest rate process under Q explodes to 0. This

shows that P and Q fail to be equivalent. Thus the usual martingale pricing approach breaks down.

Indeed, Example 1.1 in Heston, Loewenstein and Willard (2007) gives two solutions to the valuation

partial differential equation of a bond maturing at time T below:

σ2

2
r
∂2P

∂r2
+ α̂(β̂ − r)

∂P

∂r
+

∂P

∂t
− rP = 0, (10)

with boundary conditions P (+∞, t) = 0 and P (r, T ) = 1. To conform to our notation, we call the

solutions P 1 and P 2. Heston, Loewenstein and Willard (2007) interpret P 1−P 2 as a bond price bubble.

In fact, because the valuation PDE is linear, any linear combination (1 − µ)P 1 + µP 2 is also a solution

for any µ ∈ R. Besides this family of solutions, there are actually infinitely many other solutions of the

valuation PDE satisfying the boundary condition P (r, T ) = 1 and limr→∞ P (r, t) = 0. These solutions

are characterized by their boundary behaviors at r = 0. In addition, the solution P 2(r, t) above can

be thought of as the “smallest nonnegative solution” in that it stipulates P (0, t) = 0. This amounts to

stipulate that if the interest rate process ever hits zero, it will automatically jump to and stay in the

cemetery point r = +∞.10

Again, in this paper, we are interested in ways to solve the above problems. As discussed above

Theorem 1 of Cheridito, Filipovic and Kimmel (2007), the nonexistence of an equivalent martingale

10In an earlier version of this paper, we make the above discussions precise by proving that P 1 and P 2 become unique
solutions if we fix the boundary and terminal conditions. The exact statements and proofs are available upon request.

11



measure is closely related to the behavior of the market price of risk function. With an affine risk

premium Ψ(r), the market price of risk grows without bound at both lower and upper ends. Cheridito,

Filipovic and Kimmel (2007) point out that it is not necessarily a problem for the market price of risk

to grow without bound. The problem comes about when the market price of risk grows too quickly

for us to have the Novikov or similar conditions. When r → +∞, from the model of Cox, Ingersoll and

Ross (1985), we know that although the market price of risk grows like
√

r, it poses no problem. However,

when r → 0+, in which case the market price of risk blows up like 1/
√

r, it turns out that the Novikov

condition is no longer satisfied to guarantee the equivalence of the measure change from P to Q. Another

more mathematical way to see the above point is the following. From the definitions of α̂ and β̂, while a

positive ψ1 is harmless, a positive ψ0 might produce explosion if 2α̂β̂ < σ2 by Feller’s condition.

Knowing the source of the problem, it is immediately clear that the damping idea can be again used

to remedy this problem and preserve the martingale pricing approach. More specifically, we should damp

the term ψ0. The following proposition shows that with suitable damping, regardless of how weak it

is, the corresponding risk-neutral process is nonexplosive and there is a unique martingale bond price.

The result is true regardless of whether 2α̂β̂ > σ2 or not. Thus, there is no longer a bond price bubble.

Furthermore, as λ → 0+, these bond prices approach a unique limit P̃ . Proof is in Appendix A.

Proposition 4 Consider the real world interest rate process dr = α(β − r)dt + σ
√

rdW P which satisfies

2αβ > σ2. Consider the risk premium function Ψλ(r) = ψ0Dλ(r) + ψ1r, where ψ0, ψ1, λ > 0. We know

that under the risk-neutral measure Q, dr = (α(β−r)−Ψλ(r))dt+σ
√

rdWQ, where WQ is a Q-Brownian

motion. Assume that for fixed λ > 0, Dλ(r) > 0 and has a bounded derivative for any r ≥ 0. Assume also

that for fixed λ > 0, the speed measure vc(r) for the above risk-neutral process satisfies Feller’s explosion

test11 at 0: limr↓0+ vc(r) = +∞. Then, the following statements hold:

1. For any λ > 0, this process has a strong unique solution and is nonexplosive.

2. For any λ > 0, there is a unique price Pλ(r, T ) for a bond maturing at time T with time 0 interest

rate r. Pλ(r, T ) is decreasing in both r and T . The partial derivative ∂Pλ(r, T )/∂T is bounded above and

below with the bounds independent of λ.

3. Assume further that for any fixed r > 0, Dλ(r) increases monotonically to 1 as λ → 0+. Then, as

λ → 0+, Pλ(r, T ) increases to a unique limit P̃ (r, T ). P̃ (r, T ) is decreasing in both r and T with bounded

derivative ∂P̃ (r, T )/∂T .

Finally, a damping function satisfying all the assumptions above exists. In particular, it can be chosen

to be Dλ(r) = r/(r + λ).

Notice that with the choice of the damping function Dλ(r) = r/(r + λ), the market price of risk

11Readers unfamiliar with the speed measure and Feller’s test are referred to Karlin and Taylor (1981). Feller’s explosion
test is also used as one of the main techniques in the analysis of Heston, Loewenstein and Willard (2007).
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function Υ approaches 0 instead of infinity as r decreases to 0. The nice thing is that we can choose λ

to be any positive number, no matter how small it is. As λ → 0+, the damping gets weaker and weaker

and Ψλ approaches the prescription Ψ ≡ ψ0 +ψ1r in Cox, Ingersoll and Ross (1985) pointwise on (0,∞).

Thus, the proposition shows that although the specification Ψ(r) = ψ0 + ψ1r might induce infinitely

many solutions to the bond price PDE, the bond price P̃ is a limit of martingale bond prices where the

limit is such that the damping on the drift gets progressively weaker. In addition, the limit P̃ can not

equal (1 − µ)P 1 + µP 2 for any µ 6= 0 since otherwise P̃ will fail to be a decreasing function in r. Also,

while Heston, Loewenstein and Willard (2007) show that Cox, Ingersoll and Ross’s (1985) conjecture

that a nonzero ψ0 will always lead to arbitrage is not generally true, the above proposition points out

that in some weaker sense any positive value of ψ0 can be allowed. That is, for any positive ψ0, there

exists a solution to the PDE which is a limit of well-behaved martingale bond prices. This is important

as Cheridito, Filipovic and Kimmel (2007) show that ψ0 is empirically important and we need a broader

set of parameters in the market price of risk function.

III. Maximum Likelihood Estimation and Finite Sample Bias

A damped diffusion process usually does not have explicit transition densities. To estimate the parameters

in the damped diffusion framework using maximum likelihood, we need to approximate the transition

density. In this section, we show that it is straightforward to perform a maximum likelihood estimation

using Aı̈t-Sahalia’s series expansion method. However, we show that finite sample size tends to fabricate

nonlinear drift function while fail to detect the damped diffusion function even if the data are generated

from a damped diffusion model.

A. Maximum likelihood estimation

Consider the stochastic differential equation of interest: dXt = µ(Xt; θ)dt + σ(Xt; θ)dWt, where Wt is

a standard Brownian motion and the drift µ and diffusion σ2 are known continuous functions except

for an unknown parameter vector θ in a parameter space Θ ⊂ Rd. To perform a maximum likelihood

estimation, we need to know the transition density. Methods to obtain the transition density include

numerical solutions of PDE’s using finite difference techniques, analytical approximations, and Monte

Carlo methods. One particularly popular analytical approximation is the Euler approximation. In terms

of accuracy, the approximation method developed by Aı̈t-Sahalia (1999, 2002) is a significant improvement

over the Euler approximation. The idea is to first transform the process into one with a unit diffusion

via the transformation Yt =
∫ Xt du/σ(u; θ) and then approximates the transition density for Yt using

Hermite polynomials. Aı̈t-Sahalia (2008) shows that the same approximation can also be obtained by

considering the PDE’s the transition density satisfies.
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Bakshi, Ju, and Ou-Yang (2006) further solve the expansion coefficients explicitly to fourth order in

terms of explicit one-dimensional integrals. In an earlier version of this paper, we also obtained similar

result independently, but only to second order. The following proposition is based on Proposition 2

in their paper with several modifications. First, we consider the process Xt directly so a sometimes

cumbersome transformation is not needed. Second, we only consider a second-order approximation in ∆.

As shown in Aı̈t-Sahalia (2002), Jensen and Poulsen (2002), and others, a second-order approximation

is quite accurate for ∆ within one month, which is the case for most financial applications. Finally, we

work out the degenerate case x = x0 since equation (13) does not applies directly.

Proposition 5 Consider the process dXt = µ(Xt)dt + σ(Xt)dWt with σ(·) > 0 except possibly at the

boundaries. Define µ̂(x) ≡ µ(x)
σ(x) − 1

2σ′(x) and λ(x) ≡ − 1
2 (µ̂2(x) + µ̂′(x)σ(x)).

1. The approximate transition density p
(K)
X (∆, x|x0) for the process Xt to order K = 2 in ∆ is given by

p
(2)
X (∆, x|x0) = p

(0)
X (∆, x|x0)(1 + c1(x|x0)∆ + c2(x|x0)∆2/2), (11)

where

p
(0)
X (∆, x|x0) =

1√
2π∆

√
σ(x0)
σ3(x)

exp

(∫ x

x0

µ(u)
σ2(u)

du− 1
2∆

(∫ x

x0

1
σ(u)

du

)2
)

, (12)

and for x 6= x0,

c1(x|x0) =

∫ x

x0
λ(u)/σ(u)du∫ x

x0
1/σ(u)du

, c2(x|x0) = c1(x|x0)2 +
λ(x) + λ(x0)− 2c1(x|x0)(∫ x

x0
1/σ(u)du

)2 , (13)

and for x = x0, c1(x0|x0) = λ(x0) and c2(x0|x0) = λ(x0)2 + (σ(σλ′)′)(x0)/6.

2. The series approximation of log pX(∆, x|x0) to order K = 2 in ∆ is given by

log p
(2)
X (∆, x|x0) = log p

(0)
X (∆, x|x0) + C1(x|x0)∆ +

1
2
C2(x|x0)∆2, (14)

where C1(x|x0) = c1(x|x0) and C2(x|x0) = c2(x|x0)− c1(x|x0)2.

In Appendix B, we provide the approximations for the logarithms of the transition densities for six

models to second order in ∆ in the original variable by applying the proposition above. The models we

consider include the Vasicek, exponentiated Vasicek, CIR, inverse Feller models, the linear drift and CEV

diffusion model, and Aı̈t-Sahalia’s nonlinear model. These models are frequently used by researchers to

model financial quantities. For the first four models, closed-form transition densities exist and are also

given. The results in Appendix B should be useful to researchers who want to use these processes in

modeling financial quantities.

In the proposition below we point out some nice properties that the expansion coefficients enjoy. The

first statement, which we call the invariance property, can be used to derive the series approximation for
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the exponentiated Vasicek model whose log follows the Vasicek model and for the inverse Feller model

whose reciprocal follows the CIR model. The second statement says that the expansion coefficients are

symmetric. The third statement says that the expansion coefficients are infinitely differentiable given

nice drift and diffusion functions. Proof is in Appendix A.

Proposition 6 Let dXt = µ(Xt)dt + σ(Xt)dWt where σ(·) > 0 except possibly at the boundaries. Let

Zt = f(Xt) where f(·) is an infinitely differentiable function with f ′(·) > 0 except possibly at the bound-

aries. Let p
(0)
X and cX

i (x|x0) be the zeroth-order approximate density and i-th order expansion coefficients

in Aı̈t-Sahalia’s series approximation. Similarly for p
(0)
Z and cZ

i (z|z0). Then

1. For any regular points x and x0, and for any positive integer i,, we have

p
(0)
Z (∆, f(x)|f(x0)) =

p
(0)
X (∆, x|x0)

f ′(x)
, (15)

cZ
i (f(x)|f(x0)) = cX

i (x|x0). (16)

2. cX
i (x|x0) is symmetric in x and x0. That is, cX

i (x|x0) = cX
i (x0|x).

3. cX
i (x|x0) is infinitely differentiable in x provided that 1/σ(x) and λ(x) are infinitely differentiable in

a connected open set containing x. Similarly for x0.

The data set we use consists of monthly data on the effective Federal funds rate between July 1954

and June 2008. Thus, it is much longer than the one used in Aı̈t-Sahalia (1999) and Bali and Wu (2006).

We report the estimation results both for the period used in Aı̈t-Sahalia (1999) (from January 1963 to

December 1998) and for the whole period. Estimating both time periods allows us to compare the results

and gain additional insights. The source is the H-15 Federal Reserve Statistical Release (Selected Interest

Rate Series). As in Aı̈t-Sahalia (1999), we convert the original data to continuous compounding since

the rates are quoted using a 360 day-count convention. In Figure 1, we plot the time series of the Federal

funds rate. The sample mean over the whole period is 5.68% and the sample variance is 0.0011. For

comparison, the sample mean for the data in Aı̈t-Sahalia (1999) is 6.98% and the sample variance is

0.0010. The fact that our sample mean is smaller can be easily seen from Figure 1, which shows that the

Federal funds rates are considerably lower at the beginning and end of our sample period.

As in Aı̈t-Sahalia (1999), we estimate the parameters by maximizing the approximate log-likelihood

function

`(θ) ≡ 1
N

N∑

i=1

log pX(∆, Xi∆|X(i−1)∆; θ) (17)

over some parameter space Θ. Here, Xt denotes the interest rate level at time t, and ∆ = 1/12 since we

have monthly data. We estimate the six models in Appendix B as well as the damped diffusion model

introduced in this paper. For each model, we estimate the parameters from its true transition density,

the Euler approximation, and the second-order series approximation for log pX . Closed-form transition
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densities only exist for four of the models, namely, the Vasicek model, the exponentiated Vasicek model,

the CIR model, and the inverse Feller model. For the last three models, the true transition density is

computed numerically by solving the backward PDE.12 For the damped diffusion model, the expansion

coefficients C1 and C2 for log pX are not in closed-form so numerical integration is used.

The results are reported in Table I for the shorter period and Table II for the whole period. Notice that

in both tables, for the first four models for which explicit transition densities are available, the parameter

estimates obtained from the second-order approximation are almost identical to those obtained from the

true densities.13 This confirms that the second-order series approximation developed by Aı̈t-Sahalia is

extremely accurate. On the other hand the Euler approximation is not very accurate, especially when the

drift is nonlinear, as expected. In general, by looking at the asymptotic standard errors one can see that

the diffusion function is estimated more precisely than the drift function. The CEV and nonlinear drift

models have similar diffusion functions and give very similar log-likelihood values, although their drift

functions are quite different from each other. The damped diffusion model has a more flexible diffusion

function, and it seems to be the case that it is more profitable to specify the diffusion function more

precisely than the drift function. This is true for both of the two sample periods, but more so when the

whole sample period is used. While it’s difficult to compare the performance of nonnested models, the

damped diffusion model seems to perform well, at least from the Akaike’s information criterion. The

nonlinear terms in Aı̈t-Sahalia’s nonlinear drift model are both insignificant, as can also be seen from

comparing Akaike’s information criterion of the CEV and nonlinear drift models. For both of tables, it

seems important to allow for more flexibility for the diffusion functions. The first three models, for which

the diffusion functions have more restrictive parametric forms, seem to not perform as well.

Comparing Table I with Table II gives some additional information. First, all the estimates for m in

12We comment here a little bit on the PDE approach, which could be tricky for someone less experienced. First, the
terminal boundary condition is a Dirac delta function which has to be approximated. Jensen and Poulsen (2002) solve this
problem by approximating the transition density for the last time step with an Euler approximation. We find that the
following approximation works better. Specifically, let y be a fixed future interest rate which lies within two adjacent spatial
grid points ym−1 and ym where ym > ym−1. Then, the Dirac delta function δ(x− y) is approximated as two columns:

δ(x− y) =
1

ym − ym−1

(
ym − y

ym − ym−1
1x=ym−1 +

y − ym−1

ym − ym−1
1x=ym

)
. (18)

Like the Euler approximation, this choice of approximation keeps the property that the Dirac delta function should integrate
to 1. But it is usually more focused than the Euler approximation and thus mimicks the Dirac delta function better. Second,
since near the terminal boundary the spatial derivative could be extremely large near the peak of the Dirac delta function,
we subdivide the last time step into 10 subintervals and use a fully implicit finite difference scheme to propagate the solution.
The rest of the time steps uses the Crank-Nicholson scheme. Similar method is used in Li, Pearson and Poteshman (2004).
With these improvements, the accuracy of our PDE approach seems to be in the order of 10−3 when tested on models with
explicit transition densities, one order of magnitude more accurate than reported in Jensen and Poulsen (2002). However,
it is still a little bit less accurate than the second-order series approximation (done for log pX). Also, searching the optimal
parameters for each model with the PDE approach can take well over one day. This highlights the usefulness of Aı̈t-Sahalia’s
series approximation method.

13In Aı̈t-Sahalia (1999), the parameter estimates from the series approximation sometimes are not very close to those
obtained from the true densities. This is because that paper used a second-order approximation for the transition densities,
rather than for the log of the transition densities. The latter approach, which we use here, is also used in Aı̈t-Sahalia (2002).
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the drift function for the longer sample period are smaller than their counterparts for the shorter sample

period. This is to be expected since the value of m is closely related to the long-run mean of the processes.

Second, the results for the strength of mean-reverting parameter κ (excluding the nonlinear drift model)

are mixed. For some of the models, κ becomes larger when we use the longer sample, while for other

models, κ becomes smaller. Since the CEV model and the damped diffusion model seem to perform

better than other models, the strength of mean-reverting probably increases when we use longer sample.

However, we must caution ourselves that the drift functions as a rule are not estimated as accurately as

the diffusion functions. Last, but the most important difference, is that the diffusion functions seem to

change behavior significantly when we use the longer sample period. This can be most easily seen from

the CEV model. The estimate of ρ in Table I is about 1.48, while ρ is estimated to be about 0.62 in

Table II. This finding is consistent with previous research, which suggests that the large estimate of ρ

probably comes from the unusual period in the early 1980’s. Related with this change of magnitude for

ρ, the relative performance of the CIR model is much improved for the whole sample period, while that

of the inverse Feller model deteriorates dramatically.

B. Finite sample bias – A Monte-Carlo experiment

We now show through a Monte-Carlo experiment that with finite sample sizes, the estimation method

one uses often fails to pick up the damping function even if the actual data are generated from a damped

diffusion process. Furthermore, often one will find a significant nonlinear drift function even if the actual

data are generated from a linear drift process. This has the implication that it is difficult to detect

damped diffusions empirically with short time series.

Specifically, we simulate 500 sample paths from a damped CEV process with µ(x) = κ(m − x) and

σ(x) = σxρ exp(−αxβ). The parameters are taken from the CEV model in Table I, that is, κ = 0.0886,

m = 0.0842, σ = 0.7792 and ρ = 1.4812. We set α = 8 and β = 4 for the damping function. We use an

Euler scheme with time interval about one hour to generate monthly time series with length 36 years,

the same data structure as the federal funds rate we used. We then use the series approximation method

to estimate the six parameters for those 500 sample paths. The median of the parameter estimates for α

is 7.2324 while the median for β is 3.4973. However, out of the 500 sample paths and at 90% confidence

level, only 17 paths report a significantly nonzero α and only 13 paths report a significantly nonzero β.

The reason for this is that the damping function is only effective when interest rate reaches relatively

high level. Thus if the maximum of a sample path happens to be small, the damping function is not

revealed by the maximum likelihood estimation.

However, while the estimation fails to detect the damped diffusion function for the majority of the

sample paths, it often mistakes the damped diffusion function for a nonlinear drift function. Specifically,

we take the same 500 sample paths and estimate them using Aı̈t-Sahalia’s nonlinear drift model with
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CEV diffusion function and no damping. At 90% confidence level, 67 paths report a significant α2 while

68 paths report a significant α−1.

The above results show that finite sample size tends to fabricate nonlinear drift function while fail to

detect the damped diffusion function. To make this clearer, we simulate 500 new sample paths using the

same parameters. However, now the length of the sample paths is 360 years, 10 times longer than before.

We again estimate them using the damped CEV model. Now 136 sample paths report a significantly

nonzero α and 189 sample paths report a significantly nonzero β. While still more than half of the paths

fail to detect the damping function, the number of sample paths that do is much more than the previous

case of shorter sample paths. On the other hand, if we estimate the longer time series using the nonlinear

drift model with CEV diffusion and no damping, only 6 paths report significantly nonzero α2 and only 8

paths report significantly nonzero α−1.

That the maximum likelihood estimation often fails to detect the damping function but instead fabri-

cates the nonlinear drift is a drawback of the maximum likelihood estimation. Since by the construction,

the damping function usually only kicks in when one has unusual observations, it will generally be difficult

to estimate the damping function if the sample size is small. There are a few possible solutions. First, it

might be easier to detect the damping function with some other estimation procedures.14 A generalized

method of moments method with suitably chosen moments might work because intuitively, the empirical

moments for any finite sample would be finite. Take the CEV model in Table I for example, in the steady

state the process has an infinite variance without the damping function. If we could force the steady

state variance to match the sample variance by some sort of ergodicity argument, then there would be

a need for a damping function. Another method might be to utilize the marginal density of the process

(see Aı̈t-Sahalia 1996b). The marginal density of the process would be very different with and without

the damping function, at least near the tails. Arapis and Gao (2006) perform a nonparametric estimation

of the 7-day Eurodollar deposit rates from June 1973 to February 1995 by utilizing the marginal density.

Indeed, Figure 5 of their paper seems to indicate that the diffusion function is damped if one fixes a linear

drift function. Second, while it is not easy to detect the damping function using the discretely observed

data of the process itself, it might be possible to detect the damping function from other related data.

For example, a CEV interest rate process with and without damping would have different implications

for the pricing of interest rate derivatives, in particular, interest rate options such as caplets and floorlets.

Thus, we might be able to better detect the damping function if we estimate using both the interest rate

data and the interest rate derivatives data. We hope that further research along these directions would

shed more light on the damped diffusion framework.

14Of course, one might also argue that a procedure which detects the damping functions better might also tend to fabricate
the damping function when the true data generating process has no damping but rather a nonlinear drift.
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IV. Conclusion

In this paper, we propose a damped diffusion framework for financial modeling. We first motivate

this framework by considering some of the drawbacks of the popular CEV model. First, the invariant

distribution of the CEV model has an infinite variance if the exponent is greater than 1, which is the case

for many financial applications. Second, we perform a Monte Carlo study of the sample paths for this

process generated using parameters estimated from actual short-rate data. We find that many sample

paths reach unreasonably high interest levels during a finite period. Contrary to Aı̈t-Sahalia’s (1996a)

approach of changing the drift function from linear to nonlinear, we modify the diffusion function through

damping while keeping the appealing linear drift function. We show that the choice of the damping

function is very flexible by considering a damped superimposed CEV model. With suitable choices of

the damping function, the damped diffusion can always be made to have a strong unique solution and

nonexplosive.

Another drawback of the CEV process has significant economic implications. Heston, Loewenstein

and Willard (2007), Sin (1998), and Lewis (2000) have shown that if one uses the CEV process for the

underlying stock or the instantaneous stochastic volatility, the usual martingale pricing approach can fail.

This failure is not limited to the CEV process and can happen quite unintentionally when one models

financial quantities using diffusion processes. When this happens, asset prices often contain bubbles.

We show that the damped diffusion framework can be used to preserve the martingale pricing approach

and eliminate many types of bubbles, including stock future bubbles, option bubbles and bond bubbles.

In addition, we show that although sometimes the asset valuation PDE has multiple solutions, many

solutions can be ruled out by requiring that the solution be the limit of martingale prices in successively

weakly damped diffusion models. In the case of CIR short-rate process and linear premium function

ψ0 + ψ1r, while Heston, Loewenstein and Willard (2007) show that Cox, Ingersoll and Ross’s (1985)

conjecture that a nonzero ψ0 always leads to arbitrage is in general not true, our result shows that in

some weaker sense, any positive ψ0 can be allowed.

Finally, we carry out maximum likelihood estimation using Aı̈t-Sahalia’s (1999) series expansion

method. We point out some nice properties of this method, including the symmetry, differentiability

and the invariance property of the expansion coefficients. In Appendix B, we provide the expansion

coefficients to second order for the log-densities of many diffusion models commonly used in finance.

Through a Monte Carlo experiment, we show that with finite time-series length, maximum likelihood

estimation often fails to detect the damped diffusion function while fabricates nonlinear drift function.
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Appendix A

Proof of Proposition 1: We first prove the following mathematical fact. Let f(x) : R → R be any

smooth function. Then, for any M > 0 and ε > 0, there exists a smooth function f̃(x) : R→ R such that
∫ M

−M

|f(x)− f̃(x)| dx < ε, (19)

and f̃(x) satisfies the global Lipschitz and linear growth conditions on R. To prove this claim, we use the

method of mollification (see, for example, Appendix C of Evans 1998). First we construct the truncation

of the derivative f ′(x). Let h(x) = f ′(x) on [−M, M ], h(x) = f ′(−M) if x < −M , and h(x) = f ′(M) if

x > M . Then h(x) is a bounded continuous function since h(x) ≤ K ≡ supu∈[−M,M ] f
′(u). Now let η(x)

be the standard mollifier. That is, η(x) = C exp(1/(x2 − 1)) if |x| < 1 and zero otherwise. The constant

C is chosen so that η(x) integrates to 1 on R. Let δ > 0 and hδ(x) be the δ-mollification of h(x):

hδ(x) =
∫

R

1
δ
η
(x− y

δ

)
h(y)dy. (20)

By the standard argument of mollification, hδ(x) is infinitely differentiable in x and hδ → h uniformly on

any compact subset of R (in particular, [−M, M ]) as δ → 0. Furthermore, hδ(x) is bounded on R by K

since h(x) is. Pick δ small enough so that supu∈[−M,M ] |h(u)−hδ(u)| < ε/(2M2). For this fixed δ, define

a new function f̃(x) by

f̃(x) = f(0) +
∫ x

0

hδ(u)du. (21)

Then,
∫ M

−M

|f(x)− f̃(x)| dx =
∫ M

−M

∣∣∣∣
∫ x

0

h(u)− hδ(u)du

∣∣∣∣ dx ≤ 2M ·M · ε

2M2
= ε. (22)

Furthermore, the derivative of f̃(x) (which equals hδ(x)) is bounded by K. Thus, f̃(x) is globally Lipschitz

on R and has a linear growth.

Without loss of generality, assume that the domain of Xt is R since we can always perform a monotone

transformation to transform the domain (a, b) to R and later use the inverse transformation on X̃t. Thus,

in particular, we could assume g > 0 on R. By the mathematical fact established above, we can always

perform a “small” modification to f and g so that f̃ and g̃ are globally Lipschitz and have linear growth.

By the standard result in the theory of stochastic differential equations (see, for example, Chapter 5

of Karatzas and Shreve 1991), the stochastic differential equation dX̃t = f̃(X̃t)dt + g̃(X̃t)dWt has a

strong unique solution. The domain (ã, b̃) of X̃t depends on the zeroes of g̃ and could possibly be smaller

than R. In any case, the solution X̃t does not explode to ã or b̃ by the linear growth and global Lipschitz

conditions on f̃ and g̃.

Remark: Since g and g̃ can be made extremely close on any compact subset of R, g̃ can be made positive

on any compact subset of R. Thus, although the domain of X̃t could be smaller than R, it could be made

as large as one wants to contain any pre-specified compact subset of R.
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Proof of Proposition 2: For statement 1, we first show that there exists C > 0 such that for all

x, y ≥ 0 |x1/2D1(x) − y1/2D1(y)| ≤ C
√
|y − x|. The statement is obvious for x = 0 so without loss

of generality, assume y ≥ x > 0. Let g(y) ≡ C2(y − x) − (x1/2D1(x) − y1/2D1(y))2. We want to

show g(y) ≥ 0 for all y ≥ x. By the assumptions that D1(y) and yD1(y) are bounded, for sufficiently

large C, we have g′(y) ≥ 0 for all y ≥ x. Since g(x) = 0, we have g(y) ≥ 0 for all y ≥ x. Now let

σ(x) = σ1x
1/2D1(x) + σ2x

ρD2(x). Since σ2x
ρD2(x) is global Lipschitz, by triangular inequality, we have

|σ(x) − σ(y)| ≤ h(|x − y|) ≡ C ′(
√
|y − x| + |y − x|), for some C ′ large. Now h(·) is strictly increasing,

h(0) = 0 and for any ε > 0, we have
∫
(0,ε)

h−2(u)du = ∞. The statement now follows from a version of

Yamada and Watanabe (1971) (see Karatzas and Shreve (1991)).

Statements 2 and 3 are standard results in stochastic differential equation theory (see, for example,

Chapter 5 of Karatzas and Shreve (1991) and Chapters 2 to 4 of Mao (1997)).

Proof of Equation (6): Noticing Sτ = (xτ/k)−v, we have

F 2 =
∫ ∞

0

p(τ, Sτ |S0)Sτ =
∫ ∞

0

(
xτ

x0

)v/2

e−x0−xτ Iv(2
√

x0xτ )
(xτ

k

)−v

dxτ . (23)

Using the series expansion of Iv(z)

Iv(z) =
∞∑

n=0

1
n!

1
Γ(v + n + 1)

(z

2

)2n+v

(24)

and interchanging the order of summation and integration, we get

F 2 =
(x0

k

)−v

·
∞∑

n=0

xn+v
0 e−x0

Γ(v + n + 1)
=

(x0

k

)−v

·
(

1− Γ(v, x0)
Γ(v, 0)

)
= S0e

rτ

(
1− Γ(v, x0)

Γ(v, 0)

)
. (25)

Proof of Proposition 3: For statement 1, notice that g(S) is Lipschitz and satisfies the growth condition

g2(S) ≤ C(1 + S2) for some constant C. Statement 1 now follows from Proposition 2.

For statement 2, notice that the fact that S2n
τ is integrable implies that

∫ t

0
g(S)dWQ is a genuine

Q-martingale since g(S) ≤ MS. Thus EQSτ − S0 =
∫ τ

0
EQSudu, giving EQSτ = F 1 ≡ S0e

rτ . This in

turn implies the usual put-call parity holds.

For statement 3, let the Radon-Nikodym derivative be Λ. Then dΛ = ΛdL, where the dynam-

ics of the exponent process L is dL = σSα−1DλdWQ = g(S)S−1dWQ by Girsanov’s theorem. Since

EQ[exp(〈L,L〉τ/2)] = EQ[exp(
∫ τ

0
g(Su)2S−2

u du/2)] ≤ eMτ2/2 < ∞ for any fixed τ , Novikov’s condition

guarantees Λ is a genuine Q-martingale and the measure change is equivalent. Thus the stock price under

QS is nonexplosive.

For statement 4, apply Feynman-Kac theorem such as Theorem 5.7.6 in Karatzas and Shreve (1991).

For statement 5, we need a comparison theorem for processes with different diffusion functions. The-

orem 4.1 in Hajek (1985) suits us well. For reader’s convenience, we copy this theorem below:

Theorem 4.1. (Hajek (1985)) Suppose that m and ρ are each convex Lipschitz continuous functions on R, and
suppose that µ and σ are Borel measurable functions on R × R+ such that for some constant K and all θ, θ′ in
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R and t ≥ 0,

|µ(θ, t)− µ(θ′, t)|+ |σ(θ, t)− σ(θ′, t)| ≤ K|θ − θ′|, (26)

|σ(θ, t)|+ |µ(θ, t)| ≤ K(1 + |θ|). (27)

Let X and Y be solutions to the stochastic differential equations:

dXt = µ(Xt, t)dt + σ(Xt, t)dWt, (28)

dYt = m(Yt)dt + ρ(Yt)dBt, (29)

where W and B are Wiener processes. Suppose that for all θ, t,

µ(θ, t) ≤ m(θ), 0 ≤ σ(θ, t) ≤ ρ(θ), (30)

and that X0 and Y0 are constants with X0 ≤ Y0. Then

EΦ(Xt) ≤ EΦ(Yt) (31)

for any nondecreasing convex function Φ on R.

Now take two damped diffusion models with damping functions Dλ1 and Dλ2 where λ1 > λ2. Denote

the corresponding diffusion functions by g1 and g2 and the corresponding stock price processes under

Q by S1 and S2. Then g1(·) < g2(·). Let S1 and S2 start from the common value S0. Consider the

nondecreasing convex function Φ(x) ≡ e−rτ (x −K)+ for fixed K > 0. Then Theorem 4.1 tells us that

EQΦ(S1τ ) ≤ EQΦ(S2τ ), i.e., Gλ1 ≤ Gλ2 . Thus Gλ is a decreasing function in λ. Now take a sequence

λn ↓ 0+. Then Gλn is an increasing sequence on the real line which is bounded below by 0 and above by

e−rτEQSτ = S0. Thus Gλn approaches a fixed limit. Notice that put-call parity Gλ − Pλ = S −Ke−rτ

holds and Pλ is bounded by Ke−rτ . Since Gλ increases to G̃, Pλ also increases to a limit P̃ which is

bounded by Ke−rτ . Thus G̃ − P̃ = S −Ke−rτ . The result limS→∞ G̃/S = 1 follows immediately from

the put-call parity. The put-call parity of Gλ and Pλ also gives (S −Ke−rτ )+ ≤ Gλ ≤ S. Taking limit

on λ gives (S −Ke−rτ )+ ≤ G̃ ≤ S. Since each Gλ is increasing in S, ∂G̃/∂S ≥ 0.

Proof of Proposition 4: For statement 1, notice that α(β− r)−Ψλ(r) is global Lipschitz since it has a

bounded derivative. Thus the conditions of Yamada and Watanabe (1971) are satisfied with h(r) = σ
√

r.

This shows dr = (α(β − r) − Ψλ(r))dt + σ
√

rdWQ has a strong unique solution. Since Ψλ(·) > 0 and

2αβ > σ2, a comparison theorem (for example, Proposition 5.2.18 in Karatzas and Shreve (1991)) tells

us that the above process does not explode to infinity. Now the assumption on the Feller’s explosion test

at r → 0+ tells us that the process does not explode to 0 either.

For statement 2, from theorem A.1 in Heston, Loewenstein and Willard (2007), the measures P and Q
are equivalent. Thus there is a unique martingale bond price Pλ(r, T ). If r1(t) and r2(t) are two solutions

to the above process with initial interest rate r1(0) < r2(0), then by the comparison theorem 5.2.18 in

Karatzas and Shreve (1991), we have P [r1(t) < r2(t), ∀ 0 ≤ t ≤ ∞] = 1. Since Pλ(r, T ) = EQ[e−
∫ T
0 r(t)dt],

it is a decreasing function of r. Although not need in the proof, it can be further shown by mimicking

the proof of Proposition 5.2.13 in Karatzas and Shreve (1991) that for any positive λ, Pλ(r, T ) has a

bounded partial derivative in r. However, the bounds depend on λ. Pλ(r, T ) is decreasing in T since

∂Pλ(r, T )
∂T

= −EQ
[
r(T ) exp

(
−

∫ T

0

r(t)dt

)]
< 0. (32)
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Now let R(t) follow the CIR process dR = α(β−R)dt+σ
√

RdWQ with R(0) = r(0) ≡ r. By comparison

theorem, EQ[r(T )] ≤ EQ[R(T )]. Since

∂Pλ(r, T )
∂T

≥ −EQ[r(T )] ≥ −EQ[R(T )] = (β − r)e−αT − β, (33)

the partial derivative ∂Pλ(r, T )/∂T is bounded above and below with the bounds independent of λ.

For statement 3, notice that Ψλ(r) is decreasing in λ. The comparison theorem 5.2.18 in Karatzas and

Shreve (1991) with different λ thus shows that Pλ(r, T ) is an increasing function in λ for fixed r and T .

Since Pλ(r, T ) are bounded by 1, Pλ(r, T ) converges pointwise as λ → 0+. P̃ (r, T ) is decreasing in both r

and T since for each λ, Pλ(r, T ) is decreasing in both r and T . The derivative ∂P̃ /∂T is bounded above

by 0 and below by (β − r)e−αT − β.

Now the existence of such a damping function is the most difficult part of the proof. All other

assumptions are easy to check except for the condition on Feller’s explosion test. Let Dλ = r/(r + λ).

Choose an arbitrary c ∈ (0,∞). Using Karatzas and Shreve’s (1991) notation, the scale density of the

above process is given by

p′c(x) = exp
(

2
∫ c

x

α(β − z)−Ψλ(z)
σ2z

dz

)
=

( c

x

) 2αβ
σ2

(
x + λ

c + λ

)2ψ0
σ2

exp
(

2(α + ψ1)
σ2

(x− c)
)

. (34)

Thus for y ≤ c, there exists constant M > 0 such that

∫ c

y

2 dz

p′c(z)σ2z
≥

∫ c

y

2
σ2

(
1
c

) 2αβ
σ2

z
2αβ
σ2 −1dz ≡ M

(
c

2αβ
σ2 − y

2αβ
σ2

)
. (35)

Notice that the damping function is essential here because we need λ to be strictly positive in this proof.

We can now verify the condition in Feller’s explosion test as follows:

lim
x↓0

vc(x) = lim
x↓0

∫ c

x

p′c(y)dy

∫ c

y

2 dz

p′c(z)σ2z
(36)

≥
∫ c

0

(
c

y

)2αβ
σ2

(
y + λ

c + λ

)2ψ0
σ2

exp
(

2(α + ψ1)
σ2

(y − c)
)

M

(
c

2αβ
σ2 − y

2αβ
σ2

)
dy (37)

≥ c
2αβ
σ2

(
λ

c + λ

) 2ψ0
σ2

exp
(
−2(α + ψ1)

σ2
c

)
M

∫ c

0

(
(c/y)

2αβ
σ2 − 1

)
dy = +∞. (38)

Proof of Proposition 5: The bulk of this proposition is proved in Bakshi, Ju and Ou-Yang (2006). To

change to the original variable, notice that y ≡ f(x) =
∫ x 1/σ(u)du and dy = dx/σ(x). The degenerate

case x = x0 can be obtained through an application of L’Hospital’s rule.

Proof of Proposition 6: For statement 1, notice that by Ito’s lemma, dZ ≡ df = (f ′µ + f ′′σ2/2)dt +

f ′σdW . Consider µ̂(·) and λ(·) defined in Proposition 5. Simple algebra shows that µ̂Z ◦ f = µ̂X and

λZ ◦ f = λX , where “◦” is the function composition. By using the fact that dz = f ′(x)dx, the expression

for c1 in Proposition 5 then gives cZ
1 (f(x)|f(x0) = cX

1 (x|x0). The relation for p
(0)
Z and p

(0)
X can be obtained

similarly. The recursive relation for ci then inductively gives cZ
i (f(x)|f(x0) = cX

i (x|x0) for all i.
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For statement 2, by statement 1, we need only consider a unit diffusion process by letting Yt ≡∫ Xt 1/σ(x)dx. Notice we have the following differential forms of the recursive relations for the cY
k (y|y0)’s:

cY
k+1 +

y − y0

k + 1
∂cY

k+1

∂y
= λ(y)cY

k +
1
2

∂2cY
k

∂y2
, cY

k+1 −
y − y0

k + 1
∂cY

k+1

∂y0
= λ(y0)cY

k +
1
2

∂2cY
k

∂y2
0

. (39)

Aı̈t-Sahalia (2004) showed that the integral representation in Proposition 5 is the only solution that satis-

fies both differential recursive relations. The claim that cY
k (y|y0) = cY

k (y0|y) follows from the observation

that those differential recursive relations are formally symmetric in y and y0 and mathematical induction.

For statement 3, again by statement 1, we need only consider the process Yt since the infinite differ-

entiability of cX
i follows from the infinite differentiability of cY

i and the chain rule. Notice

cY
1 (y|y0) =

∫ 1

0

λY (y0 + t(y − y0)) dt, (40)

cY
k (y|y0) =

∫ 1

0

ktk−1

(
λY (w)cY

k−1(w|y0) +
∂2cY

k−1(w|y0)
2 ∂w2

)∣∣∣∣
w=y0+t(y−y0)

dt. (k > 1) (41)

Now take the derivatives inside the integral by chain rules and use mathematical induction on the smooth-

ness of cY
k−1 to conclude that cY

k (y|y0) is infinitely differentiable in y. The infinite differentiability of cY
k

with respect to y0 is now obvious from the symmetry of cY
k (y|y0) shown in statement 2.
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Appendix B

Below we list the expansion coefficients and p
(0)
X for some commonly used processes in finance. For

the first four processes, closed-form transition densities exist and are also given below. Recall that the

series approximation of log pX(∆, x|x0) to order K = 2 in ∆ is given by

log p
(2)
X (∆, x|x0) = log p

(0)
X (∆, x|x0) + C1(x|x0)∆ +

1
2
C2(x|x0)∆2. (42)

Vasicek model dXt = κ(m−Xt)dt + σdWt :

p
(0)
X (∆, x|x0) =

1√
2π∆σ

exp

(
− (x− x0)

2

2σ2∆
+

mxκ

σ2
− x2κ

2σ2
− mx0κ

σ2
+

x0
2κ

2 σ2

)
, (43)

C1(x|x0) =
κ

2
− m2κ2

2σ2
+

mxκ2

2σ2
+

mκ2x0

2σ2
− x2κ2

6σ2
− xκ2x0

6σ2
− κ2x0

2

6σ2
, (44)

C2(x|x0) = −κ2/6. (45)

Let n(z; µ, V ) denote the probability density function of a normally distributed random variable Z with

mean µ and variance V . Then, the true transition density of the Vasicek model is given by

pX(∆, x|x0) = n
(
x; m + (x0 −m)e−κ∆,

σ2

2κ
(1− e−2κ∆)

)
. (46)

Exponentiated Vasicek model dXt = κXt

(
log m− log Xt

)
dt + σXtdWt :

p
(0)
X (∆, x|x0) =

√
x0

2πσ2∆x3
exp

(
− (log(x/x0))2

2σ2∆
+ κ

2 log m log(x/x0) + (log x0)2 − (log x)2

2σ2

)
, (47)

C1(x|x0) =
κ

2
− σ2

8
+

κ

4
log

m2

xx0
+

κ2 log m

2σ2
log

xx0

m
− κ2

6σ2

(
(log x)2 + log x log x0 + (log x0)2

)
, (48)

C2(x|x0) = −κ2/6. (49)

Letting m′ = log m−σ2/(2κ), the true transition density of the exponentiated Vasicek model is given by

pX(∆, x|x0) =
1
x

n
(

log x;m′ + (log x0 −m′)e−κ∆,
σ2

2κ
(1− e−2κ∆)

)
. (50)

Cox-Ingersoll-Ross model dXt = κ(m−Xt)dt + σ
√

XtdWt :

p
(0)
X (∆, x|x0) =

1√
2π∆xσ

(
x

x0

)κm/σ2−1/4

exp
(
−κ(x− x0)

σ2
− 2(

√
x−√x0)2

σ2∆

)
, (51)

C1(x|x0) =
κ2

(
6m− x−√xx0 − x0

)

6σ2
+

16κm− 3σ2

32
√

xx0
− κ2m2

2σ2
√

xx0
, (52)

C2(x|x0) =
48mκσ2 − 9σ4 − 16κ2

(
3m2 + xx0

)

384xx0
. (53)

If we let χ2(z; f, θ) to denote the probability density function of a noncentral chi-square distributed

random variable Z with degree of freedom f and noncentrality θ, then the true transition density for the
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CIR process is given by

pX(∆, x|x0) = 2c χ2(2cx; 2q + 2, 2cx0e
−κ∆), (54)

with

q =
2κm

σ2
− 1, c =

2κ

σ2(1− e−κ∆)
. (55)

Inverse of Feller’s square root model: dXt = κ(m−Xt)Xtdt + σXt
3/2dWt

p
(0)
X (∆, x|x0) =

(x0/x)κ/σ2+3/4

√
2π∆σx3/2

exp

(
km(x− x0)

σ2xx0
− 2

(√
x−√x0

)2

∆σ2xx0

)
, (56)

C1(x|x0) = mκ−
(
16κ + 3σ2

)√
xx0

32
+

κ2
(
2m−√xx0

)

2σ2
− m2κ2

(
x + x0 +

√
xx0

)

6σ2xx0
, (57)

C2(x|x0) = −16m2κ2 + 48κ2xx0 + 48κσ2xx0 + 9σ4xx0

384
. (58)

The true transition density for the inverse Feller process is given by

pX(∆, x|x0) =
2c′

x2
χ2

(2c′

x
; 2q′ + 2,

2c

x0
e−κm∆

)
, (59)

with

q′ =
2κ

σ2
+ 1, c′ =

2κm

σ2(1− e−κm∆)
. (60)

Linear drift CEV diffusion model dXt = κ(m−Xt)dt + σXρ
t dWt :

p
(0)
X (∆, x|x0) =

(x0/x)ρ/2

√
2π∆σxρ

exp

(
κmΦ0 − κΦ1 − (x1−ρ − x1−ρ

0 )2

2σ2∆(1− ρ)2

)
, (61)

C1(x|x0) = − κ2

2σ2
Ψ3 + ρκmΨ2ρ +

κ (1− 2ρ)
2

+
κ2m

σ2
Ψ2 +

(ρ− 2) ρσ2

8(xx0)
1−ρ − κ2m2

2σ2
Ψ1 ,

C2(x|x0) =
(σ − ρσ)2 (λ(x0) + λ(x)− 2C1(x|x0))

(x1−ρ − x0
1−ρ)2

, (62)

where

λ(x) =
ρσ4x4ρ (ρ− 2)− 4κ2x2(x−m)2 − 4κσ2x1+2ρ (x (2ρ− 1)− 2mρ)

8x2(1+ρ)σ2
, (63)

Φn ≡ xn+1−2ρ − xn+1−2ρ
0

σ2(n + 1− 2ρ)
, Ψη ≡ ρ− 1

3ρ− η
· x3ρxη

0 − xηx3ρ
0

(xx0)2ρ(xρx0 − xxρ
0)

. (64)

Aı̈t-Sahalia’s nonlinear drift model dXt = (α0 + α1Xt + α2X
2
t + α−1/Xt)dt + σXt

ρdWt :

p
(0)
X (∆, x|x0) =

(x0/x)ρ/2

√
2π∆σxρ

exp

(
− (x1−ρ − x1−ρ

0 )2

2∆(σ − σρ)2
+ Φ0α0 + Φ1α1 + Φ2α2 + Φ−1α−1

)
, (65)
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C1(x|x0) =
(ρ− 2) ρσ2

8(xx0)
1−ρ + ρΨ2ρα0 +

2ρ− 1
2

α1 + (ρ− 1)Ψ2+2ρα2 +
(1 + 2ρ)Ψ2ρ−1

2
α−1

−Ψ−1

2σ2
α2
−1 −

Ψ0

σ2
α0α−1 − Ψ1

2σ2
(α2

0 + 2α1α−1)− Ψ2

σ2
(α2α−1 + α0α1) (66)

− Ψ3

2σ2
(α2

1 + 2α0α2)− Ψ4

σ2
α1α2 − Ψ5

2σ2
α2

2 ,

C2(x|x0) =
(σ − ρσ)2 (λ(x0) + λ(x)− 2C1(x|x0))

(x1−ρ − x0
1−ρ)2

, (67)

where

λ(x) =
x2ρ(ρ2 − ρ)σ2 + 2xρα0 + 2x2 (ρ− 1)α1 + 2x3 (ρ− 2) α2 + 2(ρ + 1)α−1

4x2

− 1
2

(
xρ−1ρσ

2
− α0 + α1x + α2x

2 + α−1/x

xρσ

)2

. (68)
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Table I
Maximum Likelihood Estimate for the Monthly Federal Funds Rate, 1963–1998

This table reports the parameters estimations for seven short-rate models using maximum likelihood.
We use the same data set in Aı̈t-Sahalia (1999) which consists of monthly data on the Federal funds rate
between January 1963 and December 1998. The source is the H-15 Federal Reserve Statistical Release
(Selected Interest Rate Series). The transition densities needed in the likelihood functions are computed
using the true density, Euler approximation, and Aı̈t-Sahalia’s series approximation with K = 2. The
true density is computed either from the explicit transition density (if available) or through a PDE
approach. The log-likelihood values are denoted by `. The asymptotic standard error is computed by
estimating the inverse of Fisher information matrix using an outer product of gradients method at the
estimated parameter values. The last column reports the Akaike Information Criterion (AIC) for series
approximation method, computed as −2` + 2dim(θ)/N , where dim(θ) is the dimension of the parameter
vector θ and N = 431 is number of observations.

Explicit Euler Series Asymptotic
Models density/PDE approxi. approx. std. error AIC
Vasicek: κ = 0.2612 0.2584 0.2612 0.10

µ(x) = κ(m− x) m = 0.0717 0.0717 0.0717 0.026
σ(x) = σ σ = 0.0224 0.0221 0.0224 0.00020

` = 3.6345 3.6345 3.6345 −7.2551
Exponentiated Vasicek: κ = 0.1729 0.1375 0.1733 0.07

µ(x) = κx(log m− log x) m = 0.0788 0.0829 0.0788 0.017
σ(x) = σx σ = 0.2199 0.2147 0.2199 0.0036

` = 4.0971 4.1050 4.0971 −8.1803
CIR: κ = 0.2189 0.1452 0.2189 0.08

µ(x) = κ(m− x) m = 0.0721 0.0732 0.0721 0.017
σ(x) = σ

√
x σ = 0.0667 0.0652 0.0667 0.00075

` = 3.9182 3.9309 3.9182 −7.8225
Inverse Feller: κ = 2.0815 2.0097 2.0823 1.14

µ(x) = κ(m− x)x m = 0.0874 0.0881 0.0874 0.024
σ(x) = σx3/2 σ = 0.8211 0.8059 0.8211 0.018

` = 4.1581 4.1710 4.1581 −8.3023
CEV: κ = 0.0875 0.0971 0.0886 0.10

µ(x) = κ(m− x) m = 0.0849 0.0808 0.0842 0.052
σ(x) = σxρ σ = 0.7785 0.7224 0.7792 0.077

ρ = 1.4802 1.4607 1.4812 0.037
` = 4.1584 4.1720 4.1582 −8.2978

Nonlinear Drift: α0 = −0.0347 −0.0568 −0.0345 0.080
µ(x) = α0 + α1x + α2x

2 + α−1/x α1 = 0.6702 0.9621 0.6676 1.31
σ(x) = σxρ α2 = −4.0023 −5.017 −4.0069 6.15

α−1 = 0.000695 0.00116 0.000697 0.0015
σ = 0.7842 0.7072 0.7834 0.081
ρ = 1.4836 1.4533 1.4828 0.038
` = 4.1588 4.1730 4.1587 −8.2896

Damped Diffusion: κ = 0.0954 0.0957 0.0965 0.096
µ(x) = κ(m− x) m = 0.0815 0.0812 0.0814 0.040
σ(x) = (σ1x

1/2 + σ2x
3/2)e−8x4

σ1 = 0.00359 0.00451 0.00368 0.0020
σ2 = 0.7283 0.7278 0.7572 0.041
` = 4.1596 4.1735 4.1593 −8.3000
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Table II
Maximum Likelihood Estimate for the Monthly Federal Funds Rate, 1954–2008

This table reports the parameters estimations for seven short-rate models using maximum likelihood.
The data set consists of monthly data on the Federal funds rate between July 1954 and June 2008. The
source is the H-15 Federal Reserve Statistical Release (Selected Interest Rate Series). The transition
densities needed in the likelihood functions are computed using the true density, Euler approximation,
and Aı̈t-Sahalia’s series approximation with K = 2. The true density is computed either from the explicit
transition density (if available) or through a PDE approach. The log-likelihood values are denoted by `.
The asymptotic standard error is computed by estimating the inverse of Fisher information matrix using
an outer product of gradients method at the estimated parameter values. The last column reports the
Akaike Information Criterion (AIC) for series approximation method, computed as −2` + 2dim(θ)/N ,
where dim(θ) is the dimension of the parameter vector θ and N = 647 is number of observations.

Explicit Euler Series Asymptotic
Models density/PDE approxi. approxi. std. error AIC
Vasicek: κ = 0.1685 0.1673 0.1685 0.06

µ(x) = κ(m− x) m = 0.0582 0.0582 0.0582 0.025
σ(x) = σ σ = 0.0186 0.0185 0.0186 0.00012

` = 3.8145 3.8145 3.8145 −7.6198
Exponentiated Vasicek: κ = 0.2038 0.3209 0.2046 0.05

µ(x) = κx(log m− log x) m = 0.0684 0.0604 0.0684 0.023
σ(x) = σx σ = 0.3363 0.3593 0.3363 0.0030

` = 3.9622 3.8888 3.9622 −7.9151
CIR: κ = 0.1382 0.1446 0.1384 0.04

µ(x) = κ(m− x) m = 0.0585 0.0584 0.0585 0.014
σ(x) = σ

√
x σ = 0.0648 0.0643 0.0648 0.00067

` = 4.0864 4.0880 4.0864 −8.1636
Inverse Feller: κ = 5.4690 13.8034 5.4704 4.67

µ(x) = κ(m− x)x m = 0.0947 0.0623 0.0947 0.070
σ(x) = σx3/2 σ = 2.5696 3.1102 2.5696 0.015

` = 3.4633 3.2514 3.4633 −6.9173
CEV: κ = 0.1251 0.1591 0.1276 0.049

µ(x) = κ(m− x) m = 0.0585 0.0576 0.0585 0.017
σ(x) = σxρ σ = 0.0917 0.0820 0.0915 0.0029

ρ = 0.6181 0.5822 0.6175 0.010
` = 4.0992 4.0949 4.0990 −8.1856

Nonlinear Drift: α0 = −0.00004 −0.0540 −0.00004 0.010
µ(x) = α0 + α1x + α2x

2 + α−1/x α1 = 0.0407 1.2676 0.0405 0.29
σ(x) = σxρ α2 = −0.8978 −7.6449 −0.8976 1.64

α−1 = 0.00007 0.00058 0.00007 0.00008
σ = 0.0912 0.0879 0.0913 0.0029
ρ = 0.6165 0.6129 0.6166 0.011
` = 4.0994 4.1192 4.0993 −8.1800

Damped Diffusion: κ = 0.1121 0.1558 0.1139 0.056
µ(x) = κ(m− x) m = 0.0596 0.0568 0.0593 0.022
σ(x) = (σ1x

1/2 + σ2x
3/2)e−8x4

σ1 = 0.0480 0.0497 0.0484 0.0010
σ2 = 0.2485 0.2208 0.2462 0.014
` = 4.1317 4.1284 4.1316 −8.2508
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Figure 1. Federal funds rate, monthly frequency, July 1954 – June 2008. This is the monthly
data on the Federal funds rate between July 1954 and June 2008. The source is the H-15 Federal Reserve
Statistical Release (Selected Interest Rate Series).
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