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Abstract

This paper proposes a fully nonparametric framework to estimate relative e¢ ciency

of entities while accounting for a mixed set of continuous and discrete (both ordered

and unordered) exogenous variables. Using robust partial frontier techniques, the prob-

abilistic and conditional characterization of the production process, as well as insights

from the recent developments in nonparametric econometrics, we present a generalized

approach for conditional e¢ ciency measurement. To do so, we utilize a tailored mixed

kernel function with a data-driven bandwidth selection. So far only descriptive analysis

for studying the e¤ect of heterogeneity in conditional e¢ ciency estimation has been sug-

gested. We show how to use and interpret nonparametric bootstrap-based signi�cance

tests in a generalized conditional e¢ ciency framework. This allows us to study statis-

tical signi�cance of continuous and discrete exogenous variables on production process.

The proposed approach is illustrated using simulated examples as well as a sample of

British pupils from the OECD Pisa data set. The results of the empirical application

show that several exogenous discrete factors have a statistically signi�cant e¤ect on the

educational process.
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1 Introduction

The traditional nonparametric procedures to estimate e¢ ciency [such as the non-convex Free

Disposal Hull (FDH; Deprins et al., 1984) and the convex Data Envelopment Analysis (DEA;

Charnes et al., 1978)] have recently been directed towards the incorporation of exogenous

environmental variables. Indeed, e¢ ciency estimations which do not account for the oper-

ational environment may have only a limited value. If, for example, the e¢ ciency of the

educational system is assessed, it is not fair or justi�ed to compare schools located in �good�

neighborhoods (e.g. measured by the highest degree of the mother, income of the parents,

native language) with schools located in less advantageous areas. Thus, if the evaluated

observations are a¤ected by external, exogenous factors, performance analysis should control

for this heterogeneity.

The literature counts various approaches to incorporate the exogenous environment in

nonparametric e¢ ciency analysis (for an overview see Fried et al., 2008; for an extensive

discussion see De Witte and Kortelainen, 2008). In general, the traditional approaches face

one or several of the following drawbacks: (1) only either continuous or categorical exogenous

variables can be used, (2) the e¤ect of environmental variable1 is required to be monotone in

the production process (and possibly also concave if DEA is used), (3) the researcher has to

choose a priori whether to model environmental variable as an input or as an output, (4) in

practice it is often not possible to include several environmental factors, and (5) one needs

to assume a separability condition in that the operational environment would not in�uence

the input or output levels, but only e¢ ciency. Concerning the last drawback, obviously, in

many applications the exogenous variables (e.g. the neighborhood and mother tongue) do

in�uence the observed input use (e.g. teaching hours) and output levels (e.g. test scores)

of the observations. In this sense, there is no separability between the inputs and outputs

on the one hand, and the exogenous variables on the other hand. Still, as the popular two-

stage approach imposes separability assumption implicitly for all exogenous variables, its

applicability in most applications is debatable.

Recently, Cazals et al. (2002) and Daraio and Simar (2005, 2007a) suggested a new ap-

proach, which does not su¤er from the last four drawbacks. The approach starts from the

probabilistic formulation of the production process and incorporates the operational environ-

ment by conditioning on the exogenous characteristics. In particular, it limits the reference set

of the evaluated unit by only comparing like with likes. This so-called conditional e¢ ciency

approach generalizes the traditional nonparametric approaches by avoiding the separability

condition and by not requiring any speci�cation on the direction of in�uence of exogenous

variables. In addition, it allows one to include several environmental variables and to examine

the e¤ect (favorable or unfavorable) of them. As the conditional e¢ ciency approach avoids

1We follow earlier literature and use environmental and exogenous variables as synonyms.
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the main disadvantages of the other models, it seems to be the most promising method to

introduce external environmental factors into nonparametric frontier models. Therefore, the

remainder of this paper concentrates on this approach.

Cazals et al. (2002) outlined the original idea on how to incorporate exogenous vari-

ables in the non-convex nonparametric model. Daraio and Simar (2005, 2007a) expanded

their approach to a more general multivariate (continuous) setup and presented a practical

methodology to evaluate the impact of exogenous variables. Later, an extension to convex

nonparametric models was proposed (Daraio and Simar, 2007b) and also a signi�cant amount

of work has been done to prove the consistency and the asymptotic properties of di¤erent

conditional e¢ ciency estimators (Cazals et al., 2002; Jeong et al., 2008). As the merits of

the approach are large (in particular avoiding the main drawbacks of the traditional proce-

dures) it is increasingly used in several research questions. Previous applications include the

productivity of universities (Bonaccorsi et al., 2006, 2007a, 2007b; Bonaccorsi and Daraio,

2008), e¢ ciency in the water sector (De Witte and Marques, 2008; De Witte and Saal, 2008;

De Witte and Dijkgraaf, 2009), performance of mutual funds (Daraio and Simar, 2005, 2006;

Daouia and Simar, 2007; Jeong et al., 2008; Badin et al., 2008) and banks (Blass Staub and

da Silva e Souza, 2007), e¢ ciency of post o¢ ces (Cazals et al., 2008), knowledge spillover

and regional innovation performance (Bonaccorsi and Daraio, 2007c; Broekel, 2008; Broekel

and Meder, 2008) and primary education (Cherchye et al., 2007).

Nevertheless, some intricate issues remain. As the conditional e¢ ciency approach relies

on the estimation of nonparametric kernel functions to select the appropriate reference part-

ners, it heavily relies on the choice of bandwidth parameters. The original article of Daraio

and Simar (2005) considered the cross-validation k -nearest neighbor technique for estimating

the bandwidths. However, besides being nonoptimal in �nite samples this bandwidth choice

approach does not take into account the in�uence of the exogenous variables on the produc-

tion process. As such, although the conditional e¢ ciency estimates avoid the separability

condition, their bandwidths relied on it. Recently, Badin et al. (2008) suggested an alterna-

tive data-driven approach to select the optimal bandwidths. This approach accounts for the

input and output variables while selecting values for the bandwidths. Moreover, following

Hall et al. (2004), this data-driven procedure can help to identify external variables that

have no in�uence on the production process.

The current paper contributes to the literature by focusing on three additional issues,

which are very relevant in most empirical applications. Firstly, it considers the inclusion of

both discrete and continuous exogenous variables in the conditional e¢ ciency framework. The

conditional models used in previous studies have been designed for continuous environmental

variables only.2 However, in interesting real-life applications the exogenous variables are

2 In some applications, it might be justi�ed to use continuous kernels for ordered dicrete variables with
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both continuous and discrete. This paper shows how to adapt the nonparametric conditional

e¢ ciency measures to include mixed (i.e. both continuous and discrete) exogenous variables

by specifying an appropriate kernel function which smooths the mixed variables. In doing

so, we propose a procedure to estimate kernel bandwidths both for continuous and discrete

variables (adapted from Hall et al., 2004). By estimating observation and variable speci�c

bandwidths, our approach is able to estimate for every observation e¢ ciency relative to a

su¢ ciently large reference group of similar units (i.e. units with a large probability of being

similar).

Secondly, we argue and show that our approach can include a number of ordered and/or

unordered categorical variables along with continuous exogenous variables even in relatively

small samples. Related to this we know from previous research (Cazals et al., 2002; Jeong

et al., 2008) that the convergence rate of conditional e¢ ciency estimators decrease when the

number of continuous environmental variables increases. The typical curse of dimensional-

ity in nonparametric models is deteriorated in the conditional e¢ ciency models due to the

smoothing on the exogenous variables. However, we show that this dimensionality problem is

not the case for discrete exogeneous variables with compact support. In particular, we prove

that the convergence rate of the proposed conditional e¢ ciency estimator does not depend

on the number of discrete variables. This is very relevant property in applications, because

it allows one to include a large number of discrete environmental variables in conditional

e¢ ciency estimation without deteriorating accuracy of estimation.

Thirdly, we present a framework to test nonparametrically the signi�cance of the ex-

ogenous variables. We note that, so far, only descriptive analysis for studying the e¤ect of

the environmental variables in conditional e¢ ciency estimation has been suggested (Daraio

and Simar, 2005). This is in contrast to the two-stage semiparametric approach of Simar

and Wilson (2007), which allows one to evaluate the signi�cance of exogenous variables in

a second-stage truncated regression by the use of bootstrapping techniques. We extend the

Daraio and Simar toolbox for visualizing the e¤ects of the continuous exogenous variables to

a generalized setting which allows both visualization and statistical inference of continuous

and discrete exogenous variables. For the signi�cance testing, we use recently developed

nonparametric boostrap-based procedures. Thanks to our contributions, the nonparametric

setup shares many bene�ts of a parametric model (i.e. multivariate analysis with continu-

ous and discrete factors and with well established statistical inference), but without facing

the major drawback of a parametric model (i.e. selecting a priori a functional form of the

production process).3

many categories, since those variables are close to be continuous. Instead, the values of unordered discrete

variables have no natural order, and thus cannot be modelled analogously with continuous variables.
3Nevertheless, if a parametric model is well speci�ed, the parametric estimator often has a higher rate of

convergence than the nonparametric conditional e¢ ciency estimator. However, the wrongly speci�ed para-
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To illustrate our approach, we consider a couple of simulation scenarios that are similar to

scenarios already used in the literature. However, in contrast to previous conditional e¢ ciency

studies, we study cases where univariate and multivariate exogenous factors can also include

categorical components. To show potentiality of the approach in empirical applications, we

demonstrate it by a relevant research question. In particular, the inclusion of both discrete

and continuous exogenous variables in the conditional e¢ ciency estimation is illustrated by

assessing the e¢ ciency of a random sample of British 15 years old pupils. We use the Pisa

data set (Program for International Student Assessment) to estimate the performance of

pupils while accounting for a broad range of unordered (e.g. mother tongue, possession of

own room) and ordered (highest degree of mother and father) categorical and continuous

(school size or teacher-student ratio) environmental variables. Including both discrete and

continuous factors in the nonparametric model allows for a rich and solid analysis. Obviously,

our approach is not limited to educational performance assessment but could be implemented

in about all known applications.

The remainder of the paper unfolds as follows. Next section discusses the probabilis-

tic formulation of the production process and describes the conditional e¢ ciency approach.

Section 3 presents our new approach based on generalized kernel estimation, its appropriate

bandwidth selection and shows the procedure for testing the signi�cance of environmental

variables. Section 4 illustrates the proposed method with a couple of simulated examples,

while Section 5 applies the insights to the Pisa data set. Finally, we present the conclusions.

2 Conditional e¢ ciency estimation

2.1 Probabilistic formulation and order-m

Nonparametric e¢ ciency measures are based on microeconomic production theory and esti-

mation methods that do not require any functional form assumptions. In this framework it

is typical to consider a production technology where production units are characterized by a

set of inputs x (x 2 Rp+) and outputs y (y 2 R
q
+). The production technology is the set of of

all feasible input-output combinations: 	 =
�
(x; y) 2 Rp+q+ j x can produce y

	
. Obviously,

in practice the set 	 and the e¢ ciency measures are unknown and have to be estimated from

a random sample of production units denoted by �n = f(xi; yi) j i = 1; :::; ng.4

Besides above production set presentation, there exists alternative ways to describe gen-

eral production processes. From alternative presentations, a probabilistic formulation of the

metric model delivers poor estimates in comparison to the nonparametric model.
4To clarify presentation, we denote the observed sample from which the e¢ ciency scores are estimated by

lowercase letters (xi; yi) whereas uppercase letters (X;Y ) denote the unknown (and thus random) variables

which can take any value.
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production process presented �rst by Cazals et al. (2002) is particularly useful in many ap-

plications. The idea behind this alternative formulation is to examine the probability that

an evaluated observation (x; y) is dominated using the joint probability function:

HXY (x; y) = Pr(X � x; Y � y): (1)

Note that HXY (x; y) is not a standard joint distribution function, because for the outputs y

the survival form is used, not the cumulative form like for the inputs x. The joint probability

function can be further decomposed as (remark: we only present the output-orientation, for

the input-orientation see Cazals et al., 2002):

HXY (x; y) = Pr(Y � y j X � x) Pr(X � x)
= SY jX(Y � y j X � x)FX(X � x)
= SY (y j x) FX(x) (in shorthand notation)

(2)

where SY (y j x) denotes the conditional survivor function of Y and FX(x) the cumulative

distribution function of X: Now it can be shown that if 	 is free disposal, the upper boundary

of the support of SY (y j x) de�nes the traditional Farrell (1957) output-oriented technical
e¢ ciency measure:

�(x; y) = sup f� j SY (�y j x) > 0g = sup f� j HXY (x; �y) > 0g . (3)

This alternative presentation of the output-oriented e¢ ciency score can be interpreted as the

proportionate increase in outputs required for the evaluated unit to have zero probability of

being dominated at the given input level.

To estimate e¢ ciency scores using the probabilistic formulation, one needs to �rst sub-

stitute the empirical distribution function bHXY;n(x; y) for HXY (x; y) and bSY;n(y j x) for
SY (y j x), correspondingly. These empirical analogs are given by:

bHXY;n(x; y) = 1

n

nX
i=1

I (xi � x; yi � y) (4)

and bSY;n(y j x) = bHXY;n(x; y)bFX;n(x) =
bHXY;n(x; y)bHXY;n(x; 0) ; (5)

where I(�) is an indicator function. Using the plug-in principle, the Free Disposabal Hull
(FDH) estimator for the output-oriented e¢ ciency score can be then obtained as b�FDH(x; y) =
sup

n
� j bSY;n(�y j x) > 0o.

It should be noted that the traditional FDH estimator b�FDH(x; y) has two major draw-
backs: (1) it is deterministic and (2) it does not account for the operational environment.

Here we discuss the �rst issue, while the second one is treated in the next subsection. The

deterministic nature of the FDH estimator arises from the assumption that all observations
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constitute the production set: Prob((x; y) � 	) = 1. As such, the nonparametric technique

is sensitive to outlying and atypical observations as these can heavily in�uence the upper

boundary of the support of bSY;n(y j x): Therefore, Cazals et al. (2002) suggested to consider
the expected value of maximum output e¢ ciency score of the unit (x; y), when compared

to m units randomly drawn from the population of units using inputs less than the level x.

Thus, instead of considering the full frontier (or upper boundary), the idea is to draw a partial

frontier depending on a random set of m variables which consume maximally x resources.

Taking the expectation of this less extreme benchmark, we obtain the order-m e¢ ciency

measure �m(x; y). If a unit is on average performing superior than its m randomly drawn

reference units (with X � x), it obtains a �super-e¢ ciency�score (i.e. an output-e¢ ciency

score of �m(x; y) < 1) which is impossible in the traditional framework where by construction

�(x; y) � 1. Cazals et al. (2002) showed that the order-m e¢ ciency score �m(x; y) has an

explicit expression that depends only on the conditional distribution SY (y j x):

�m(x; y) =
R1
0
[1� (1� SY (uy j x))m]du: (6)

Similarly with FDH, one can then obtain the estimator for the order-m e¢ ciency by plugging

the bSY;n(y j x) to equation (6), which gives b�m;n(x; y) = R10 [1�(1� bSY;n(uy j x))m]du. Note
that this estimator is relatively easy to compute, as it based on a univariate integral. As

shown by Cazals et al. (2002), the remarkable statistical property of the order-m estimatorb�m;n(x; y) is its pn-consistency, i.e. it converges to the true value as quickly as parametric
estimators. Since this is valid for the general multiple input-output case, the estimator avoids

the curse of dimensionality problem, which is very rare property for nonparametric methods.

2.2 Conditional order-m e¢ ciency estimator

Using the probabilistic formulation, Cazals et al. (2002) also suggested a conditional e¢ -

ciency approach which includes external environmental factors that might in�uence the pro-

duction process but are neither inputs nor outputs under the control of the producer. Daraio

and Simar (2005) extended their ideas to a more general multivariate setup and proposed

a practical methodology to evaluate the e¤ect of environmental variables in the production

process. A major bene�t of this approach in contrast to popular two-stage framework is

that it can account for environmental factors in the e¢ ciency estimation without assuming

a separability condition. Indeed, in a favorable operational environment, entities will need

less inputs to produce the given set of outputs. Contrarily, an unfavorable operational envi-

ronment increases the input requirements. Therefore, the exogenous environment de�nitely

in�uences the input-output selection and its levels. The conditional e¢ ciency approach con-

sists of conditioning the production process to a given value of Z = z, where Z denotes

variables characterizing the operational environment. The joint probability function given
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Z = z can be de�ned as:

HXY jZ(x; y j z) = Pr(X � x; Y � y j Z = z): (7)

Again, this can be further decomposed into:

HXY jZ(x; y j z) = Pr(Y � y j X � x; Z = z) Pr(X � x j Z = z)
= SY jX;Z(Y � y j X � x;Z = z) FX(X � x j Z = z)
= SY (y j x; z) FX(x j z): (in shorthand notation)

(8)

The support of SY (y j x; z) de�nes the production technology when Z = z: To reduce the

deterministic nature, again instead of using the full support of SY (y j x; z) one can use
the expected value of maximum output e¢ ciency score of the unit (x; y), when compared

to m units randomly drawn from the population of units for which X � x. Analogously

to the unconditional order-m e¢ ciencies, conditional e¢ ciency measure �m(x; y j z) can be
expressed using the following integral:

�m(x; y j z) =
R1
0
[1� (1� SY (uy j x; z))m]du: (9)

Estimating SY (y j x; z) nonparametrically is somewhat more di¢ cult than for the uncon-
ditional case, as we need to use smoothing techniques in z (due to the equality constraint

Z = z):

ŜY;n(y j x; z) =
Pn

i=1 I(xi � x; yi � y)Kh (z; zi)Pn
i=1 I(xi � x)Kh (z; zi)

; (10)

where Kh(�) is a kernel function and h is an appropriate bandwidth parameter for this kernel.
The conditional order-m e¢ ciency estimator �̂m;n(x; y j z) is then obtained by plugging
ŜY;n(y j x; z) into equation (9), i.e.

�̂m;n(x; y j z) =
R1
0
[1� (1� ŜY;n(uy j x; z))m]du: (11)

Importantly, Cazals et al. (2002) showed that the convergence rate of estimator b�m;n(x; y j
z) depends on the dimension of Z, being (nhr)�1=2, where r = dim(Z).5 This means that

although order-m estimator avoids the curse of dimensionality, the accuracy of the conditional

estimator depends on the dimension of Z due to the smoothing in z.

The current literature assumes that the univariate/multivariate Z is continuous. Clearly,

an extension of the conditional e¢ ciency approach to a more general setting including both

discrete and continuous variables requires changes to the presented framework, because in

5Here it is assumed that bandwidth is similar for all environmental variables in Z. However, this assump-

tion can be easily relaxed, as we will do later.
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general it is not appropriate to treat discrete variables similarly with continuous (i.e. use

continuous kernel for all ordered and unordered discrete environmental variables). Next

section discusses the treatment of discrete variables, the choice of kernel functions and the

bandwidth selection in a generalized setting including both discrete and continuous exogenous

variables.

3 Estimation with mixed data

3.1 Motivation

This section shows how to generalize the conditional e¢ ciency approach to the case of mixed

environmental factors (i.e. having both discrete and continuous components). Firstly, it is im-

portant to notice that the conditional e¢ ciency approach presented in Section 2 is similar to

traditional nonparametric methods (like kernel methods) used in regression and density esti-

mation with respect to the presumption that the underlying data is continuous. If one would

have a data set containing a mix of continuous and discrete data, the conventional approach in

nonparametric estimation would be to split the sample in subgroups (or �cells�) corresponding

to the di¤erent values of the discrete variables and then estimate separate models/functions

for those subsamples. This approach is sometimes referred to as a �frequency-based�method.

One could follow the frequency-based approach also in the conditional e¢ ciency estimation

by splitting the sample to subgroups with respect to the values of discrete variables, and then

employ the methods presented in Section 2 for each of the subgroups (using inputs, outputs

and continuous environmental variables). In essence, this would combine the conditional

e¢ ciency approach with a so-called frontier separation (or metafrontier) approach.6

However, there are some important reasons why we do not see the sample splitting ap-

proach very promising in conditional e¢ ciency estimation. The �rst reason is that the

frequency-based method will be problematic and even infeasible when the sample size is

not large relative to the number of subgroups of discrete variables. For example, in our

empirical application the sample size is 293, and the number of subgroups (or cells) is

6 � 6 � 3 � 2 � 16 = 3456 meaning that there are only 293=3456 � 0:08 observations per

subgroup on average! We note that this is not just a curious example; in fact, e¢ ciency

applications using parametric regression methods use frequently many discrete variables in

relative small samples (100-300 observations). Besides the infeasibility problem, it is not

practical to estimate a large number of models for di¤erent values of discrete variables. A

6An alternative framework for treating discrete environmental variables would be to ignore them in the

conditional e¢ ciency estimation and just calculate afterwards (average) e¢ ciency scores for di¤erent values

of discrete variables. Clearly, this approach assumes separability of discrete factors from inputs and outputs

and is thus sensitive to same problems than two-stage approach, which is why we do not consider it in more

detail.
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further relevant disadvantage of the frequency-based method concerns statistical inference.

Although it is is quite straigthforward to test the e¤ect of a dummy variable using boost-

rapping methods by comparing e¢ ciency distributions of separate groups, the test is much

more challenging if there are more than two subgroups and in particular if one wants to test

signi�cance of the categorical variable that has many classes.

To avoid the problems of the frequency-based method (as well as separability assumption),

we propose to use an alternative approach that smooths also the discrete variables in a

particular manner (as �rst suggested by Aitchison and Aitken, 1976). The idea of smoothing

discrete along with continuous variables is based on novel kernel methods �rst presented by Qi

Li, Je¤ Racine and their colleagues (see e.g. Racine and Li, 2004; Hall, Li and Racine, 2004;

Li and Racine 2004, 2007, 2008). We introduce and adapt these techniques to conditional

e¢ ciency framework.

3.2 Generalized kernel estimation

As we treat continuous, discrete ordered (i.e. the discrete variables have a meaningful order)

and discrete unordered variables (i.e. it does not matter how the variables are classi�ed to

categories) di¤erently in the estimations, we rede�ne the multivariate Z. De�ne a vector of

observed environmental variables by zi = (zci ; z
o
i ; z

u
i ), i = 1; :::; n, where the �rst component

zci 2 Rr denotes a vector of continuous environmental variables, zoi is a v-dimensional vector
of environmental variables that assume ordered discrete values and zui is a w-dimensional

vector of exogeneous variables that assume unordered discrete values. In addition, let zois
and zuis denote sth components of z

o
i and z

u
i . Without losing any generality, we assume

that zois and z
u
is can take cs � 2 and ds � 2 di¤erent values, i.e. zois = f0; 1; :::; cs � 1g for

s = 1; :::; v and zuis = f0; 1; :::; ds � 1g for s = 1; :::; w. This means that the support of zoi and
zui are S

o =
vQ
s=1

f0; 1; :::; cs � 1g and Su =
wQ
s=1

f0; 1; :::; ds � 1g, respectively.
To smooth both continuous and discrete variables, we use a standard multivariate product

kernel for all three components in zi.7 By multiplying these multivariate kernel functions,

we obtain a generalized product kernel function, formally expressed as:

Kh (z; zi) =
rQ
s=1

1

hcs
lc
�
zcs � zcis
hcs

�
r+vQ
s=r+1

lo (zos ; z
o
is; h

o
s)

r+v+wQ
s=r+v+1

lu (zus ; z
u
is; h

u
s ) ; (12)

where lc(�), lo(�) and lu(�) are univariate kernel functions and hcs, hos and hus are bandwidths
for, respectively, continuous, ordered and unordered environmental variables. Regarding the

continuous kernel function lc(�), we know from the previous research (Daraio and Simar,

2005) that one should use kernels with compact support (i.e. kernels for which k(z) = 0 if

jzj � 1) such as the uniform, triangle, Epanechnikov or quartic kernels. In this study we will
7Of course, if any of the components zci ; z

o
i or z

u
i is univariate, then an univariate kernel su¢ ces for that

component.
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use the Epanechnikov kernel (although other compact kernels deliver very similar results).

For unordered variables we employ the Aitchison and Aitken (1976) discrete univariate kernel

function that was designed for discrete variables without any order, while for ordered dis-

crete variables we employ the Li and Racine (2007) discrete kernel function that also takes

into account the ordering of the categories. Formally, these continuous and discrete kernel

functions are given by:

lc
�
zcs � zcis
hcs

�
=

8><>:
3

4
p
5

�
1� 1

5

�
zcs�z

c
is

hcs

�2�
if
�
zcs�z

c
is

hcs

�2
� 5

0 otherwise
(13)

lu (zus ; z
u
is; h

u
s ) =

(
1� hus if zuis = z

u
s

hus= (cs � 1) if zuis 6= zus
(14)

lo (zos ; z
o
is; h

o
s) = (h

o
s)
jzois�z

o
s j: (15)

It is worth considering the two discrete kernel functions in more detail, as they have not

been previously used in nonparametric e¢ ciency literature. Firstly, both the Aitchison and

Aitken (1976) and Li and Racine (2007) kernel functions impose contraints for bandwidth

parameters. For the former, bandwidth hus must be between 0 and (cs � 1) =cs, whereas
for the latter bandwidth hos can take values between [0,1].

8 By considering the limit val-

ues of hus , we see that when h
u
s = 0 then lu (zus ; z

u
is; 0) = I(zuis = zus ) becomes an indicator

function, while hus = (cs � 1) =cs gives lu (zus ; zuis; (cs � 1) =cs) = 1=cs, i.e. a constant ker-

nel function. The �rst special case is of particular interest, because the indicator function

divides the sample to subgroups exactly the same way as the frequency-based method dis-

cussed in Section 3.1. Similarly, we can observe that when hos = 1, Li and Racine kernel

function becomes lo (zos ; z
o
is; h

o
s) = 1 for all values of z

o
s and z

o
is 2 f0; 1; :::; cs � 1g such that

the irrelevant variable zos will be smoothed out. In our conditional e¢ ciency setting, the

discrete kernel estimations boil intuitively down to in the order-m estimation drawing with

a nonnegative probability of (1 � hus ) observations which belong to the same class as the
evaluated observation, and with a nonnegative probability of hus= (cs � 1) (or alternatively
for unordered variables (hos)

jzois�z
o
s j) observations which do not belong to this class. Drawing

observations which both belong to and not belong to the evaluated class (although with a

di¤erent probability) smooths the discrete variable.

Having presented the idea of smoothing the mixed variables with the generalized kernel

approach, we apply the technique to the conditional e¢ ciency framework. For multivariate

z = (zc; zo; zu) including continuous and unordered and ordered discrete components, the

8For example, if we have an unordered dummy variable, we know that cs = 2 and thus hus 2 [0; 1=2].
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estimator for the conditional survivor function of Y can be expressed as:

bSY;n(y j x; z) = Pn
i=1 I(xi � x; yi � y)Kh (z; zi)Pn

i=1 I(xi � x)Kh (z; zi)
; (16)

where Kh (z; zi) is the generalized multivariate kernel function speci�ed in equation (12).

Further, one can again obtain the conditional e¢ ciency estimator b�m;n(x; y j z) by plugging
in bSY;n(y j x; z) in equation (6).
To show the validity of the approach, and in particular to show the consistency of the

estimators, we make the following assumptions.

Assumption (A1): The sample observations Sn = f(xi; yi; zi) j i = 1; :::; ng are real-
izations of independent and identically distributed (iid) random variables (X;Y; Z) with the

probability density function fXY Z(x; y; z). Both the marginal density function fZ(z) and the

conditional survivor function SY (y j x; z) have continuous second order partial derivatives
with respect to zc. For �xed values of x; y and z, fZ(z) > 0 and 0 < SY (y j x; z) < 1:
Assumption (A2): lc(�) is a symmetric, bounded, and compactly supported density

function.

Assumption (A3): As n!1, hcs ! 0 for s = 1; :::; r, hos ! 0 for s = 1; :::; v, hus ! 0

for s = 1; :::; w, and (nhc1h
c
2:::h

c
r)
� 1
2 !1.

The following theorem and corollary give the convergence rate of bSY;n(y j x; z) andb�m;n(x; y j z).
Theorem 1 Under Assumptions (A1) to (A3), bSY;n(y j x; z) converges to SY (y j x; z) with
Op

�
(nhc1h

c
2:::h

c
r)
� 1
2

�
:

Proof.

First, note that we can write the conditional survivor function estimator as:

bSY;n(y j x; z) = P
i2Nx

I(yi � y)Kh (z; zi)P
i2Nx

Kh (z; zi)
; (17)

where Nx = fxi j I (xi � x) = 1, i = 1; :::; ng. Li and Racine (2008) prove that bFY;n(y j
z) =

Pn
i=1 I(yi � y)Kh (z; zi)Pn

i=1Kh (z; zi)
converges to FY (y j z) in mean square error (and hence

in probability) with Op
�
(nhc1h

c
2:::h

c
r)
� 1
2

�
under regularity conditions that are similar to

Assumptions (A1)-(A3). Besides X � x, the only di¤erence to Li and Racine (2008) is

that we are estimating the conditional survivor function SY (y j z) instead of the conditional
distribution function FY (y j z). Since by de�nition SY (y j z) = 1 � FY (y j z), their results
extends to our case when condition on X � x:
The following result follows directly from Theorem 1, as for given m �m(x; y j z) depends

only on SY (y j x; z).

12



Corollary 1 Under Assumptions (A1) to (A3), b�m;n(x; y j z) converges to �m(x; y j z)
with Op

�
(nhc1h

c
2:::h

c
r)
� 1
2

�
for any �xed value of m.

These results prove that the conditional e¢ ciency estimator b�m;n(x; y j z) is consistent in
a more general case including both discrete and continuous environmental variables. Addi-

tionally, they show that the convergence rate of the estimator is (nhc1h
c
2:::h

c
r)
� 1
2 , i.e. it does

not depend on the number of discrete variables in Z but only on the number of continuous

variables. This is very relevant result, since e¢ ciency applications use frequently several

discrete exogenous factors in small samples.

3.3 Bandwidth selection: A data-driven method

The bandwidth selection is the most crucial step in nonparametric kernel estimation (cfr.

it has almost the same importance as the model speci�cation in parametric estimations).

If the bandwidth is too large, the kernel function will be oversmoothed; if the bandwidth

is too small, the kernel function will be undersmoothed. The initial proposal of Daraio and

Simar (2005) estimated for zc the bandwidths hc by the likelihood cross-validation k -nearest

neighbor technique. However, only asymptotic optimality of this approach has been shown

and although the conditional e¢ ciency estimates try to avoid the separability condition, its

bandwidth selection relies on it. Indeed, by only relying on the exogenous variables, the

estimation of hc ignores the impact of zc on the production process (i.e. the impact of zc on

y given that xi � x). Therefore, conditional bandwidth estimations are required.
Similar as before, the main challenge lies in extending the traditional bandwidth estima-

tions for y conditional on Z = z, to estimations for y conditional on X � x and Z = z (as
required by the conditional e¢ ciency model). The former conditional bandwidth estimations

are developed by the models of Hall et al. (2004) and Li and Racine (2007, 2008). The latter

conditional e¢ ciency estimations are explored by Badin et al. (2008) for continuous variables

only. Following the lines of Badin et al. (2008) we adopt the approach of Hall et al. (2004)

to our framework.

Before going more into detail on the approach, we highlight that several procedures for

conditional bandwidth estimation exist. For example, the seemingly easier plug-in method. It

only seems easier as plug-in methods could be extremely computational intensive and, more

importantly, it does not necessarily lead to an optimal bandwidth if some of the variables

are irrelevant. Therefore, we opt for a data-driven cross-validation approach. Although there

does not exist a data-driven bandwidth selection approach for mixed conditional distribution

function (or survivor function), Li and Racine (2008) suggest to estimate the bandwidth by

the least squares cross-validation method based on the closely related conditional probability

density functions (PDF). As a major advantage, the latter procedure removes irrelevant

covariates by oversmoothing these variables.
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To estimate bandwidths (hc; ho; hu), we minimize the cross-validation function CV (hy; hc; ho; hu),

where hy is a bandwidth vector for outputs y: Note that although we estimate bandwidths

also for y, those bandwidths are not used in conditional e¢ ciency estimation.9 De�ne

therefore the conditional PDF of Y for X � x and Z = z (with z = (zc; zo; zu)) as

g(y j X � x; Z = z) = f(y;X � x; Z = z)=m(X � x;Z = z) where f denotes the joint

density of (y; z) and m the marginal density of z for given X � x: The density f and

the marginal density m are not observed but can be estimated by the use of nonnegative,

generalized kernels K(�) and L(�):

f̂(y; xi � x; z) = 1
n

Pn
i=1 I(xi � x)Kh(z; zi)Lhy (y; yi)

m̂(xi � x; z) = 1
n

Pn
i=1 I(xi � x)Kh(z; zi)

(18)

where the generalized kernel Kh(z; zi) is computed as in equation (12) and the multivariate

kernel Lhy (y; yi) as
Qq
j=1

1
hyj
l
�
yj�yij
hyj

�
with l(�) a univariate kernel function (Epanechnikov).

We start from the weighted integrated squared error (ISE) between ĝ(�) and g(�):

ISE =
R
fĝ(y j xi � x; z)� g(y j xi � x; z)g2m(xi � x; z)dW (z)dy

=
R
ĝ(y j X � x; z)2m(xi � x; z)dW (z)dy (I1n)

�2
R
ĝ(y j X � x; z)g(y j X � x; z)m(xi � x; z)dW (z)dy (I2n)

+
R
g(y j X � x; z)2m(xi � x; z)dW (z)dy (I3n)

(19)

where dW (z) denotes an in�nitesimal element of a measure (in order to avoid for the continu-

ous components of z, zc, dividing by 0 in the ratio f̂(y; xi � x; z)=m̂(xi � x; z)): The leading
term of the ISE (i.e. the part depending on the bandwidth; which corresponds in equation

(19) with the terms I1n and I2n as these have estimates of g(�)) can be approximated by a
cross-validation (CV ) objective function which does not use numerical integration, nor initial

assumptions on bandwidths or density function estimators. Hall et al. (2004) show that the

leading term of the CV criterion corresponds to:

CV (hy1; :::; h
y
q ; h

c
1; :::; h

c
r; h

o
1; :::; h

o
v; h

u
1 ; :::; h

u
w) = Î1n � 2Î2n (20)

where the empirical approximations of I1n and I2n, respectively, Î1n and Î2n; are based on

a leave-one-out sample, i.e. a sample of (n � 1) observations due to deleting observation i
from the sample. By optimizing (hy1; :::; h

y
q ; h

c
1; :::; h

c
r; h

o
1; :::; h

o
v; h

u
1 ; :::; h

u
w), we minimize the

CV function.

It can be shown that the optimal order of the bandwidths corresponds hcs � n�1=(5+r)

and ho;us � n�2=(5+r) (Li and Racine, 2008). However, as we basically estimate the optimal
bandwidth for the conditional PDF instead of for the closely related conditional CDF, we

9 In total, there are q+ r+v+w bandwidths: (hy ; hc; ho; hu) = (hy1 ; :::; h
y
q ; h

c
1; :::; h

c
r; h

o
1; :::; h

o
v ; h

u
1 ; :::; h

u
w),

but only bandwidth vectors hc; ho and huare used in conditional e¢ ciency estimation.

14



need to adjust the bandwidths to obtain bandwidths of the optimal order of hcs � n�1=(4+r)

and ho;us � n�2=(4+r). The bandwidths as computed along the conditional PDF can be

corrected by multiplying hcs with n
1

5+r�
1

4+r and ho;us by n
2

5+r�
2

4+r .

As also remarked by Badin et al. (2008, p. 8), the only di¤erence between the general-

ized conditional bandwidth computation of Hall et al. (2004) and the optimal data-driven

bandwidth needed for the conditional e¢ ciency framework is the reduction of the reference

sample size where (hc; ho; hu) are computed in. In particular, instead of using the full refer-

ence sample (consisting of n observations) we only consider the observations for which xi � x
and compute for this limited reference set the bandwidths (hc; ho; hu). As such, we obtain

for every observation a particular set of bandwidths in each of its dimensions (i.e. for every

element of zi). As a disadvantage, this approach dramatically limits the number of reference

units for observations with a small x.10

Finally, we note that in some applications one might want to compare performance of

units only with the observations in the same category (i.e. the same value of discrete vari-

able). For example, in evaluating e¢ ciency of hospitals using data from several countries,

one may want to limit comparison units to hospitals in the same country because of the

technological and operational di¤erences. In our framework this is very easy to implement

by imposing bandwidth to be zero for the discrete variable in question (i.e. country). It is

worth emphasizing that the presented framework still allows bandwidths of other discrete en-

vironmental variables to be positive and in that sense is more general than the nonparametric

frequency-based (or frontier separation) approach.

3.4 Examining the in�uence of exogenous variables on the produc-

tion process

3.4.1 Visualization

To evaluate systematically the in�uence of exogeneous variables on the production process,

we can compare the conditional e¢ ciency measure b�m;n(x; y j z) with the unconditional
e¢ ciency measure b�m;n(x; y): In particular, we follow the methodology suggested by Daraio
and Simar (2005, 2007a) by nonparametrically regressing the ratio of the conditional and

unconditional e¢ ciency measure Qz =
b�m;n(x;yjz)b�m;n(x;y)

on environmental factors z. They use a

smooth nonparametric kernel regression to estimate the model Qzi = f(zi) + �i. In addition,

they visualize the estimated relationships between environmental variables and the ratio of

e¢ ciency scores. Using simulations, Daraio and Simar showed that this approach allows one

to detect positive, negative, neutral or even nonmonotone e¤ects of the environmental factors

on the production process.

10Note that this is also the case for the traditional and robust FDH estimator of, respectively, Deprins et

al. (1984) and Cazals et al. (2002).
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When Z is continuous and univariate the visualization is straigthforward as one can use

scatterplots of Qz against Z; and as a smoothed nonparametric regression curve can illustrate

the e¤ect of Z on Qz. For example in an output-oriented e¢ ciency, a horizontal line implies

that Z does not a¤ect the production process, whereas an increasing (decreasing) smoothed

regression curve shows that Z is favorable (unfavorable) to the production process. By

interpretation, a favorable e¤ect means that the environmental variable plays the role of a

�substitutive� input in the production process by increasing the productivity of traditional

inputs, whereas an unfavorable e¤ect implies that the environmental variable contraints the

production by using more inputs in production activity.

When Z is multivariate and includes also discrete variables, visualization is also feasible,

although somewhat more challenging. For dim(Z) = 2, one can use 3-dimensional plots.

However, if dim(Z) > 2, those are not enough. Perhaps the easiest solution for multivariate

cases is to examine so-called partial regression plots (see e.g. Daraio and Simar, 2007a; Badin

et al., 2008), where only one (or two) environmental variable(s) is (are) allowed to change

and other variables are kept at a �xed value. Further, one can then use several di¤erent

�xed values such as median and 1st and 3rd quartile to examine whether the e¤ect on

individual variable Zs is the same for di¤erent values of others exogenous factors. This kind

of procedure helps to recognize the e¤ect of individual variable on the production process

and possible interactional e¤ects between environmental variables. Moreover, it can be used

also for discrete variables as we illustrate in the empirical application.

3.4.2 Nonparametric estimation and inference

Although it can be useful to visualize the e¤ect of environmental variables on the production

process, researchers are usually more interested in their statistical signi�cance. Yet in the

conditional e¢ ciency framework, so far, only descriptive analysis has been suggested and

applied in studying the e¤ect of environmental variables on the production process. This is

in sharp contrast to the papers using two-stage models, where tools of statistical inference

have been used extensively. Our aim is to propose for robust conditional e¢ ciency models

a framework to test the signi�cance of mixed multivariate environmental variables in the

production process. We follow the lines of earlier research by focusing on smoothed nonpara-

metric regression. However, instead of Nadaraya-Watson kernel regression, which has been

mostly used in previous conditional e¢ ciency studies, we will use local linear regression for

estimating Qzi = f(zi) + �i. Compared to the Nadaraya-Watson kernel estimator (i.e. local

constant regression), the local linear estimator is less sensitive to boundary e¤ects and can

also simultaneously uncover the marginal e¤ects of the environmental variables on Qz.11

As in our framework Z can include both discrete and continuous variables, it is again useful

11Jeong et al. (2008) use local linear procedure to estimate the e¤ect of continuous exogenous variable(s).
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to employ smoothing techniques which allow one to estimate the nonparametric regression

model without sample splitting (i.e. which was the case in the frequency-based approach).

Therefore, we use the nonparametric regression method developed by Racine and Li (2004)

and Li and Racine (2004), which smooths both continuous and discrete variables. To present

the basic idea shortly, consider our nonparametric model:

Qzi = f(zi) + �i; i = 1; :::; n (21)

where as previously Qzi =
b�m;n(xi;yijzi)b�m;n(xi;yi)

, zi = (zci ; z
o
i ; z

u
i ) includes values of continuous, or-

dered and unordered exogenous variables for observation i, �i is the usual error term with

E (�i jzi ) = 0, and f is the conditional mean function. The local linear method is based on
the following minimization problem:

min
f�;�g

nX
i=1

(Qzi � �� (zci � zc)�)
2
Kh(z; zi); (22)

whereKh is the generalized product kernel function de�ned earlier. Letting b� = b�(z) and b� =b�(zc) denote the solutions that minimize equation (22), it is straigthforward to show that local
linear estimators b�(z) and b�(zc) are consistent estimators for f(z) = E (Qz jz ) and �(zc):
Note that the practical advantage of local linear regression is the fact that one can estimate

simultaneously both the conditional mean function f(z) and the gradient vector �(zc) for

continuous components (which can be interpreted as varying coe¢ cient). For bandwidth

choice we use again the least-squares cross-validation, although one can employ also other

methods available in literature.

Since our estimation framework is fully nonparametric, we also want to avoid any paramet-

ric assumptions in the statistical inference stage.12 It is worth emphasizing that parametric

assumptions would be di¢ cult to justify in this context and even inconsistent with our non-

parametric e¢ ciency estimation. Thus, to test the signi�cance of regressors in (21), we will

utilize recently developed nonparametric tests. More speci�cally, we test the signi�cance of

each of the continuous and each of the discrete variables using tests, respectively, proposed

by Racine (1997) and Racine et al. (2006). These tests can be seen as the nonparametric

equivalent of standard t-tests in ordinary least squares regression. However, nonparametric

test are more general than standard t-tests, as the former tests both linear and (unspeci�ed)

non-linear relationships. In a multivariate setting the null hypotheses for testing continuous

12Note that our robust conditional e¢ ciency framework does not su¤er from the statistical problems of

traditional two-stage model listed in Simar and Wilson (2007). For justi�cation why the inference problems

are avoided, see De Witte and Kortelainen (2008).
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and discrete (both ordered and unordered) components are, respectively:

H0 : E
�
Qz
��� eZ;Zcs � = E �Qz ��� eZ � almost everywhere, and (23)

H0 : E
�
Qz
��� eZ;Zds � = E �Qz ��� eZ � almost everywhere, (24)

where Zcs and Z
d
s denote sth component of continuous and discrete (ordered or unordered)

variables and eZ represent all other environmental variables, which can be both continuous

and discrete. The alternative hypotheses H1 are negations for the null hypotheses. Thus,

e.g., for the second case the alternative hypothesis is H1 : E
�
Qz
��� eZ;Zds � 6= E �Qz ��� eZ � :

To deduce a practical implementation, we �rstly rewrite the null hypothesis for continuous

variables as:

H0 :
@E

�
Qz
��� eZ;Zcs �

@Zcs
= � (Zcs) = 0 almost everywhere; (25)

i.e., that the partial derivative of f(Z) with respect to Zcs is zero. Using this representation,

the test statistic for continuous components can be written as:

Ic = E
n
� (Zcs)

2
o
: (26)

A consistent estimator for this test statistic can be obtained by substituting the local linear

estimator for unknown derivative and using a sample average of I, i.e.

Icn =
1

n

nX
i=1

b� (zis)2 : (27)

To estimate the �nite-sample distribution and critical value of the test statistic Icn, nonpara-

metric bootstrap procedures can be used. We shortly explain the steps of the bootstrap

procedure; for more details, see Racine (1997). First estimate the conditional mean function

E
�
Qz
��� eZ;Zcs � � f0 and save residuals b�i; i = 1; :::; n: Secondly, resample with replacement

from the residual distribution bF ; which has probability mass 1
n for all b�i; to obtain a boot-

strap sample fb��i gni=1 : Thirdly, generate a bootstrap sample n bQ�i ; zion
i=1
, where bQ�i = f̂0i +b��i ;

i = 1; :::; n and zi include all conditioning variables. Fourthly, estimate b� (zis)� and the test
statistic using the bootstrap sample. By repeating steps (1)-(4) B times (where B is a large

number) one obtains a sample distribution that can be then used for calculating critical

values and p-values for the test statistic.

Secondly, for discrete variables a statistic similar to (27) can be used for the signi�cance

testing. Let us assume that the testable discrete variable Zds (ordered or unordered) takes c

di¤erent values, f0; 1; 2; :::; c� 1g. If we denote the conditional mean function by f( eZ;Zds );
the null hypothesis E

�
Qz
��� eZ;Zds � = E �Qz ��� eZ � is equivalent to f( eZ;Zds = l) = f( eZ;Zds = 0)

for all eZ and for l = 1; 2; :::; c� 1: The test statistic is:

18



Id =
c�1X
l=1

E

�h
f( eZ;Zds = l)� f( eZ;Zds = 0)i2� ; (28)

which is clearly always nonnegative and equals zero when the null hypothesis is true. A

consistent estimator of the test statistic is then obtained as:

Idn =
1

n

nX
i=1

c�1X
l=1

h bf(ezi; zdis = l)� bf(ezi; zdis = 0)i2 ; (29)

where bf is the local linear estimator of the conditional mean function at the given values of
the variables. This estimator can be straightforwardly generalized also to the case, where

multiple discrete variables are tested simultaneously.

To approximate the �nite-sample distribution of Idn, we will again use a boostrap pro-

cedure.13 As the procedure is a bit di¤erent than for continuous variables, we next sketch

shortly the steps. Firstly, randomly select zd;�is from
�
zdis
	n
i=1

with replacement and calln bQi; ezi; zd;�is on
i=1

the bootstrap sample. Secondly, use the bootstrap sample to compute the

bootstrap statistic I�;dn , which is otherwise similar than (29) but zdis is replaced by z
d;�
is :

Thirdly, by repeating steps 1 and 2 B times (with B a large number) one obtains a sample

distribution that can be then used for calculating critical values and p-values.

4 Numerical illustrations

To illustate the proposed methods, we next present some examples using simulated data

sets. We followed earlier literature by considering a simulated output-oriented model with

multiple inputs and multiple outputs. The data generating process is similar as in Park et al.

(2000), Daraio and Simar (2005, 2007) and Badin et al. (2008). However, although inputs

and input-output relationships were generated similarly, we deviate from previous conditional

e¢ ciency studies by allowing Z to include also discrete exogenous factors. To this end, we

�rst consider an example including univariate discrete Z and then cases with multivariate Z

including both discrete and continuous components.

All the examples concentrate on a two-input and two-output technology, which is repre-

sented by the following convex technology:

y(2) = 1:0845
�
x(1)

�0:3 �
x(2)

�0:4
� y(1) (30)

where y(1); y(2); x(1) and x(2) denote the �rst and the second components of outputs and

inputs, respectively. We generate independent uniform variables using X(j)
i � U (1; 2) and

13Note that Racine et al. (2006) propose for discrete variables also two alternative bootstrap procedures

that could be used in this context. However, the computational burden is larger.
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eY (j)i � U (0:2; 5) for j = 1; 2. The output e¢ cient random points, which do not include yet

the e¤ect of Z, are calculated by:

Y
(1)
i;eff =

1:0845
�
X(1)

�0:3 �
X(2)

�0:4
Si + 1

(31)

Y
(2)
i;eff = 1:0845

�
X(1)

�0:3 �
X(2)

�0:4
� Y (1)i;eff ; (32)

where Si = eY (2)i = eY (1)i represent the slopes which characterize the generated random rays

in the output space for j = 1; 2. Output values are then generated by multiplying the

output e¢ cient random points by an ine¢ ciency term exp (Ui) ; where Ui � Exp (1=3) ; and
by terms representing the e¤ect of exogenous variables Z. In all simulations, we use the

following formulas to specify the dependency on environmental factors:

Y
(1)
i = Y

(1)
i;eff � (1 + �1Z1;i) � (1 + �2Z2;i) � (1 + �3Z3;i) � (1 + �4Z4;i) � exp (Ui) ; (33)

Y
(2)
i = Y

(2)
i;eff � (1 + �1Z1;i) � (1 + �2Z2;i) � (1 + �3Z3;i) � (1 + �4Z4;i) � exp (Ui) ; (34)

where Z1;i 2 f0; 1; 2g with P (Z1;i = l) = 1=3 for l = 0; 1; 2; Zt;i 2 f0; 1g for t = 2; 3

with P (Zt;i = l) = 0:5 for l = 0; 1; and Z4;i � N (10; 3) : The values of coe¢ cients �t
for t = 1; 2; 3; 4 are speci�ed separately for di¤erent simulations. We treat all the discrete

variables as unordered and thus use Aitchison and Aitken kernel function for them, while

Epanechnikov kernel is employed for continuous variable (see Section 3.2). Finally, for each

case we simulate a sample of n = 100 observations and select m = 30 and B = 1000.

Simulated case 1: univariate discrete Z

In the �rst case, we set in equations (33) and (34) �1 = 1:2 and �2 = �3 = �4 = 0, which

gives Y (j)i = Y
(j)
i;eff �(1+1:2Z1;i)�exp (Ui) for j = 1; 2. In other words, in this univariate case

we explore the e¤ect of only one discrete (unordered) variable (and exclude other variables

from estimation). Summary statistics on the unconditional e¢ ciency scores, the conditional

e¢ ciency scores and the bandwidths are presented in Table 1. Recall that in conditional

e¢ ciency framework the bandwidths are observation speci�c (we also present the overall

bandwidths, which are not observation speci�c, in Table 1 for the purpose of comparison).

As the median and maximum bandwiths are rather small, this points to a signi�cant e¤ect

of the discrete variable. The e¤ect is also detected by the small p-value of nonparametric

signi�cance test as presented in Table 2. Given the set-up of this simulation, our results

indicate the proper working of the conditional e¢ ciency model in this univariate discrete

scenario.
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Simulated case 2: multivariate mixed Z

In the second case, we set �1 = 1:2, �2 = 0:5; �3 = 1 and �4 = 1 such that we include three

(unordered) discrete and one continuous exogenous variables in the data generating process

and in estimation. The results, as presented in Tables 1 and 2 again show the appropriate

working of the model. Indeed, as in the simulation each of the exogenous variables (positively)

in�uence outputs, we correctly observe low median bandwidths. This is also re�ected in the

low (and thus highly signi�cant) p-values of the test statistic. Interestingly, the bandwidth

values of Z4 are very large for some of the observations, which explain the high mean value.

However, this is only case for a small number of observations (see median value), and the

e¤ect of Z4 is anyway signi�cant.

Simulated case 3: insigni�cant variables

In the last scenario, we test for the inclusion of irrelevant variables in the model. Therefore,

we set �1 = 1:2, �2 = 0:5; �3 = 0 and �4 = 0, in which case Z3 and Z4 are generated

independently on inputs and outputs having no in�uence on the production process. In

contrast to the �rst case we now use all the exogenous variables to examine whether our

method can recognize insigni�cant variables (i.e. Z3 and Z4). The results in Tables 1 and 2

show that this is indeed the case, as the irrelevant in�uence is con�rmed by the high p-values

of the nonparametric tests for Z3 and Z4. However, one should note that the observation

speci�c median bandwidths for Z3 and especially for Z4 have not increased a lot. The �rst

of these can be explained by the fact that median bandwidth for Z3 actually equals its upper

bound (0.50) before the correction of n
2

5+r�
2

4+r . For continous variable the median bandwidth

is instead quite far from what we would expect. On the other hand, remark that the overall

(non-observation speci�c) bandwidths capture correctly the in�uence of Z1 and Z2 and the

non-in�uence of Z3 and Z4. Based on these simulation results it seems that observation

speci�c bandwidths are not so powerful in recognizing insigni�cant variables than the overall

bandwidths. This might be explained by the sample sizes used in bandwidth estimations;

while the bandwidth choice in conditional e¢ ciency estimation uses less than 30 observations

for a half of the sample, the overall bandwidths are based on the whole sample. In any case,

this example shows that it is not necessarily enough to consider only observation speci�c

bandwidth values when examining the statistical signi�cances of exogenous variables, but

also statistical inference tools (and / or not observation speci�c bandwidths) are needed.

However, we leave a more detailed examination of this issue for further research.

To summarize, the results of the three scenarios give a good indication of the proper

working of the proposed estimation and inference methods. Moreover, they illustrate how

these methods can be used to examine the statistical signi�cance of continuous and discrete

exogenous factors. To show potentiality in empirical applications, we next apply our approach
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Table 1: E¢ ciency estimates and bandwidths

Minimum Median Mean Maximum St. Dev. Overall bw

case 1 unconditional e¤. 0.7524 1.3936 2.0517 8.0408 1.5392

conditional e¤. 0.9153 1.0060 1.6232 14.5742 1.6523

bandwidth Z1 0.0000 0.0624 0.0649 0.4222 0.0784 1.89 E-9

case 2 unconditional e¤. 0.6841 1.7019 2.8750 14.9106 2.6730

conditional e¤. 0.9795 1.1154 1.6444 6.0867 1.0944

bandwidth Z1 0.0000 0.0984 0.1372 0.4904 0.1441 0.1267

bandwidth Z2 0.0000 0.0847 0.1157 0.3678 0.1265 0.1105

bandwidth Z3 0.0000 0.3224 0.2303 0.3678 0.1552 0.1591

bandwidth Z4 0.0001 2.8054 974221 10937390 2234387 1.5400

case 3 unconditional e¤. 0.7159 1.4203 2.3027 10.7898 1.9099

conditional e¤. 0.9854 1.0000 1.3366 4.6564 0.6597

bandwidth Z1 0.0000 0.0000 0.0450 0.4904 0.0884 0.0525

bandwidth Z2 0.0000 0.0655 0.1314 0.3678 0.1551 1.9935 E-10

bandwidth Z3 0.0000 0.3678 0.2615 0.3678 0.1447 0.3678

bandwidth Z4 0.0001 4.0082 6580327 77941540 13446070 1.7085 E+7

Number of observations to estimate bandwidth on:

Average 33 Frequency 0-10 15

St. Dev. 20.8 10-20 17

Min 0 20-30 18

Max 84 30-40 13

40-50 14

50-60 12

60-100 10

to a real life data set.

5 Application to educational e¢ ciency

5.1 The performance of pupils

Our conditional e¢ ciency model allows one to proxy the exogenous environment by a combi-

nation of discrete, both ordered and unordered, and continuous variables. The use of combined
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Table 2: Nonparametric signi�cance test

case 1 case2 case 3

p-value

Z1 2.22 E-16*** 0.042** 0.020**

Z2 0.012** 0.028**

Z3 0.018** 0.515

Z4 0.006*** 0.1650

R2

0.2950 0.6840 0.5846

where "***" denotes signi�cance at 1% level, "**" at 5% and "*" at 10%.

discrete and continuous variables is particularly valuable when assessing educational data.14

We estimate the performance of British pupils at the age of 15 as surveyed by the inter-

national Pisa (Program for International Student Assessment) data set for 2006. The latter

OECD survey is currently at its third wave (2000, 2003 and 2006) and contains survey data

for more than 400,000 pupils from 57 countries. Besides a pupil survey, it consists of a survey

by the school and by the parents which try to capture the socio-economic background of the

pupil. We limited our sample to 16 randomly chosen English and Welsh schools which count

in total 293 surveyed pupils. By considering a small sample, we try to illustrate that our

conditional e¢ ciency approach is able to include a large number of discrete variables without

losing accuracy of the estimation. As the conditional e¢ ciency model relies on the robust

e¢ ciency estimates, it is also well suited to deal with the extremal and atypical observations

which could arise from survey data (e.g. Bound et al., 2001).

The conditional order-m estimation requires the selection of input, output and environ-

mental variables. We follow the education literature in selecting these. Students are spending

resources (in particular time) to study languages, math, science and other skills. The four

input variables sum for, respectively, language, math, science and other subjects the total

hours that pupil reported to spend on the subject during regular classes, out of school and

self study (i.e. the sum of the variables ST31Q in the Pisa data set). As such, the inputs

proxy the devotion to the subjects. Given these e¤orts, students are obtaining test results

which are proxied by 5 plausible values for, respectively, language, math and science (the

plausible values are standardized across the OECD countries with an average score of 500).

Following the standard literature (e.g. OECD, 2007) we consider as output variables the

arithmetic average of the 5 plausible values in the Pisa data set for each of the three sub-

14Obviously, the scope of the generalized conditional e¢ ciency framework is much broader. Therefore, the

R code is available from the authors upon request. The code utilizes some features of np package by Hay�eld

and Racine (2008).
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Table 3: Descriptive statistics

Minimum Median Mean Maximum St. Dev.

Input Hours devoted to language 0 6 6 21 3

Hours devoted to math 0 6 6 21 3

Hours devoted to science 0 6 6 13 3

Hours devoted to other subject 0 7 8 21 4

Output Test score language 214 477 474 673 90

Test score math 246 472 474 667 74

Test score science 227 487 492 715 78

SEE Education mother 1 4 4 6 1

Education father 1 4 4 6 1

Lang. at home (1=di¤; 2=other nat; 3=Eng)

Own room (1=No; 2=Yes)

School

School size 187 1003 946 1501 326

Students per teacher 12 16 15 17 1

jects. The socio-economic environment (SEE) of the pupil is captured by 7 environmental

variables (following Hampden-Thompson and Johnston, 2006 and references therein). We

include two ordered variables, i.e. the education of the mother and the father as proxied by

a variable between 0 (did not complete ISCED 1; where ISCED denotes the International

Standard Classi�cation of Education by the Unesco) and 6 (completed ISCED 5a or 6). We

also condition on three unordered variables: whether the language at home is the test lan-

guage (denoted by a value of 3), another national language (a value of 2) or another language

(a value of 1); whether the pupil possesses his/her own room (with a value of 2 if so, 1 if not);

and a factor denoting the school. The latter variable captures the clustering at the school

level which could, e.g., arise from the neighborhood the school is located. Finally, we include

two continuous variables which are related to the school characteristics: the total school size

and the average teacher-student ratio of the school. Some descriptive sample statistics are

presented in Table 3.

In conditional e¢ ciency and nonparametric regression estimations we use the same kernel

functions as described in Section 3.2. Similarly with simulations, we use m = 30 and B =

1000.
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5.2 Results

To assess the performances of the pupils, we estimate the extent to which the pupils are able

to deploy their acquired knowledge to obtain higher test results (i.e. an output-orientation).

Using this input and output set, we experimented with various combinations of the exogenous

variables. As in almost all models the discrete variables had a signi�cant e¤ect on the

performance of the pupils, we present only two models and particularly discuss the model

with school size as an only continuous variable. Denote �Model 1�as the general model with

all exogenous variables, and �Model 2�as the model without student-teacher ratio. Applying a

standard robust order-m model (so without taking the exogenous environment into account),

we obtain average e¢ ciency scores of b�m(x; y) = 1:22 (see also Table 4). This indicates

that if all pupils would perform as e¢ cient as the best practice pupils (i.e. those pupils who

are obtaining with a given devotion to the subjects the highest test results), the test scores

could on average increase by 22%. Note that some pupils have an e¢ ciency score below

1. These �super-e¢ cient�pupils are performing better than the average m (m = 30) pupils

they were benchmarked within the order-m procedure. Obviously, these e¢ ciency scores are

in�uenced by the socio-economic background of the pupils. We try to capture the pupil and

school speci�c background by a mix of 7 discrete and continuous exogenous variables (Model

1). Taking into account pupil and school characteristics, the average conditional e¢ ciency

score reduces to b�m(x; y j z) = 1:15. By excluding the number of students per teacher as

exogenous variable b�m(x; y j z) the mean value reduces to 1.14 (Model 2). Summary statistics
for the pupil-speci�c bandwidth estimates in Model 2 are presented in Table 4. We observe

that the bandwidth for the school size is very large for all observations. This seems to be a

result of e¤ectively smoothing out the insigni�cant variable. On the contrary, the discrete

variables have rather narrow bandwidths which seem to indicate their signi�cant in�uence

on the production process. This will be tested next.

To examine the in�uence (i.e. favorable or unfavorable) of the exogenous variables, we

nonparametrically regress the exogenous variables on the ratio of the conditioned to the

unconditioned e¢ ciency scores. From the signi�cance tests and the partial regression plots

for the discrete and continuous variables (see below), we can learn that the average e¤ect on

e¢ ciency is positive and signi�cantly di¤erent from 0 for all ordered discrete variables and

insigni�cantly negative for the continuous variables (see Table 5). The average favorable e¤ect

for the �rst two variables (education of mother and father) means that for median values of the

other variables, the e¤ect is positive. This means that the larger z the more the unconditioned

e¢ ciency score will bene�t from z if it is favorable (and thus the higher the ratio). Instead,

for unordered discrete variables we cannot give similar interpretation, as classes do not have

natural ordering. However, we can see whether there are signi�cant di¤erences between

classes and which classes are favorable for educational e¢ ciency. Overall, our results are in
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Table 4: E¢ ciency estimates and bandwidth

Minimum Median Mean Maximum St. Dev. Overall bw

Unconditional e¤. 0.9316 1.1974 1.2160 2.0270 0.1867

Conditional e¤. - Model 1 0.9993 1.1028 1.1466 1.9174 0.1571

Conditional e¤. - Model 2 0.9998 1.0905 1.1384 1.8803 0.1518

Bw education mother (M2) 0.0000 0.4514 0.4407 0.6848 0.1265 0.5577

Bw education father (M2) 0.0001 0.3269 0.3409 0.6848 0.1924 0.4886

Bw lang. at home (M2) 0.0000 0.1538 0.1573 0.4210 0.1323 0.3148

Bw own room (M2) 0.0000 0.1770 0.1864 0.3424 0.1185 0.2800

Bw school e¤ect (M2) 0.0000 0.6075 0.5665 0.6420 0.1364 0.3203

Bw school size (M2) 8.275E-05 5.042E+09 7.321E+09 9.975E+10 8.457E+09 1.196E+3

Table 5: Nonparametric signi�cance test

Model 1 Model 2 Average e¤ect as

p-value p-value revealed from partial plot Interpretation

Education mother 0.075* 0.079* Favorable Higher education is better

Education father 0.012** 0.015** Favorable Higher education is better

Language 0.012** 0.016** - Same language is better

Own room 0.041** 0.008*** - Own room is better

School variable 0.154 0.032** - E¤ect between schools

School size 0.153 0.155 Unfavorable Smaller school is better

Student-teacher ratio 0.510 Unfavorable Smaller classes are better

where "***" denotes signi�cance at 1% level, "**" at 5% and "*" at 10%.

line with the general (parametric) literature (see Sirin (2005) for a comprehensive overview

of published articles between 1990 and 2000):

- More educated parents will stimulate and encourage their children, such that for a given

study devotion these will obtain higher test results.

- Children which are facing language di¢ culties at school (because they speak a di¤erent

language at home) obtain for a given e¤ort lower test results.

- Besides creating a good study environment, the possession of an own room can proxy

the wealth of the family. Pupils with an own room (or, alternatively, from a wealthier family)

obtain better results.

- There are signi�cant di¤erences between schools. This school variable can proxy the

neighborhood e¤ects and clustering of pupils (which is in line with the metafrontier litera-

ture on school and pupil decompositions, see Thanassoulis and Portela, 2002 and references

therein).
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Table 6: Evaluation of general exogenous variables - example for native language

Constant variable

Education mother 4 4 4

Education father 4 4 4

Own room 2 2 2

School variable 71 71 71

School size 1003 1003 1003

Evaluation

Language 1 2 3

1 quartile 0.973 0.921 0.979

Mean 0.934 0.937 0.938

3 quartile 0.878 0.910 0.919

Finally, as mentioned above we can use partial regression plots to visualize the e¤ect

of the exogenous environment. In a generalized multivariate framework, we set all other

exogenous variables on their median value and, respectively, on their �rst and third quartile

value to capture the heterogeneity among pupils. (Discrete variables are evaluated once

at each category and continuous variables at 50 evaluation points.) We next illustrate the

approach for the native language and for the school size. While keeping all other exogenous

variables at their median value (or respectively at their �rst and third quartile value), we

evaluate the variable (in casu the language) at its di¤erent data points (i.e. factors between

1, representing other language than any national language, and 3 the native language is the

same as the test language).

The results for the language are presented in Table 6 and in Figure 1 and, respectively,

for the school size in Figure 2. Recall that in output-oriented model the upward sloping

trend points to the favorable e¤ect of the exogenous variables. We see from the �gures that

there is a lot of heterogeneity in the impacts of both variables. Interestingly, Figure 1 also

shows that even though the same native language has positive impacts on performance, the

e¤ects are not very large. Instead, the school size has positive in�uence when other variables

are kept at their �rst quartile value, but negative e¤ect at the other quartiles. However,

both large bandwidths and p-values indicate that the school size does not have signi�cant

in�uence on performance. In fact, by relying only on partial regression plots (as in previous

conditional e¢ ciency studies), it would have been di¢ cult to see that the e¤ect of school size

is not statistically signi�cant. This shows the importance of examining bandwidth values

and using statistical inference tools.
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Figure 1: Nonparametric plot of language
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Figure 2: Nonparametric plot of the e¤ect of school size
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6 Conclusion

This paper concentrates on conditional e¢ ciency approach that accounts, in estimating rel-

ative e¢ ciency scores, for heterogeneity among the evaluated entities without assuming a

separability condition (i.e. the environmental variables do not a¤ect the level of the in-

puts and outputs). We explored the probabilitistic framework where conditional e¢ ciency

approach is relying on and argued that the traditional model faces two main drawbacks.

Firstly, it has only been developed for continuous exogenous variables. In more interesting

real life applications, the researcher wants to investigate the performance of entities while

accounting for a broad set of exogenous variables, including both continuous and categorical

(discrete) variables. By using insights from recent nonparametric econometrics literature we

generalized the conditional e¢ ciency model to mixed heterogeneous variables. Moreover, we

proved that in our setting the discrete component does not su¤er from the curse of dimension-

ality problem, which is the case for continuous environmental variables. Therefore, one can

include a number of discrete environmental variables without reducing the accuracy of the

estimation considerably. Secondly, apart from analyzing some descriptive �gures, no statisti-

cal inference tools have been used in previous studies to test the signi�cance of the exogenous

variables. Based on appropriate nonparametric econometric tests, we presented bootstrap

procedures for testing the signi�cance of continuous and discrete environmental variables in

the production process. In contrast to inference based on more traditional two-stage models,

these tests can be used without assuming separability and without any parametric functional

forms.

The suggested approach was illustrated using simulated examples as well as a sample

of the OECD Pisa data set. In the empirical application, we examined the performance of

British secondary school pupils while taking into account a broad range of continuous, or-

dered as well as unordered discrete exogenous factors. We �nd a signi�cant impact on the

educational process for each of the discrete exogenous variables included in the application.

This illustrates that in conditional e¢ ciency estimation one should not limit only to continu-

ous environmental variables, but also control for the heterogeneity resulting from the ordered

and unordered discrete exogenous factors.
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