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Abstract 
 
Financial economists usually assess market efficiency in absolute terms.  This is 
to be viewed as a shortcoming.  One way of dealing with the relative efficiency 
of markets is to resort to the efficiency interpretation provided by algorithmic 
complexity theory.  We employ such an approach in order to rank 36 stock 
exchanges, 37 individual company stocks, and 19 US dollar exchange rates in 
terms of their relative efficiency. 
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1. Introduction 

 

Informational efficiency of financial markets is a central, hot topic in finance.  It is 

meant that if price changes fully incorporate the information in possession of all the 

market participants such changes are unpredictable; the market in question is then said 

to be information efficient.  Early empirical observations of the statistical properties of 

prices [1-6] detected a Brownian motion.  In an efficient market populated by rational 

agents if the price is properly anticipated then it must fluctuate randomly [7].  The proof 

for this result employed the no-arbitrage condition.  Such a stochastic process is a 

martingale that is, roughly, a probabilistic model of a fair game, one in which gains and 

losses cancel each other.  In the presence of arbitrage, when informed traders move to 



take advantage of their information, the price will move by an amount and in the 

direction that eliminates this advantage.  As a result, there is an association between the 

unanticipated information obtained by the informed traders and the consequent 

movement of market prices.  The uninformed traders can then infer from an observed 

price increase that some traders in the market have favorable information about the 

asset.  Information is not wasted, and the price is a sufficient statistic for all the relevant 

information in possession of all the traders [8, 9].  So the efficient market theory [10] is 

the idea that prices in financial markets promptly adjust to reflect information. 

After presenting an overview of market efficiency in their classic financial 

econometrics textbook, Campbell and coauthors [1] observed that (p. 24) the notion of 

relative efficiency, i.e. the efficiency of one market measured against another may be a 

more useful concept than the all-or-nothing (absolute) view taken by much of the 

traditional efficiency market literature.  They made an analogy with physical systems 

that are usually given an efficiency rating based on the relative proportion of energy 

converted to work.  Rating a piston engine 20% efficient means that on average 20% of 

the energy contained in the engine’s fuel is used to turn the crankshaft, with the 

remaining 80% lost to other forms of work such as heat, light, or noise.  It makes no 

sense to test statistically whether the engine is perfectly efficient.  Similarly, the 

efficient market is an idealization that is unattainable, but that serves as a useful 

benchmark for measuring relative efficiency. 

 Indeed, one must regard the efficient market hypothesis as a limiting case.  In 

practice, prices reflect only the information for which the acquisition costs cannot 

outweigh the benefits.  There are also transaction costs.  And information may not be 

widespread and reflected in the prices.  Also, following the arrival of new information, 

market participants may diverge from one another in how they think it will impact 

prices; in other words, expectations are heterogeneous.  Residual inefficiencies are 

always present in actual markets.  These inefficiencies can introduce artificial patterns 

and then redundant information in real-world financial price series.  Thus it is 

inappropriate to assess whether a given actual market is efficient or not.  This is not a 

yes-no question; rather, efficiency should measure to what extent one market departs 

from the idealized efficient market.  Relative efficiency is what really matters. 

 Algorithmic complexity theory makes a connection between the efficient market 

hypothesis and the unpredictable character of stock returns because a time series that 

has a dense amount of nonredundant information (such as that of the idealized efficient 



market) exhibits statistical features that are almost indistinguishable from those 

observed in a time series that is random [12, 1-7].  As a result, measurements of the 

deviation from randomness provide a tool to assess the degree of efficiency of a given 

market.  Because algorithmic complexity theory cannot discriminate between trading on 

noise and trading on information, it detects no difference between a time series 

conveying a large amount of nonredundant information and a pure random process. 

We adopt such an approach.  Doing so, we will be able to rank stock exchanges, 

individual company stocks, and currencies in terms of their relative efficiency.  We will 

find, for instance, that the S&P 500 is 99.1% efficient whereas the Colombo Stock 

Exchange of Sri Lanka is only 10.5% efficient.  This means that prices in the American 

stockmarket incorporate much more nonredundant information than its Sri Lankan 

counterpart does. 

The absolute efficiency of stockmarkets has been investigated in a huge number 

of papers (for a review see Ref. [13]; an early survey is Ref. [10]), but we could track 

only three previous attempts similar to ours to deal with their relative efficiency.  

Shmilovici and colleagues [14] provide a test for the efficient market hypothesis (and 

not exactly for the relative efficiency of stockmarkets) that is based on the insight that 

the compression of the efficient market time series is not possible since there are no 

patterns.  In that case, “stochastic complexity” is highest.  The stochastic complexity of 

a time series is a measure of the number of binary digits needed to represent and 

reproduce the information in the time series.  The authors use the Rissanen context tree 

algorithm to track patterns and then compress the series of 13 stock exchange indices as 

well as the stock prices of the companies listed on the Tel-Aviv 25.  (Shmilovici and 

coauthors also claim that the approach in Chen and Tan [15] is one particular case of 

theirs.)  Gabjin and coauthors [16] explicitly addressed the relative efficiency of 

currency markets using a tool called the approximate entropy statistic [17] aimed at 

tracking similar subsets in a time series.  The approximate entropy statistic is strongly 

alignment-dependent, however, in that two parameters (lag interval and the similarity 

criterion) must be specified a priori [18].  Moreover, the statistic is not robust in terms 

of transitivity, i.e. a time series that is found to be more complex than another for some 

a priori lag and similarity parameters can become less complex for different values of 

the parameters [19].  Section 2 will show our distinct perspective applied to a larger 

database along with a simpler methodology that is based straightforwardly on the 

Lempel-Ziv (“deterministic”) complexity index. 



 The rest of this paper is organized as follows.  Section 2 discusses algorithmic 

complexity theory in more detail.  Section 3 presents data and performs analysis.  And 

Section 4 concludes. 

 

2. Lempel-Ziv algorithmic complexity 

 

Shannon entropy of information theory implies that a genuinely random series is the 

polar case where its expected information content is maximized, in which case there is 

maximum uncertainty and no redundancy in the series.  The algorithmic (Kolmogorov) 

complexity of a string is given by the length of the shortest computer program that can 

produce the string.  The shortest algorithm cannot be computable, however.  Yet there 

are several ways to circumvent this problem.  Lempel and Ziv [20] suggest a useful 

measure that does not rely on the shortest algorithm.  (Rissanen context tree algorithm 

of stochastic complexity is another alternative.)  Kaspar and Schuster [21] provide an 

easily calculable measure of the Lempel-Ziv index which runs as follows. 

 A program either inserts a new digit into the binary string 1, , nS s s= …  or copies 

the new digit to S .  The program then reconstructs the entire string up to the digit 

r ns s<  that has been newly inserted.  Digit rs  does not come from the substring 

1 1, , rs s −… ; otherwise, rs  could simply be copied from 1 1, , rs s −… .  To learn whether the 

rest of S  can be reconstructed by either simply copying or inserting new digits we take 

1rs + , and then check whether this digit belongs to one of the substrings of S , in which 

case it can be obtained by simply copying it from S .  If 1rs +  can indeed be copied the 

routine goes on until a new digit (which once again needs to be inserted) appears.  The 

number of newly inserted digits plus one (if the last copy step is not followed by 

inserting a digit) gives the complexity measure c  of the string S . 

 As an illustration, consider the following three strings of 10 binary digits each. 

A 0000000000 

B 0101010101 

C 0110001001 

At first sight one might correctly guess that A is less random so that A is less complex 

than B, which in turn is less complex than C.  The complexity index c  agrees with such 

an intuition.  For the string A one has only to insert the first zero and then rebuild the 

entire string by copying this digit; thus 2c = , where c  is the number of steps necessary 



to create a string.  For the string B one has to additionally insert digit 1 and then copy 

the substring 01 to reconstruct the entire string; thus 3c = .  For the string C one has to 

further insert 10 and 001, and then copy 001; thus 5c = . 

The complexity of a string grows with its length.  The genuinely random string 

asymptotically approaches its maximum complexity r  as its length n  grows following 

the rule 
2loglim n

nn
c r

→∞
= =  [21].  One may thus compute a positive finite normalized 

complexity index c
rLZ =  to get the complexity of a string relative to that of a genuinely 

random one.  As the string approaches infinite 1LZ → ; however, very complex series 

in practical finite experiments usually have an LZ a little bit above one.  The index also 

makes it possible to compare strings of distinct lengths as long as their lengths ≥  1,000.  

Figure 1 shows a computer-generated pseudo-random string reaching the bulk of its 

convergence as it nears 1,000; from this threshold on there is slow asymptotical 

convergence toward an LZ index of one. 

 Here we consider sliding time windows, calculate the index for every window, 

and then get the average.  For instance, for a time series of 2,000 datapoints and a 

chosen time window of 1,000 observations we first compute the LZ index of the 

window from 1 to 1,000, then the index of the window from 2 to 1,001, and so on, up to 

the index of the window from 1,001 to 2,000.  Then we take the average of the indices. 

As an illustration, Figure 2 shows three time series of 15,000 observations each, 

and the computed LZ indices of 14,000 sliding time windows of length 1,000.  Figure 2a 

displays the index evolution of the series of computer-generated pseudo-random 

numbers (average LZ index = 1.062622).  Figure 2b shows the index evolution of the 

series of the distances (“returns”) between the first 15,001 adjacent prime numbers 

(average LZ index = 1.014342).  And Figure 2c shows the index evolution of the series 

of natural logs of the distances between the first 15,001 adjacent primes (average LZ 

index = 1.025574).  The distances between adjacent primes are believed to be genuinely 

random, and this agrees with our computed indices in Figure 2.  Figure 3 shows the 

evolution of the LZ index for different parameter values of the logistic equation (1,000 

iterations with the starting value set at 0.25).  The solution to this equation is a series 

that depends on the value of its growth parameter.  The series gets stable for low values 

of the parameter, which means low complexity.  As the parameter grows the series 

behaves periodically, and then goes chaotic as the parameter approaches 4.  This 

increased complexity agrees with the LZ index evolution in Figure 3. 



Efficiency can be thought of as an absence of statistical dependence.  The LZ 

complexity can also capture the type of statistical dependence, and is general enough to 

encompass Markov processes.  In a sense, the LZ index provides a times series statistic 

more basic than those produced by autoregressive processes of any order.  The Markov 

process describes the behavior of a random variable whose current observation depends 

on some subsets of past observations. For instance, a random process generated by a fair 

coin has no memory, so the probability of the next value conditional to the current one 

is 1
2 , i.e. the realizations are independent.  Yet the sequence of, say, “sunny” or “rainy” 

days is still a random process, but the realizations are statistically dependent on each 

other.  The probability of a sunny day tomorrow conditional to a sunny day today might 

be 0.75  rather than 1
2 . 

If a time series exhibits statistical dependence, we expect it to present more 

patterns and accordingly to have lower complexity than an independent one.  That the 

LZ complexity measure can also capture this feature can be seen in the example of an 

unfair coin, whose probability distribution of the current value is dependent on the 

previous one with probability p.  If p = 1
2  the process collapses to that of the fair coin 

with no memory (i.e. an independent process); if either 0p =  or 1p =  the current value 

is perfectly predictable from past observation, i.e. the process is totally dependent. 

To set an experiment with an unfair coin we begin with an initial state that is 

independent from any event; thus, the process equals 0 if the pseudo-random number 

chosen is lower than 1
2 , and equals 1 otherwise.  For all of the remaining realizations, 

the next value will repeat the current one with probability p. 

If a current realization is 1, the next will be 1 again if the pseudo-random 

number generated is higher than p, and will be 0 otherwise.  If the current realization is 

0, the next will also be 0 if the pseudo-random number is higher than p, and will be 1 

otherwise. 

 Now assume that the unfair coin repeats the current character with a probability 

0.2p = .  This means that if the current value is 1, the next will continue to be 1 with a 

probability 0.2p = .  As an illustration, we generate two strings for such a Markovian 

process with 0.2p =  and p = 1
2  respectively. 

D 01111000001111111111  

 E 11001100100001010101 



Figure 4 shows the LZ index of the sequences generated by the unfair coin for different 

probabilities.  In the parabola-shaped curve, the index reaches its maximum when the 

process is statistically independent, and approaches its minimum when there is total 

dependency. 

 Some applications of the LZ index include the following.  Li and coauthors [22] 

used the LZ index for DNA sequences to reconstruct the phylogenetic tree of several 

species of placental mammals among primates, rodents, and ferungulates.  They 

concluded that primates and ferungulates are more closely related than rodents.  Ferrario 

and colleagues [19] employed the LZ index to identify intrauterine growth restricted 

fetuses by analyzing the complexity of the heart rate variability signals.  Shmulevich 

and Povel [23] suggested that the LZ index is able to identify temporal complexity in 

musical rhythms despite the fact that one needs long sequences in order to measure 

complexity. 

 

3. Data and analysis 

 

We collected seven years of daily data from July 2000 to July 2007 (2,000 observations) 

from 36 stock exchange indices (Table 1), 37 stock prices of companies listed on the 

NYSE, Nasdaq, and Bovespa (Table 2), and 19 US dollar exchange rates (Table 3).  The 

source was Yahoo Finance and EconStats. 

Analysis was performed with simple returns of the raw series.  The return series 

were coded as ternary strings as follows [14].  Assuming a stability basin b  for a return 

observation tρ , a datapoint td  of the ternary string was coded as 0 if t td bρ= ≤ − , 

1 if t td bρ= ≥ + , and 2 if t td b bρ= − < < + .  The series would have become binary if 

we had shrunk the stability basin to the attractor zero, i.e. 0b = ; yet we assumed 

0.0025b =  following Shmilovici and colleagues.  (We checked for the effects of 

changing b  only to realize that the rankings did not alter too much; yet more research is 

needed to consider a more sophisticated analysis in the choice of b .)  As an illustration, 

we take five daily percentage returns of the S&P 500 and compare them with b = 

0.25%.  From 18 to 22 June 2007 the returns were, respectively, 0.652%, –0.1226%, 

0.1737%, –1.381%, and 0.6407%.  Thus the trading week was coded as 12201. 

Figure 5 shows the evolution of the index using 1,000 sliding windows for (a) 

the computer-generated pseudo-random series (average LZ = 1.0180), (b) returns of the 



Dow Jones (average LZ = 1.0201), (c) returns of the Shanghai Composite (average LZ 

index = 1.0032), and (d) returns of the Karachi 100 (average LZ index = 0.9918).  Table 

1 shows the average LZ index for the other stock exchanges.  As can be seen, all the 

series seem to be very complex.  They look more like the genuinely random series than 

the totally redundant, perfectly predictable series.  (Check Figure 3 again to see that a 

periodic series has an LZ well below one.)  Inspired by the experiment in Figure 1 we 

decided to consider 1LZ =  as a threshold in order to assess the relative efficiency of the 

series.  We counted the number of occurrences where the LZ index was caught above 

one, and then considered that as a measure of relative efficiency.  For the pseudo-

random series the 1LZ =  threshold was surpassed 98.8% of the times; thus we say that 

it is 98.8% efficient. 

The Dow Jones, Shanghai Composite, and Karachi 100 were found to be, 

respectively, 95.4%, 49.5%, and 23.7% efficient.  Note that the Dow Jones series nears 

the pseudo-random series.  Table 1 shows the measures for the other stock exchanges.  

As can be seen, the S&P 500 even beats the pseudo-random series.  Thus it is safe to 

conclude that this American stockmarket is almost efficient.  By contrast, the Colombo 

Stock Exchange was found to be only 10.5% efficient, which means that stock prices in 

that market convey some redundant information. 

The procedure above was repeated for selected company stock prices (Table 2).  

Figure 6 shows the evolution of the LZ index using 1,000 sliding windows for (a) Coca-

Cola (100% efficient), (b) Yahoo (99.65% efficient), (c) Vale (92.75% efficient), and 

(d) Aracruz (66.67% efficient).  Table 3 shows the relative efficiency of selected US 

dollar exchange rates, whereas Figure 7 displays the LZ index evolution over the same 

sliding windows for the dollar price in terms of (a) pound sterling (average LZ index = 

1.0223; 99.81% efficient), (b) euro (average LZ index = 1.0254; 99.45% efficient), (c) 

Brazilian real (average LZ index = 1.0156; 92.60% efficient), (d) Indian rupee (average 

LZ index = 0.9958; 43.54% efficient), and (e) Chinese yuan (average LZ index = 

0.9266; 17.94% efficient).  As for the latter example, China’s currency remained pegged 

to the US dollar from 16 June 1994 to 21 July 2005; and this explains the initial low 

complexity of the dollar price in yuan terms in Figure 7.  Matsushita and coauthors [24] 

showed that this meant that China played the “chaos game” over the period, which 

produced a Sierpinski triangle fractal in the yuan-dollar rate. 

 

 



4. Conclusion 

 

By considering data from 36 stockmarket indices, 37 individual company stock prices, 

and 19 US dollar exchange rates, this paper puts forward one way to assess the relative 

efficiency of financial markets.  This is made possible thanks to the efficiency 

interpretation provided by algorithmic complexity theory.  The latter makes a 

connection between the efficient market hypothesis and the unpredictable character of 

asset returns.  The idealized efficient market generates a time series that has a dense 

amount of nonredundant information, and thus presents statistical features similar to a 

genuinely random time series. 

Physical systems are usually given an efficiency rating based on the relative 

proportion of energy converted to work.  We suggest an analogous efficiency rating 

based on the relative amount of nonredundant information conveyed by financial prices.  

The price of the idealized efficient market conveys information that is fully 

nonredundant; this market is then said to be 100% efficient. 

Yet prices in real-world markets reflect only the information for which the 

acquisition costs cannot outweigh the benefits.  Also, there are transaction costs, inside 

trading that cannot allow uninformed traders to extract information from prices, and 

heterogeneous expectations.  Since such residual inefficiencies are always present in 

actual markets one should not expect some of them to be efficient in absolute terms.  

Yet by considering the random efficient market as a benchmark one can, for instance, 

say that the S&P 500 is 99.1% efficient whereas the Colombo Stock Exchange is only 

10.5% efficient.  This means that prices in the American stockmarket incorporate much 

more nonredundant information than its Sri Lankan counterpart does.  And by saying 

that the Chinese currency is only 17.94% efficient we mean that the dollar price in yuan 

terms conveys some redundant information; indeed, artificial patterns were introduced 

by the recent peg of the currency to the US dollar. 
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Figure 1.  As its length increases, a typical, computer-generated pseudo-random string seems to 
asymptotically converge to an LZ index of one. 



Figure 2.  LZ index evolution of (a) a series of computer-generated pseudo-random numbers (average LZ 
index = 1.062622), (b) a series of the distances between the first 15,001 adjacent prime numbers (average 
LZ index = 1.014342), and (c) a series of natural logs of the distances between the first 15,001 adjacent 
primes (average LZ index = 1.025574). 



 
Figure 3.  LZ index for increased values of the logistic growth parameter (1,000 iterations with the 
starting value set at 0.25).  The series gets stable and then periodic for low values of the parameter (LZ 
complexity index well below one), and then goes chaotic as the parameter approaches 4.   



 
Figure 4.  LZ index and statistical dependence: experiment with an unfair coin. Maximum complexity is 
reached if the probability p is 1

2 , and lack of complexity obtains as the probability is either 0 or 1. 



Figure 5.  LZ index evolution over 1,000 sliding windows for (a) a computer-generated pseudo-random 
series (average LZ = 1.0180), (b) returns of the Dow Jones (average LZ = 1.0201), (c) returns of the 
Shanghai Composite (average LZ index = 1.0032), and (d) returns of the Karachi 100 (average LZ index = 
0.9918). 



Figure 6.  Evolution of the LZ index using 1,000 sliding windows for (a) Coca-Cola (100% efficient), (b) 
Yahoo (99.65% efficient), (c) Vale (92.75% efficient), and (d) Aracruz (66.67% efficient). 



 
Figure 7.  LZ index evolution over 1,000 sliding windows for the dollar price in terms of (a) pound 
sterling (average LZ index = 1.0223; 99.81% efficient), (b) euro (average LZ index = 1.0254; 99.45% 
efficient), (c) Brazilian real (average LZ index = 1.0156; 92.60% efficient), (d) Indian rupee (average LZ 
index = 0.9958; 43.54% efficient), and (e) Chinese yuan (average LZ index = 0.9266; 17.94% efficient). 



Table 1.  The relative efficiency of selected stockmarket indices 
 

Stock Exchange Country Average LZ Index Degree of Efficiency*, % 
S&P 500 USA 1.0232 99.1 
DAX 30 GER 1.0257 98.4 
Nikkei 225 JPN 1.0432 98.2 
All Ordinaries AUS 1.0246 97.8 
ATX AUT 1.0173 97.4 
Dow Jones USA 1.0201 95.4 
Korea Composite KOR 1.0163 94.9 
Tel-Aviv 100 ISR 1.0187 92.9 
Hang Seng HKG 1.0151 91.5 
Straits Times SIN 1.0153 90.3 
CAC 40 FRA 1.0138 88.4 
Helsinki General FIN 1.0149 88.4 
Kuala Lumpur SE MAS 1.0158 88 
FTSE 100 UK 1.0106 86.6 
Prague X CZE 1.0139 81 
Bel 20 BEL 1.0118 80.4 
IBC VEN 1.0110 79.9 
Madrid General ESP 1.0201 79.3 
Swiss Market SUI 1.0101 78.4 
Nasdaq Composite USA 1.0080 75.4 
Amsterdam EX NED 1.0100 74.4 
Bovespa BRA 1.0127 67.8 
IPC MEX 1.0060 64 
Merval ARG 1.0050 62.9 
Jakarta Composite IDN 1.0054 62.1 
Istanbul 100 TUR 1.0085 61.3 
Moscow Times RUS 1.0050 59.2 
Copenhagen DEN 1.0025 58.7 
Athex Composite GRE 1.0048 56.9 
Bombay SE IND 1.0010 53.3 
Taiwan Weighted TPE 1.0006 50.3 
Shanghai Composite CHN 1.0032 49.5 
Philippines PHI 0.9987 43.1 
Lima General PER 0.9903 37.9 
Karachi 100 PAK 0.9918 23.7 
Colombo SE SRI 0.9795 10.5 

                   * Hits above the threshold 1LZ =  



Table 2.  The relative efficiency of selected company stocks 
 

Company Stock Exchange Average LZ Index Degree of Efficiency*, % 
Amazon NYSE 1.0416 100 
Coca-Cola NYSE 1.0324 100 
P&G NYSE 1.0264 99.97 
Intel Nasdaq Composite 1.0292 99.92 
eBay Nasdaq Composite 1.0377 99.8 
General Electric NYSE 1.0274 99.66 
Yahoo Nasdaq Composite 1.0310 99.65 
Texaco NYSE 1.0264 99.46 
Cisco Nasdaq Composite 1.0357 99.44 
Petrobras Bovespa 1.0284 99.43 
Pfizer NYSE 1.0327 99.39 
HP NYSE 1.0298 99.38 
Microsoft Nasdaq Composite 1.0286 99.25 
Goldman Sachs NYSE 1.0311 98.78 
J&J NYSE 1.0275 98.73 
Unilever NYSE 1.0297 98.44 
Nissan Nasdaq Composite 1.0178 97.58 
Merrill Lynch NYSE 1.0279 97.33 
JP Morgan NYSE 1.0281 96.7 
Oracle Nasdaq Composite 1.0206 94.93 
Citigroup NYSE 1.0314 94.59 
Vale Bovespa 1.0193 92.75 
Embraer Bovespa 1.0258 91.59 
Itau Bovespa 1.0183 86.74 
FedEx NYSE 1.0186 86.6 
Bradesco Bovespa 1.0172 85.88 
Exxon NYSE 1.0161 85.56 
Ford NYSE 1.0152 84.26 
Marcopolo Bovespa 1.0072 77.36 
Americanas Bovespa 1.0136 76.68 
Ipiranga Bovespa 1.0111 76.55 
Toyota NYSE 1.0100 76.32 
Wal-Mart NYSE 1.0074 71.42 
Ambev Bovespa 1.0108 70.27 
Aracruz Bovespa 1.0048 66.67 
Duratex Bovespa 1.0048 65.17 
Celesc Bovespa 1.0005 50.03 

                * Hits above the threshold 1LZ =  



Table 3.  The relative efficiency of selected US dollar exchange rates 
 

Currency Country Average LZ Index Degree of Efficiency*, % 
Pound Sterling UK 1.0223 99.81 
Swedish Krona SWE 1.0236 99.71 
Norwegian Krone NOR 1.0314 99.60 
Euro Eurozone 1.0253 99.45 
New Zealand Dollar NZL 1.0248 99.20 
Swiss Franc SUI 1.0169 99.12 
Icelandic Krona ISL 1.0184 97.48 
Mexican Peso MEX 1.0254 96.58 
Brazilian Real BRA 1.0156 92.60 
Canadian Dollar CAN 1.0219 90.07 
South African Rand RSA 1.0177 86.41 
Japanese Yen JPN 1.0153 85.51 
Singapore Dollar SIN 1.0074 66.48 
Australian Dollar AUS 1.004 63.41 
Indian Rupee IND 0.9957 43.54 
Colombian Peso COL 0.9913 21.98 
Taiwan New Dollar TPE 0.9794 21.17 
Chinese Yuan CHN 0.9265 17.94 
Sri Lanka Rupee SRI 0.9687 11.84 

                  * Hits above the threshold 1LZ =
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