Metadata, citation and similar papers at core.ac.uk

MPRA

Munich Personal RePEc Archive

Drought and Optimal Groundwater
Managment

Amundsen, Eirik S.
Economics Department, University of Bergen, Norway

1999

Online at http://mpra.ub.uni-muenchen.de/10902/
MPRA Paper No. 10902, posted 05. October 2008 / 15:20


https://core.ac.uk/display/7305055?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://mpra.ub.uni-muenchen.de/
http://mpra.ub.uni-muenchen.de/10902/

WORKING PAPERS IN ECONOMICS

No. 0199

EIRIK S. AMUNDSEN

DROUGHT AND OPTIMAL
GROUNDWATER MANAGEMENT

Department of Economics
UNIVERSITY OF BERGEN




Drought and Optimal Groundwater Management

By

Eirik S. Amundsen

Abstract

This paper considers the problem of a water management authority which is faced with the
threat of a drought that will take place at an uncertain date. Three management policies are
investigated: i) the laissez-faire policy of automatic regulation through Open Access
mechanisms, ii) the policy of keeping a rationed level of water usage until the water table is
restored, and iii) an economically optimal policy taking account of the probability of a drought
and the fact that water is a capital. In particular, it is shown that the optimal pre-drought
steady-state stock of water is smaller than the stock that would be optimal in the no-drought
case. Hence, no precautionary stock is built up. However, a more extensive drought period will
lead to a larger pre-drought steady-state stock.
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1. Introduction

Each year deficit rainfall and drought around the world takes a heavy toll in terms of destroyed
crops, famine, and losses of human life. The drought periods may be single event phenomena
or recurring events, possibly linked to the ENSO (El Nino/Southern Oscillation)-phenomenon
(Diaz and Markgraf, 1992). One of the most disastrous droughts took place in the Sahel region
on the southern edge of the Sahara in 1968-1973. In its last year this long and persistent
drought alone took 100 000 human lives and reduced the livestock to a half. Erratic swings in
climatic conditions are typical in this region and periods of drought tend to occur every 25 to
30 years, always claiming their share of victims (Sinn, 1988). A less dramatic but more
frequently occurring drought is the monsoon phenomenon on the Dirre-plateau in Ethiopia.
Each year during the deficient winter rainfall period from November to March the Boran
people have to water theirs large herds of sheep, camels and horses from a small number of all-
year wells (the Taulas), organized around an intricate system of distribution rights based upon
bequest and labor input in water collection. Occasionally the drought extends for a longer

period of time implying increased water shortage, sinking water table and lost livestock.

The major characteristics of aquifers that affect the costs of water supply are summarized in
Young and Haveman (1985). These characteristics include: the depth of the water table, the
thickness of the saturated zone (the water-bearing formation), the transmissivity (the rate at
which the water is transmitted through the aquifer) and the characteristics of the geological
formations through which the well must be drilled. (See also Burt, 1964, 1965 and Carruthers
and Clark, 1981). When groundwater is abstracted from an aquifer by artificial means, a
lowering of the water table occurs. This leads to increasing recharge and decreasing discharge
(Huisman, 1972). The recharge increases by a shift of the water divide which enlarges the
catchment area, as well as by increased infiltration of surface water from influent streams. The
discharge decreases by a reduction of evapo-transpiration, by a smaller return of groundwater
to the surface and by reduced percolation to bounding aquifers. As long as the amount of
artificial recovery is limited, the resulting increase in recharge, together with the decrease in
discharge, is able to balance this abstraction and a new equilibrium with a lower water table is
reached. However, a further increase of artificial abstraction may lead to depletion. The deficit
will then be taken from storage, continuously lowering the groundwater table. Such

abstractions will only be allowed for a limited (though often long) period (e.g. London basin,
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some coastal aquifers in southern California). Hence, the maximum possible groundwater
abstraction reduces the outflow to zero and brings the amount of water entering the aquifer up
to the highest value obtainable under the geo-hydrologic conditions present. Depletion of an
aquifer may be an irreversible event, where the tiny channels otherwise supported by the water
within them, may collapse through subsidence and be unable to carry water in the future
(Neher, 1990). Problems of serious water table reduction is a matter of concern in places such

as northeast India and parts of sub-Saharan Africa.

The level of the water table fluctuates with precipitation, possibly with considerable lags. This
depends upon the category of the aquifer involved, notably the permeability of the material and
the size of the aquifer. The time of movement of infiltrating water is a function of the thickness
of the unsaturated zone and the vertical unsaturated hydrolic conductivity. Small and shallow
aquifers are able to adapt within hours after a rainfall, while larger and more complicated
aquifers like in the Hualapai Plateau area of northwestern Arizona, water may take years to
pass through the unsaturated zone. The response time of a water table aquifer is more rapid the

thinner is the unsaturated zone above the water table (Fetter, 1980).

In the following we consider a stylized problem of groundwater management, where there is a
probability of a shortfall of precipitation followed be normal precipitation conditions. It is
assumed that the cost of water extraction depends upon the size of the aquifer (the level of the
water table). Hence, water may be extracted during the drought period (when local rainfall fails
and surface water courses dries up) but only at increasing costs. We consider three
management policies of increasing sophistication; i) a laissez faire policy, ii) a rationing policy
and ii) an economically optimal policy. According to the first policy nothing is done to alleviate
the burden of the drought. In the second some effort is made to ration water once the drought
sets in, while the third is an optimal policy which take account of the fact that water is a capital

and that the size of the probability of a drought also may influence the management decision.

The first policy seems to be a fair description of water management in many countries. Around
the world groundwater basins are typically exploited by a large number of independent
pumpers withdrawing from a common groundwater supply. As groundwater ordinarily can

move in response to withdrawals, the action of any pumper affects the conditions experienced



by other users; thus they‘are interdependent and external costs (or benefits) are imposed
(Young and Haveman, 1985). In this setting nothing is normally done when the drought strikes
and the aquifer is left to the Open Access solution. Hence, in the laissez-faire policy of Open
Access, the stock of water will autorhatically be restored to its pre-drought level by way of the

zero-marginal-benefit-condition.

The rationing policy amounts to keeping a constrained level of water supply from the date the
drought sets in until the aquifer has regained its normal size. Policies like this are in use around
the world, in particular in countries with an organized system of public water provision but
without unit water pricing. It may take various forms, for instance by cutting water supply
during specific hours of the day or by prohibiting certain usage of water e.g. the watering of
private gardens. The third policy is an optimal policy whose implementation may call for
pricing according to marginal scarcity cost. Water markets and pricing of water are now
emerging and are in fact common in many developed countries and regions around the world

e.g. Denmark, United States (California, Colorado), Chile, the Canary Islands (Ringskog,
1997)

2. The basic model and assumptions

We consider a management authority or a «sole owner» with perpetual tenure managing the
aquifer. The stock of groundwater at date tis denoted x, and the recharge rate (emanating
from precipitation) g is assumed constant and stock independent. The flow rate of extraction
from the aquifer at date t is endogenously determined and denoted A, . The objective of the
management authority is to maximize the present value of net social benefit, which is defined
as the difference between (gross) benefits I/ and costs C. The benefits are assumed to
increase with extraction at a decreasing rate i.e. [/ (h,); with U'(h,)> 0 and U ""(h)<0. The
costs are assumed linearly dependent such.that C = ¢(x,)h, with ¢'(x,)<0 and '(x,)=0,

~ i.e. the higher is the water table the lower is the average cost of extraction. The social discount

rate is denoted §.

Hence, the objective of the management authority is

«©

max [ - e(x,)h)e %

0



subject to

The corresponding Hamiltonian to this problem reads
H= [U(h,) - c(xl )hx ]e_& + yl(g - hx)
where ¥, denotes the adjoint variable

The first order necessary conditions are

3) %=[U'(h,)—c(x,)]e"‘* ~7,=0
4) ‘Eg‘ll“ =—c' (x( )hre_& = _—}‘/l

Taking the total differential of 3), substituting into 4), using 1) and rearranging terms we arrive

at the following relationship

U"li, —-c'(x,)h, -5
U'-c(x,)

The steady-state solution, 4*,x *(where 4, = %, = 0and h* = g) is characterized by
] t



6) _cGMg
U'-c(x*)

The solution to this problem is well known and described by Neher, 1990, (i.e. for the case of
U'"' equal to a negative constant). Assuming that the initial value x(0) < x *, th:e optimal
solution is to bring the stock of water asymptotically along a stable arm to the steady-state
stock, x *. The optimal strategy is to set the initial harvest rate at a value less than 4#* = g and
let it grow over time at a decreasing rate to approach the steady-state value h* . Since the
harvest rate is below the recharge rate, the aquifer will also grow over time and approach the
optimal steady-state stock x *. Hence, the stable arm for an initial stock of water less than the
steady-state stock is characterized by A > 0, x, > 0. During the steady-state the adjoint
variable, y,decreases at a rate equal to -4, (i.e. (¥,/y,) = -8 ) which implies a constant

(current) implicit price of water.

Into this basic model we introduce a drought period of length & that will start at an uncertain
date 7. To represent the uncertainty of 7 we apply an exponential function which is frequently
used in uncertainty problems dealing with the arrival of some event (see Barlow and Proschan,
1975). The essential assumption here is that the conditional probability of the event happening,
provided that it has not already happened, remains the same as time proceeds. Hence, the
length of the time period prior to the event does not matter. Thus, the distribution function is
given by F(f) = Pr(z < 1) = (1- e"*) and the density function by f () = Pr(z) = Ae ¥ . During
the drought period we assume that the recharge to the aquifer vanishes. Hence, during this
period g = 0. After the drought period normal precipitation and recharge rates are restored.

It is essential to note that we assume the drought will happen sooner or later. The expected

waiting time until it happens is equal to 1/ 1.

3. Open Access restoration

The Open Access solution is characterized by a marginal benefit equal to zero, i.e.

7)) U'(h)—c(x)=0



The pre-drought steady-state stock, x,, is determined from 7) by recognizing that h,=g.
When the drought sets in, the stock of water starts to diminish since there is a net use of water.
During the drought period, £, the stock of water will be drawn down at the rate h, (determined

by 7)) such that it becomes equal to x,,, at date 7+¢, ie.

T+E

X,p = Xo — Ih,dt

During this period the extraction of water will be falling, since the marginal extraction cost is

increasing. This can be seen by utilizing 7) to obtain

__C@h
U (h,)

However, at date 7+ ¢, the recharge is again positive (equal to g) and the stock starts to
increase until the Open Access pre-drought steady-state stock, x,, is reached. During this

period the extraction is increasing as determined by

h= i(ff_)(_g:_@>0
U(h)

Thus, under Open Access, water extraction is sensitive to the drought and there is a built in
restoration mechanism as determined by the zero-marginal-benefit-condition. However, this
solution is not sensitive to the size of the probability of a drought since the solution is not
planned but simply sets in at the date the drought hits. The solution is, however, sensitive to
the length of the drought period. A longer drought period will lead to a further reduced

extraction, a smaller water stock and an increased period of stock restoration.

4. Rationing

This is a somewhat more active policy than the previous one, even though it does not take fully
account of the fact that the aquifer is a capital. We assume that the size of the aquifer at the
outset is equal to some steady-étate stock, ¥ . The problem is in an optimal way to determine a

constant rate of water extraction, / , which is to be kept from the date the drought sets in until



U'(h)=c(x)>0
This implies that the rationed extraction is less than the extraction under Open Access

(h <h,,). From this it follows that the stock will not be reduced by as much under rationing

as under the automatic adjustment of Open Access.

5. Optimal policy

The policy discussed above is not optimal since it does not fully take into account that the
aquifer is a capital. In order to determine the optimal management strategy we start by solving
the optimization problem at date 7 + &, i.e. after the drought period is over. At this date we
are faced with the basic problem discussed in the previous paragraph. Denoting the size of the

aquifer at date 7+ ¢ by x the net present value of the future benefits (evaluated at date

T+E

t+¢&)is denoted S(h,x,;x,,,). Hence, the aquifer is managed according to condition 5) and

R e £ 7

6) with an initial value equal to x_,, .

Next, we move one step forward and consider the optimization problem at date 7 (shortly after

the drought sets in). The optimization problem at this date may be formulated as
'22,"{ JlU) - e n <+ 01 >}

subject to

9) x, = x(7)

Condition 9) gives the restriction on the starting value of the stock of water at date 7.

The Hamiltonian of the above problem is

H=[U(h)-c(x,)h, le* -0k,



where @, denotes the adjoint variable

The first order necessary conditions are

10) 2L [U6)-ctx )b -, =0

* >, -5(t+¢)
_ A, ,x;;x,,, e

12) ¢Z+£ &

T+e

Condition 12) is the transversality condition for an optimal control problem with fixed te
time and a scrap value function (e.g. see Seierstad and Sydsater, 1987). The adjoint vari

¢, may be interpreted as the net present value of the marginal scarcity rent of water.

Taking the total differential of 10), substituting into 11) and rearranging terms we arrive

Ullhl

D Ty—emy

Condition 13) is seen to be identical to 5) with g =0. It represents the Hotelling rule for

non-renewable resource. Hence, from date 7 on, water in the aquifer is considered a non

renewable resource which is to be extracted in an optimal way bringing the stock of wat

down to x,,, while satisfying 12).

To simplify notation we next define the following maximum function

Fix,) = r;;ax{! [Uh) - cCe b e + S(h,',x:,x,.ge‘&”}, 5.8), and 9).
X, °

10



The derivative of this maximum function with respect to the stock available at date 7, is equal
to the current value of the adjoint variable at this date, i.e. F'(x,)= ¢ e > 0. Furthermore,
we have F''(x,) = (dg, /dx,) <0, i.e. the scarcity rent decreases as the size of the stock

increases.

The full (ex ante) problem to be considered is as follows
m/le-h r I/ h - h )’&dl+}:‘ -8t

"Jﬂ.’“j, {“ (h) = ctx)h (x,)e }dr

subject to

]4) x" =g- hl

Integrating the objective functional by parts , the problem can be reformulated as
N A 5 (S1A)
n};\ix![”(hl) = c(x)h, + A (x)]e ' V'dr

s.t. 14).

The corresponding Hamiltonian to this problem is
H=[U(h)-c(x)h +AF(x)]e " + p,(g - h)
where u, denotes the adjoint variable

The necessary first order conditions are

11



15) % =[U ) - e} - 1 =0

16) §:HWM+MMW%”rm

1) p = FE)e

Taking the total differential of 15), substituting into 16), using 15) again and rearranging tel
we obtain the following condition for the optimal steady-state solution h, X (with

h =% =0)

(X% AF(@)-U'(h) - X))
18) - Uv(cf,()x_)i(f) * | U'(h) - (%) ). d
Condition 18) represents a «<modified golden rule» of stock management. It essentially says
that the rate of return from keeping a marginally larger stock in optimum must be equal to
social discount rate. The rate of return consists of two elements. Firstly, there is the rate of
return known as the «stock- cost effect» which gives the rate of return in terms of reduced
extraction cost by keeping a marginally larger stock. This is the first expression on the left
side of 18). Secondly, there is the expected marginal rate of return in terms of future benef
i.e. the expected increase in future benefits following from keeping a marginally larger sto:
the date the drought sets in. This is the second element on the left hand side of 18). The
numerator gives the (instantaneous) expected net benefit from investment while the

denominator is the investment. The gross benefit is equal to F"'(¥) and the investment is €

to (U/'(h) - ¢(¥X)) (the marginal water rent foregone).

1t turns out that the expected net benefit of keeping a marginally larger stock (the numera
the second element) is negative i.e. the return is not sufficient to cover the investment. Tk

be seen by utilizing 15) and 17)



[U'(i;) - c(f)]e““*“’ =F'(X)e”
Hence, [l A (I7 )—e(X )] > F'(¥) and the marginal rate of return in this element is negative.

Next, the problem is to determine how ¥ is related to x"and how it reacts to changes in A and

¢ . In order to do this we take the implicit derivatives of condition 18) and obtain

=
dx U'-c
199 == <
dA A[F"(U'-c)+ F'c]- g[c"(U'-c) + c'2]
[U'~]
_dF'
20 & de

a 0
de A[F"(U'-c)+ F'e]-gle" (U'-c) +¢?] ]
[U'=]

Inspection of signs show that the denominators of both expressions are negative. Furthermore,
the numerator of 19) is strictly positive (for & > 0,4 > 0) since the expected net benefit is
strictly negative. Hence, an increase of the «failure rate», A leads to a reduction of the optimal
pre-drought steady-state stock. The implication of this is that it is always optimal under
uncertainty to keep a steady-state stock, ¥ , which is smaller than the certainty steady-state
stock , x *_ It is, thus, not optimal under this kind of uncertainty to build up a «reserve stock»

of water to be used when the drought sets in.

To determine the sign of the numerator of 20) we first recall that F'(¥) = ¢ e* i.e. the future

value of a marginal increase of the water stock is equal to the value of the costate variable (the
scarcity rent of water) at the date the drought starts. Furthermore, we recognize that an
increase of the drought period will lead to an increased scarcity value of the existing stock of

water X . Hence, (dg, /de) > 0 and 20) is, thus, positive. This is to say that an increase of the

13



drought period will lead to a larger pre-drought steady-state stock X ,but it will still be less

than x*.

7. Concluding remarks

Three management policies for an aquifer confronted with the threat of a limited drought
period have been considered. It is shown that Open Access water usage automatically restores
the water table to its pre-drought level through the zero-marginal-benefit-condition.
Furthermore, it is shown that rationing speeds up the restoration process as compared to the
Open Access policy but is otherwise non-economical since it does not take into account that
the water stock is a capital that should be managed according to the size of the social discount

rate as well as to the size of the probability of the occurrence of a drought.

With respect to an optimal management of the water resource, reasoning could lead one to
believe that the threat of a drought would call for an extra precautionary stock of water (as
compared to the no-drought case) to be drawn upon during the drought period (i.e. a smooth-
pasting argument). However, the contrary is the case. Economically optimal stock management
implies that the pre-drought stock should be kept smaller than the optimal no-drought stock,

and the larger is the probability of a drought the smaller should the pre-drought stock be.

This result implies that the consumers should take the advantage of using the water stock
during the period of normal precipitation before the drought starts. Technically, the failure rate
A functions as an increment to the social discount rate and leads to heavier discounting and
therefore a smaller steady-state stock. This result holds true even if the drought period extends
into infinity, such that the aquifer change from being a renewable resource to becoming a non-
renewable resource at the date the drought sets in. Also, even if the drought trigger a salination
process which makes all or a part of the water stock unusable for consumption (and thus
increases water scarcity) this result will hold. The optimal water stock prior to this event will

still be smaller than the optimal non-drought steady-state stock.



Literature
Burt, O.R. (1964), «Optimal Resource Use over Time with an Application to Ground Water»,
Burt, O.R. (Management Science 11, 80-93 .

1975), «Ground Water Management and Surface Water Development for Irrigation» in: RM.
Thrall (ed.) Economic Modelling for Water Policy Evaluation (North Holland ,

Amsterdam)

Caldwell, J.C. (1975) «The Sahelian Drought and its Demographic Implications», American
Council on Education, OLC Paper No.8, 1975.

Carruthers, 1. and C. Clark (1981), « The Economics of Irrigation», Liverpool University

Press, Liverpool.

Diaz, H.F. and Markgraf, V. (eds.) (1992) «EI Nino», Cambridge University Press.

Fetter, C.W. (1980) «dpplied hydrology», Charles Merill Publishing Company, Columbus,
Ohio.

Huisman, L. (1972) «Groundwater Recovery», Macmillan, London, 1972.

Neher, P. (1990) «Natural resource economics: Conservation and exploitation», Cambridge

University Press, Cambridge.
Ringskog, K. (1997) «Water Markets in the Americas», World Bank Report.
Sinn, H.-W. (1988) « The Sahel Problem», Kyklos, Vol. 41, Fasc. 2, 187-213.

Young, R.A. and R H. Haveman (1985) «Economics of Water Resources» in Kneese, A.V.

and J.L. Sweeney (eds.) «Handbook of Natural Resource and Energy Economics», Vol
1L, North Holland. |



