
MPRA
Munich Personal RePEc Archive

Is the NAIRU More Useful in
Forecasting Inflation than the Natural
Rate of Unemployment?

Claar, Victor V

Hope College

2002

Online at http://mpra.ub.uni-muenchen.de/14257/

MPRA Paper No. 14257, posted 25. March 2009 / 02:30

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Papers in Economics

https://core.ac.uk/display/7305031?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://mpra.ub.uni-muenchen.de/
http://mpra.ub.uni-muenchen.de/14257/


Applied Economics 38(2006):  2179-89. 

 

 

IS THE NAIRU MORE USEFUL IN FORECASTING INFLATION THAN THE 

NATURAL RATE OF UNEMPLOYMENT? 

 

 

Victor V. Claar 

Associate Professor of Economics 

Hope College 

41 Graves Place 

P.O. Box 9000 

Holland, MI 49422-9000 

USA 

Voice (616) 395-7579, Fax (616) 395-7490 

claar@hope.edu 

 

 

 

 

Running Title:  IS THE NAIRU MORE USEFUL IN FORECASTING INFLATION 

THAN THE NATURAL RATE? 

 

 

Abstract:  Recent studies have indicated that the terms “NAIRU” (non-accelerating 

inflation rate of unemployment) and “natural rate of unemployment” are not 

interchangeable.  While NAIRU is an empirical macroeconomic relationship estimated 

via a Phillips curve, the natural rate is an equilibrium condition in the labor market, 

reflecting the market’s microeconomic features.  This paper evaluates comparatively the 

inflation-forecasting power of alternative time-varying estimates of the natural rate of 

unemployment relative to the NAIRU.  I estimate the natural rate of unemployment in the 

U.S. since World War II.  Three alternative methods are utilized:  the Kalman filter, a 

structural determinants approach, and the Hodrick-Prescott filter.  In the section that 

follows, I assess how each estimator of the natural rate compares to the others—as well 

as to the NAIRU derived from a Phillips curve—in forecasting inflationary changes in 

the United States in the second half of the twentieth century.  The analysis reveals that 

the overall inflation-forecasting utility of the natural rate of unemployment relative to the 

NAIRU is not very different.  Moreover, the conclusion appears to be quite robust to 

various estimators of the natural rate. 
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I.  INTRODUCTION 

 Recent studies correctly indicate that the terms “NAIRU” (non-accelerating 

inflation rate of unemployment) and “natural rate of unemployment” are not 

interchangeable.  For example, Chang (1997) holds such a view and bases it upon the 

notion that unemployment-inflation tradeoffs may arise in more than one way.  Espinosa-

Vega and Russell (1997) go further than Chang and argue that the presence of two 

expressions for these similar concepts was born out of the interaction of the classical and 

Keynesian schools and the neoclassical synthesis.   

 Grant (2002) identifies NAIRU as an empirical macroeconomic relationship 

estimated via a Phillips curve, and the natural rate as an equilibrium condition in the labor 

market, reflecting the market’s microeconomic features.  Given this distinction, Grant 

employs Okun’s Law to estimate a time-varying natural rate, and then examines the 

utility of the estimated natural rate series to forecast inflation relative to an estimated 

NAIRU series derived from a Phillips curve.  Despite their theoretical and empirical 

differences, the two yield similar inflation-forecasting power. 

 While Okun’s Law affords one avenue for estimating the natural rate of 

unemployment, it is not the only method for estimating the rate of unemployment 

consistent with equilibrium in the labor market.  Hence, while Grant makes a key 

contribution toward assessing the relative utility of NAIRU and the natural rate in 

forecasting inflation, it is not clear whether Grant’s conclusion is robust to alternative 

estimators of the natural rate of unemployment. 
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 The purpose of this paper is to extend Grant’s analysis to evaluate comparatively 

the inflation-forecasting power of alternative time-varying estimates of the natural rate of 

unemployment relative to the NAIRU.  The analysis proceeds as follows.  In the next 

section of the paper, I estimate three different time paths of the natural rate of 

unemployment in the U.S. since World War II.  Three alternative methods are utilized:  

the Kalman filter, a structural determinants approach, and the Hodrick-Prescott filter.  In 

the section that follows, I assess how each estimator of the natural rate compares to the 

others—as well as to the NAIRU derived from a Phillips curve—in forecasting 

inflationary changes in the United States in the second half of the twentieth century.  The 

analysis indicates that Grant’s result is robust to estimators of the natural rate of 

unemployment beyond Okun’s Law.  Following presentation and discussion of the 

results, I provide a few concluding comments. 

 

II. ESTIMATION OF THE TIME PATH OF THE NATURAL RATE OF 

UNEMPLOYMENT 
 

 A.  The Kalman Filter 
 

  1.  The Model 

 

 The actual rate of unemployment, which is observed frequently and relatively 

easily, may be thought of as the sum of two distinct components.  One component, the 

rate of cyclical unemployment, captures the unemployment associated with changes in 

business conditions.  The other component, which I will refer to as the natural rate 

component, includes frictional as well as structural unemployment.  Hence, at any given 

time t, this relationship may be expressed as 
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NAT

t t t
U U    (1) 

 

where Ut is the observed actual unemployment rate, NAT

t
U  is the natural rate of 

unemployment, and βt is the rate of cyclical unemployment. 

To complete the model, assumptions must be made regarding the evolution of 

both the natural rate and the cyclical rate.  In their widely cited work,
1
  Blanchard and 

Quah (1989) interpret fluctuations in output and unemployment as the result of two types 

of shocks: one that has a permanent impact, and one that does not.  In Blanchard and 

Quah’s view, shocks which exhibit a more permanent impact are shocks in supply: 

changes in technology or capital, oil disruptions, and baby booms.  Such disturbances can 

alter the location of the long-run aggregate supply curve, simultaneously changing the 

level of full-employment output.  Alternatively, demand shocks tend to be more 

ephemeral: autonomous changes in consumption or investment (Keynes’s “animal 

spirits”), changes in foreign income, and fiscal and monetary policy changes.  Moreover, 

demand shocks do not influence the location of the long-run aggregate supply curve and, 

therefore, do not influence the full-employment level of output. 

Similarly, I introduce two disturbances to unemployment:  one that has a 

temporary effect and one that is permanent.  Again, it is helpful to regard the permanent 

disturbances as supply shocks that change the full-employment level of output, and the 

temporary disturbances as demand shocks that cannot change the full-employment level 

of output. 

Specifically, I follow King, Stock, and Watson (1995), Staiger, Stock, and 

Watson (1997a), Gordon (1997 and 1998), Wieland (1998), Laubach (2001), and Apel 
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and Jansson (1999a, 1999b) and assume that the natural rate of unemployment NAT

t
U  

follows a random walk.   Further, I let the cyclical rate of unemployment βt exhibit serial 

correlation; Apel and Jansson (1999a, 1999b) make the same assumption.  Again, as in 

the work of Blanchard and Quah, shocks to cyclical unemployment are thought to be 

from the demand side, and limited in persistence. 

Thus I incorporate the assumption that shocks to cyclical unemployment are 

temporary and that shocks to the natural rate of unemployment are permanent.   

Therefore, a given policymaker’s best approximation to her stochastic environment may 

be characterized as:  

 ,
NAT

t t t
U U    (1) 

 
1

,
NAT NAT

t t t
U U 


   (2) 
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where ρ is between zero and one and where 
t

  and 
t

  are independently distributed error 

terms with 

 
2 2

~ (0, ), ~ (0, ).
t t

N N      

 

 Observe that the use of independently distributed shocks permits the isolation of 

shocks to the cyclical rate of unemployment from shocks to the natural rate of 

unemployment.  I specify the model in this fashion for two reasons.  First, as stated 

above, I wish to follow as closely as possible the spirit of Blanchard and Quah’s analysis.  

Second, for the decomposition of the unemployment rate that follows, it is helpful to 

maintain a clear dichotomy between the two sources of shocks.  Of course, such a 
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specification precludes the possibility of hysteresis in unemployment.  That is, shocks to 

cyclical unemployment can never have an impact upon the natural rate of unemployment, 

and vice versa. 

 

2.  Empirical Model Estimation 

 The series of data that I use in order to estimate the natural rate of unemployment 

via the Kalman filter is the civilian unemployment rate taken from the Bureau of Labor 

Statistics’s Current Population Survey.  The data are annual, ranging from 1947 to 1998.
2
 

 The Kalman filter is useful in providing an optimal updating scheme for the 

unobservable natural rate of unemployment, and may be used to produce smoothed 

estimates of an unobservable series. Figure 1 depicts the unemployment rate series 

together with the estimated series of its underlying components from 1949 to 1998.  The 

estimated natural rate appears fairly stable over the period.  The analysis indicates that 

the natural rate was near five percent at the beginning of the period, rose to about six 

percent during the early 1980s, and then fell to a 1998 level of approximately 5.73%.  

Complete results are given in Table 1.  Inspection of the resulting series indicates that the 

natural rate ranged from as high as 6.03% in 1983 to as low as 4.94% in the years 1951-

52.  Further observe that the highest estimated natural rate of 6.03% in 1983 closely 

corresponds to the highest level of unemployment in the period, 9.7% in 1982.  Also of 

note are the years during which the analysis indicates that the unemployment rate lay 

below the natural rate of unemployment.  These periods occur in 1951-57, 1964-70, 

1973-4, 1979, 1988-90, and 1995-98. 
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 Having generated an estimate of the natural rate of unemployment, it is logical to 

ask whether these estimates outperform other estimates in any way.  Such issues are 

taken up in the following sections. 

 

 B.  A Structural Estimator of the Natural Rate 

  1.  The Model 

 As the previous section produced estimates of the natural rate via the Kalman 

filter, this section of the analysis generates an alternative to those estimates for use in the 

comparative evaluation taken up later in the paper.  Specifically, in this section I adapt 

the technique of Adams and Coe (1990) to estimate the natural rate of unemployment in 

the United States using structural determinants.  My estimation differs from that of 

Adams and Coe in two ways, however.  First, instead of quarterly data, I use annual data.  

Second, while Adams and Coe conduct their analysis for the period 1965 to 1988, my 

sample period is considerably longer: 1948-1996.  The reason the sample period does not 

extend further forward is due to the fact that the data series representing the 

unemployment insurance replacement ratio are not yet available beyond 1996 at the time 

of this writing. 

 Following directly Adams and Coe, the regression equation for the 

demographically adjusted unemployment rate at time t, Ut, has the following form: 

 
1 2 3 4 5
( ) ,

tr

t t t t t t t t t
U k y y NWLC UIRR SL RMW UNN              (4) 

where 
t

y  is real GDP at time t; tr

t
y  is trend real GDP at time t; RMWt is the relative 

minimum wage, calculated as the ratio of the minimum wage to the average hourly wage; 

SLt is the share of the labor force aged 16-24; UNNt represents union membership as a 
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percentage of nonagricultural unemployment; NWLCt is employers’ contributions for 

Social Security and pension funds as a percentage of total wages and salaries; and UIRRt 

is the unemployment insurance replacement ratio, calculated as the ratio of the average 

weekly unemployment insurance benefit to the average weekly wage in covered 

employment. 

 The expected signs of the estimated coefficients on all of the structural variable 

terms are positive.  As the GDP gap term represents actual GDP less trend GDP, the 

predicted sign of the estimated coefficient is negative.  Adams and Coe (1990) and Coe 

(1990) both obtain the predicted signs in all cases.  However, significance of the 

regression coefficients varied widely across the studies and alternative specifications. 

 

  2.  Data and Estimation 

 Unemployment rate and labor force data are taken from the Bureau of Labor 

Statistics’s Current Population Survey.  Real GDP data are from the Survey of Current 

Business.  RMWt is the ratio of the minimum wage to the average hourly earnings of 

production workers; average earnings data are from the Bureau of Labor Statistics.  SLt is 

calculated directly from Bureau of Labor Statistics labor force data. 

 Unfortunately, unionization data have not been collected consistently by the same 

collector throughout the period.  Hence, the series is constructed from several sources. 

Ashenfelter and Card (1986) supply data for the following years that had been missing 

prior to their study:  1971, 1973, 1975, 1977, and 1982.  The data point for 1979 and data 

for 1990 and 1996 are from the Bureau of Labor Statistics and from the Statistical 

Abstract of the United States, respectively.  The data point for 1981 is linearly 
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interpolated from surrounding data; all other UNNt data are from Kurian (1994).
3
   NWLCt 

is calculated as total employee compensation less wage and salary accruals as a 

percentage of wage and salary accruals, the same calculation used by Adams and Coe; 

data are from the Survey of Current Business.  UIRRt is the ratio of the average weekly 

unemployment benefit amount to the average weekly total wage in taxable and 

reimbursable unemployment; data are from the Department of Labor’s Employment and 

Training Financial Data Handbook 394. 

 Defining y
tr
 as a linear trend,

4
 initial estimation of equation (4) suggests, 

according to the Durbin-Watson statistic, the presence of first-order serially correlated 

errors.  As Adams and Coe test alternative specifications of the model in order to purge 

any impure serial correlation, testing alternative specifications here appears redundant 

and, further, beyond the scope of the present analysis.  Hence, I use Beach and 

MacKinnon’s (1978) estimation method to correct for the serial correlation.  Estimation 

of the model incorporating the AR(1) correction, and then assuming that the cyclically 

neutral output gap is zero, yields the following structural equation for the natural rate of 

unemployment: 

 ˆ 10.712 0.130 40.654 5.262 0.053 .
NAT

t t t t t t
U NWLC UIRR SL RMW UNN       (5) 

 Equation (5) may then be employed to generate an estimated time series for the 

natural rate of unemployment over the sample period.  The resulting estimated series of 

the natural rate appears in Figure 2.  In the figure I also include the actual unemployment 

rate series, unadjusted for labor market shares. 
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 The maximum estimated natural rate of unemployment under the structural 

approach occurs in 1982, when the estimate rises to 8.0%.  The lowest estimated natural 

rate is 4.4% in 1951. 

 

 C.   The Hodrick-Prescott Filter 

 

 In a well-known 1981 working paper—more recently published in the Journal of 

Money, Credit, and Banking—Hodrick and Prescott (1997) present a method of 

decomposing a time series into two components: a smooth trend component and a 

cyclical component.  Such a decomposition procedure is especially amenable to the 

problem of estimating the natural rate due to the cyclical and noncyclical composition of 

the actual rate of unemployment mentioned earlier.  If the Hodrick-Prescott filter can 

provide a decomposition of the actual unemployment rate into its cyclical and noncyclical 

components, then the noncyclical series that results is an estimate of the natural rate of 

unemployment. 

 I apply the filter to the 1947-1998 annual unemployment rate series; the resulting 

natural rate series appears in Figure 3.  The highest estimated natural rate using the 

Hodrick-Prescott filter is 7.6%, which occurs in 1983.  The lowest estimated natural rate 

is in 1947, when the natural rate is estimated to be 4.1%. 

 

III.  COMPARATIVE EVALUATION OF NATURAL RATE ESTIMATORS 

 As Grant (2002) indicates, estimates of the NAIRU are derived from estimation of 

a Phillips curve.  The purpose of this section is to evaluate such Phillips curve estimates 

of the NAIRU relative to the aforementioned time-varying estimates of the natural rate of 
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unemployment in terms of their inflation-forecasting utility.  To make this possible, the 

one-step-ahead inflation forecasting power of the NAIRU will be assessed and compared 

to that of natural rate estimates derived from the Kalman filter, the Hodrick-Prescott 

filter, and the structural determinants method.  In all cases, the Phillips curve is used as 

the forecasting equation.   

 The importance of such testing lies in the fact that monetary policy does not 

consist of evaluating the overall fit of an equation during some past sample period.  

Instead, policymakers must make forecasts upon which policy actions will be founded. 

 

 A.  Phillips-Curve Estimation of the NAIRU 

 I employ a variant of the Phillips curve estimated by Roberts (1995).  The general 

form is 

 
0 1 2 1

( ) ,
e NAT

t t t t t t
c U U c rpoil c rpoil   


          (6) 

where 
t

  is the rate of inflation, e

t
  is the expected rate of inflation, Ut is the 

unemployment rate, NAT
U  here is the NAIRU, and   is a parameter greater than zero.   

Like Roberts, I include a role for oil price shocks.  Since the oil price shocks of the 1970s 

and early 1980s, economists have realized that the Phillips curve should include supply 

shocks (Mankiw 2000, p. 365).  Hence, again following Roberts, rpoilt represents the real 

price of crude petroleum.  Two measures of expected inflation are considered: one-period 

lagged inflation and the 12-month-ahead Livingston survey prediction of the inflation 

rate.
5
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 While the preceding specification can work quite nicely in conducting in-sample 

estimation, a problem arises if one wishes to conduct out-of-sample forecasting of 

inflation.  Observe that the preceding specification contains as explanatory variables the 

unemployment rate at time t and the real change in oil prices at time t, while the 

dependent variable is measured at time t as well.  Hence, forecasting inflation changes via 

the expression above becomes problematic as next period’s inflation rate cannot be 

predicted if the value of a key independent variable—the unemployment rate—is not 

known for next period either.  To address this problem, I employ standard univariate time 

series forecasting techniques to generate forecasts of both oil prices and the 

unemployment rate.   

 Using a recursive least-squares procedure similar to that of Staiger, Stock, and 

Watson (1997b), I estimate equation (6) beginning with the first third of the entire sample 

period of 1947-1998.  The estimated coefficients are saved and used in conjunction with 

the forecasts of the unemployment rate and the change in oil prices in order to forecast 

inflation for the following year.  This is done for each year, with increasing sample size.  

In each year, the forecast of inflation is compared to the actual inflation rate, and the 

resulting forecast error is saved.  As there are no lagged values of the dependent variable 

appearing on the right-hand side of the regression equation, calculation of the inflation 

forecasts is relatively straightforward. 

 Note that any possible multicollinearity between the two differenced oil price 

terms is not perfect since the coefficients on those terms change with each new 
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regression.  Also, the variation in those coefficients is not nearly as important here as the 

combined impact of those two terms.  

 I generate one-step-ahead forecasts of inflation twice, once using the Livingston 

data in place of the expected inflation term, and once using the lagged inflation rate.  

Their inclusion here amounts to a policymaker’s incorporating such information in 

generating her forecast of inflation.  I consider only the period ending in 1997 in order to 

match the latest possible forecast date using the data series from the structural method.  

After generating the forecasts, I calculate the root mean square forecast error. 

 Note that, for the purpose here of forecasting inflation, it is not necessary to know 

an explicit estimate of the NAIRU for each subperiod.   To see this, simply rearrange 

equation (6) to form the regression equation 

where 

 
0

.
NAT

k c U   

 

 

 B.  Kalman-Filter Estimation of the Natural Rate 

 Using estimates of the natural rate of unemployment via the Kalman filter to 

forecast inflation has several advantages over the recursive least squares technique given 

in the preceding section.  First, even under a recursive least squares process such as that 

described above, least squares—by definition—yields only an estimate of the NAIRU 

that may be thought of as an average of the NAIRU over the period or subperiod being 

considered.  Hence, while the estimate of the NAIRU is being updated with each new 

observation, least squares estimates give equal weight to data from 1957 and from 1997.  

1 2 1
,

e

t t t t t t
k U c rpoil c rpoil   


                                     (6a) 
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In contrast, the Kalman filter gives greater weight to more recent observations than to 

those made long ago in the dynamic framework, producing a time-varying estimate of the 

natural rate of unemployment.  Thus the Kalman filter arguably uses information in a 

superior fashion than does the recursive least squares setting. 

 A second advantage of Kalman filter estimates of the natural rate in a forecasting 

context lies in the ability of the Kalman technique to provide forecasts of next period’s 

actual and natural unemployment rates.  Recall that the Kalman filter process generates 

one-step-ahead forecasts of the unobserved components prior to next period’s 

observation.  In fact, it is by comparing these forecasts to the eventual observation that 

the Kalman filter evaluates and updates itself.  Since the Kalman filter does indeed give a 

prediction of next period’s actual and natural unemployment rates, forecasting in a 

Phillips curve context becomes considerably more straightforward.  Whereas the 

recursive technique used in the preceding section employed univariate time series 

techniques to forecast U and Δrpoil, Kalman forecast values of both the actual and 

natural rates of unemployment may now be included in the forecasting equation, although 

time series forecasts of the real change in petroleum prices must continue to be used.   

 Forecasting one-period-ahead inflation hence consists of first estimating 

 

where ˆ NAT

t
U  represents the estimate of the natural rate at time t yielded by the Kalman 

filter, beginning with the first one-third of the sample.  The subsequent step requires 

generating a forecast of inflation for the following period using the estimated parameters, 

0 1 2 1
ˆ( ) ,

e NAT

t t t t t t t
c U U c rpoil c rpoil   


                               (6b) 



 15 

actual values of the independent variables, and the forecast values of the actual and 

natural rates of unemployment, as well as the univariate forecast of Δrpoil.  The resulting 

inflation forecast is compared to actual inflation, the forecast error is calculated and 

saved, and this technique is repeated on a rolling basis with increasing sample sizes.  

Note that the coefficients in the regression equation are re-estimated each time.  As 

before, the root mean squared error is calculated.  Again both lagged inflation and 

Livingston expectations are used in place of the e

t
  term.  

 

 C.  Hodrick-Prescott Filter and Structural Estimation of the Natural Rate 

 In addition to the Kalman filter estimates of the natural rate and NAIRU estimates 

gleaned from a Phillips curve, I also consider whether the estimates of the natural rate 

that follow from the Hodrick-Prescott filter and those arrived at via the structural method 

of Adams and Coe may prove superior to either of the others in forecasting one-period-

ahead inflation.  As in the Kalman filter case described in the preceding section, forecasts 

of the one-step-ahead unemployment rate, the one-step-ahead natural rate, and the one-

step-ahead real oil price growth rate are needed in order to produce one-step ahead 

forecasts of the dependent variable.   

 In the Hodrick-Prescott filter case, and again beginning with the first third of the 

sample, the Phillips curve in (6b) is estimated with the Hodrick-Prescott estimated natural 

rate time series—rather than the Kalman estimates—included as a regressor.  Once the 

Phillips curve coefficients have been estimated, one-step-ahead forecasts of the 

unemployment rate, the natural rate, and the growth rate of real oil prices are again 

required in order to predict the future value of the dependent variable.  In the cases of oil 
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prices and the unemployment rate, I again use the univariate time series forecasts 

described earlier.  To predict the natural rate estimate that the Hodrick-Prescott filter 

would produce one period into the future, I simply run the Hodrick-Prescott filter over 

the series consisting of the observed unemployment rates up to the current period, with 

the one-step-ahead univariate time-series forecast of the unemployment rate tacked onto 

the end of that series.  Once the filter has been run, I utilize the final point in the filtered 

series as the one-step-ahead forecast of the natural rate estimate that the HP filter might 

produce.  After making the appropriate substitutions into the estimated Phillips curve 

equation, the resulting inflation forecast is compared to actual inflation, the forecast error 

is calculated and saved, and this technique is repeated on a rolling basis with increasing 

sample sizes.  As before, the root mean squared error is calculated.  Again both lagged 

inflation and Livingston expectations are used in place of the e

t
  term.  The root mean 

square errors for both the lagged inflation and the Livingston data cases are again 

calculated. 

 For the case of Adams and Coe’s structural method, recall that the structural 

method generates estimates of actual and natural unemployment rates as a function of 

certain structural variables such as the relative minimum wage and the percentage of the 

labor force that is unionized.  Consequently, all that is required in order to forecast the 

unemployment rates is to estimate the structural equation using data through the present 

period and again make use of univariate time series forecasts—this time of the structural 

determinants.  Substituting such forecasts into the estimated structural equation yields 

forecasts of the unemployment rates which may then be substituted into an estimated 
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version of the Phillips curve given in (6b).  Root mean squared errors are again calculated 

incorporating either lagged inflation or Livingston survey information. 

 

 D.  Results 

 In light of the superiority of the way in which the Kalman filter incorporates new 

information, one might reasonably wonder whether the Kalman filter might produce one-

step-ahead errors that fall at a faster rate than those yielded by the other estimators so that 

the forecast errors given by the Kalman filter method are relatively large early in the 

analysis but relatively small later. 

 In order to gain insight into this possible superiority of the Kalman filter in 

forecasting inflation, again consider the differences between estimates of the NAIRU 

derived from a Phillips curve and the natural rate estimates produced by the Kalman 

filter.  In a recursive least squares context, the Phillips curve delivers a slightly updated 

estimate of the natural rate each time new information becomes available.  However, the 

updated value is arrived at by giving equal weight to all observations—including the new 

observation.  For example, in modifying the estimated NAIRU as new data become 

available for 1997, the recursive least squares techniques give equal weight to the new 

observation, the prior year’s observation, and the observation from, for example, 1953.  

In doing so, the technique ignores anything the policymaker might know about how the 

NAIRU may evolve over time. 

 The Kalman filter, on the other hand, gives more weight to more recent 

observations.  Further, the Kalman filter lets the policymaker refer to her presuppositions 

about how the natural rate may evolve over time.  Moreover, inasmuch as the Kalman 
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filter constitutes a learning process, one might expect that forecast errors would be larger 

in the earlier stages of observation, estimation, and prediction than in later periods.  That 

is, since the policymaker in the Kalman setting learns from past mistakes, her mistakes 

will, on average, grow smaller over time.  Consequently, the mean forecast error may be 

relatively large due to larger errors quite early in the learning process, but grow quite 

small as learning continues.  Therefore, it is indeed possible that while the mean forecast 

errors for the Kalman filter are larger than those yielded by other estimators, actual 

forecast errors for the Kalman filter become smaller in later periods.  In fact, forecast 

errors for the Kalman filter might even grow smaller than other forecast errors given 

sufficient time for the policymaker to learn about her stochastic environment. 

 To investigate this possibility, I calculate the root mean squared forecast error for 

each of the forecasts, but do so over different intervals.  The shortest interval includes 

only 1997, the next includes 1997 and 1996, the next includes 1997-95, and so forth.  

One would expect that the average forecast error becomes larger as the period becomes 

longer.  The resulting series are plotted in Figures 4 and 5.  Figure 4 consists of the 

forecasts that incorporate the Livingston data, and Figure 5 consists of the forecasts that 

incorporate lagged inflation.  

 Unsurprisingly, the mean forecast errors of all equations and estimates of the 

natural rate grow larger as the period lengthens to include earlier and earlier years.  

Further, in the case of forecasts incorporating the Livingston forecast of inflation, there is 

little variation in the root mean square error of the forecasts associated with the Kalman 

filter.  However, it is the Hodrick-Prescott filter estimates of the natural rate that appear 
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to produce the smallest RMSEs.  While there is considerably more variation in the 

forecast errors associated with the equations incorporating lagged inflation rather than 

those incorporating the Livingston information, the natural rate estimates following from 

the Hodrick-Prescott filter again appear superior in forecasting. 

 Since the series correspond so closely in Figures 4 and 5, Table 2 contains the 

RMSE values underlying the figures.  Under both the Livingston and lagged-inflation 

versions, the lowest RMSE of the four estimators for each subperiod is given in bold.  In 

the Livingston case, the Hodrick-Prescott filter yields the lowest RMSE for all but one 

subperiod.  In the case of lagged-inflation, however, the results are considerably more 

varied.  While the Hodrick-Prescott filter again yields the lowest RMSE for the longest 

subperiod, the Kalman filter has the lowest RMSE for the period beginning immediately 

following the first OPEC oil embargo.  The Phillips curve appears to provide the lowest 

RMSE for the forecasts from the second OPEC price hike forward.  The structural 

determinants method is best only from the recession of the early 1990s forward. 

 Examination of Table 2 reveals several additional points of interest.  First, 

evidence regarding the usefulness of the Livingston data is unclear.  While incorporating 

the Livingston survey information yielded a larger average forecast error, the differences 

were only slight.  Hence, it is unclear whether policymakers would do well to consider 

the Livingston data in formulating their inflation forecasts. The Livingston survey 

forecast of inflation may contain information regarding future inflation beyond that given 

by oil price shocks and unemployment rates alone, but that is unclear in the present 

analysis. 
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 Second, no single estimator—NAIRU or otherwise—appears to enjoy an 

advantage when the average forecast error is considered over the entire out-of-sample 

forecasting period.  In fact, the root mean squared errors are nearly identical across all 

estimators, with the only exception being the slightly smaller RMSE for the HP estimator 

in the specification incorporating lagged inflation.  Hence, no estimator appears superior.   

 Finally, recall that forecasting inflation via the Phillips curve required no specific 

knowledge of the NAIRU implicit in the regression equation given in (6a).  Thus it 

appears that, no matter which estimate of the natural rate of unemployment one employs, 

such estimates add no value in forecasting inflation. 

 

IV.  CONCLUSION 

 This paper considers how well various estimators of the natural rate of 

unemployment perform in their ability to forecast inflation in a future period relative to 

the NAIRU.  Specifically, a Phillips-curve is used to estimate NAIRU; following Staiger, 

Stock, and Watson (1997b), recursive least squares is applied to a Phillips curve in order 

to estimate NAIRU and to generate one-step-ahead predictions of inflation.  The forecast 

errors at each step are saved and the root mean squared forecast error is calculated. 

 Alternatively, the Kalman filter, the Hodrick-Prescott filter, and a structural 

determinants method are used to estimate the natural rate of unemployment.  These 

estimates are then substituted into the Phillips curve to be estimated.  In order to simulate 

the real-time forecasting problem faced by a policymaker, the Phillips curve is estimated 

on a rolling basis using each estimator of the natural rate.  One-step-ahead inflationary 

forecasts are generated and saved; the root mean forecast error is calculated. 
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 The analysis reveals that the overall inflation-forecasting performance of all 

estimators of the natural rate of unemployment relative to the NAIRU forecasts is not 

very different.  This result provides additional support for the claim by Grant (2002) that 

the NAIRU offers no better utility in inflation forecasting than does the natural rate.  

Moreover, the present analysis—in examining three estimators of the natural rate beyond 

Okun’s Law—confirms this hypothesis in a more exhaustive manner.  As a result, the 

hypothesis appears to be quite robust to various estimators of the natural rate.  An 

additional degree of robustness might be attained via examination of the hypothesis using 

data from nations other than the United States. 
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Estimates 

   Smoothed 

Estimates 

 

Year 

Unemployment 

Rate 

(%) 

 Natural 

Rate 

(%) 

Cyclical 

Rate 

(%) 

  

Year 

Unemployment 

Rate 

(%) 

 Natural 

Rate 

(%) 

Cyclical 

Rate 

(%) 

1949 5.9 4.99 0.91      1974 5.6 5.66 -0.06 

1950 5.3 4.98 0.31  1975 8.5 5.79 2.71 

1951 3.3 4.94 -1.64  1976 7.7 5.80 1.90 

1952 3.0 4.94 -1.94  1977 7.1 5.82 1.28 

1953 2.9 4.96 -2.06  1978 6.1 5.81 0.29 

1954 5.5 5.06 -0.43  1979 5.8 5.83 -0.03 

1955 4.4 5.06 -0.66  1980 7.1 5.90 1.20 

1956 4.1 5.07 -0.97  1981 7.6 5.94 1.66 

1957 4.3 5.11 -0.81  1982 9.7 6.02 3.68 

1958 6.8 5.22 1.58  1983 9.6 6.03 3.57 

1959 5.5 5.20 0.30  1984 7.5 5.96 1.54 

1960 5.5 5.23 0.27  1985 7.2 5.95 1.25 

1961 6.7 5.29 1.41  1986 7.0 5.94 1.06 

1962 5.5 5.28 0.22  1987 6.2 5.91 0.29 

1963 5.7 5.30 0.39  1988 5.5 5.87 -0.37 

1964 5.2 5.31 -0.11  1989 5.3 5.86 -0.56 

1965 4.5 5.31 -0.81  1990 5.6 5.86 -0.26 

1966 3.8 5.31 -1.51  1991 6.8 5.89 0.91 

1967 3.8 5.34 -1.54  1992 7.5 5.90 1.59 

1968 3.6 5.36 -1.76  1993 6.9 5.87 1.03 

1969 3.5 5.39 -1.89  1994 6.1 5.83 0.27 

1970 4.9 5.48 -0.58  1995 5.6 5.80 -0.20 

1971 5.9 5.55 0.35  1996 5.4 5.78 -0.38 

1972 5.6 5.58 0.02  1997 4.9 5.75 -0.85 

1973 4.9 5.60 -0.70  1998 4.5 5.73 -1.23 

Table 1.  Actual Unemployment Rates and Smoothed Natural Rate Estimates, 1949-1998 



 

 
 Livingston  Lagged Inflation 
 Kalman Structural HP Phillips Curve  Kalman Structural HP Phillips Curve 

1966 0.029995 0.030276 0.029699 0.030061  0.025018 0.024762 0.023636 0.025291 
1967 0.030449 0.030735 0.030141 0.030514  0.025378 0.025116 0.023997 0.025659 
1968 0.030948 0.031238 0.030638 0.031013  0.025631 0.025369 0.024208 0.025927 
1969 0.031456 0.031726 0.031151 0.031521  0.026053 0.025802 0.024558 0.026357 
1970 0.032003 0.032279 0.031680 0.032072  0.026402 0.026163 0.024743 0.026735 
1971 0.032590 0.032868 0.032260 0.032659  0.026676 0.026516 0.024795 0.027062 
1972 0.033151 0.033472 0.032791 0.033219  0.027142 0.027019 0.025106 0.027532 
1973 0.033681 0.033978 0.033302 0.033751  0.027679 0.027531 0.025603 0.028077 
1974 0.034354 0.034646 0.033960 0.034423  0.028195 0.027993 0.026062 0.028590 
1975 0.034610 0.034899 0.034176 0.034677  0.027232 0.027103 0.025194 0.027675 
1976 0.014453 0.014387 0.012561 0.015112  0.017322 0.018346 0.018258 0.017590 
1977 0.014630 0.014641 0.012780 0.015095  0.017528 0.018190 0.018349 0.017785 
1978 0.014899 0.014941 0.012969 0.015429  0.017425 0.018036 0.017119 0.017480 
1979 0.014982 0.015052 0.012965 0.015630  0.017391 0.018127 0.017552 0.017442 
1980 0.015137 0.015217 0.013079 0.015889  0.017531 0.018289 0.018006 0.017419 
1981 0.015059 0.015119 0.013093 0.015918  0.016669 0.017597 0.017913 0.016077 
1982 0.014574 0.014269 0.012700 0.015480  0.017182 0.018086 0.018330 0.016507 
1983 0.014423 0.014062 0.012619 0.015374  0.013597 0.014966 0.012016 0.013005 
1984 0.014899 0.014034 0.012948 0.014411  0.014056 0.014398 0.010082 0.013355 
1985 0.012846 0.013540 0.011581 0.014107  0.014314 0.014832 0.008760 0.013838 
1986 0.012931 0.014047 0.011840 0.014568  0.011866 0.009860 0.008548 0.011388 
1987 0.013403 0.014664 0.012277 0.015204  0.011796 0.009913 0.008928 0.011065 
1988 0.013625 0.014269 0.012655 0.014066  0.009850 0.009687 0.008261 0.010108 
1989 0.011517 0.012254 0.010988 0.012134  0.009243 0.008545 0.008350 0.008717 
1990 0.012211 0.012997 0.011643 0.012869  0.007586 0.006085 0.006390 0.006052 
1991 0.011876 0.012510 0.011489 0.012487  0.007956 0.006436 0.006830 0.006445 
1992 0.012234 0.012585 0.011851 0.012781  0.008319 0.006243 0.007373 0.006958 
1993 0.012646 0.012957 0.012704 0.012635  0.008768 0.006640 0.006728 0.007317 
1994 0.013539 0.014304 0.013285 0.013974  0.009461 0.007214 0.007314 0.008098 
1995 0.015597 0.016516 0.015281 0.016127  0.005923 0.004780 0.004395 0.004947 
1996 0.017708 0.019134 0.017151 0.018715  0.006356 0.004323 0.004250 0.004359 
1997 0.021795 0.023472 0.020959 0.023219  0.008978 0.005918 0.005024 0.004258 

Table 2.  Root Mean Square Error of Four Estimators of the NAIRU over Different Subperiods 
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Figure 1.  The Unemployment Rate and the Smoothed Estimates of the Natural Rate 

and Cyclical Rate, 1949-1998 
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Figure 2.  The Unemployment Rate and the Structural Estimate of the Natural Rate of 

Unemployment, 1948-1996 
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Figure 3.  The Unemployment Rate and the Hodrick-Prescott Filter Estimate of the 

Natural Rate of Unemployment, 1947-1998 
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Figure 4.  Root Mean Square Error of Four Estimators of the NAIRU over Different 

Subperiods, Incorporating the Livingston Forecast 
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Figure 5.  Root Mean Square Error of Four Estimators of the NAIRU over Different 

Subperiods, Incorporating the Lagged CPI Inflation Rate 



 

 

                                                 

 

NOTES 
 

1. Recent citations of Blanchard and Quah appear in Mocan (1999) and Galí (1999). 

 

2. I use annual data for frequency reasons that will become apparent later in the paper. 

3. Zavodny (1999) gives a very recent indication of the difficulties inherent in collecting 

such unionization data, and the necessity of consulting a variety of sources and linearly 

interpolating missing points. 

4. While Adams and Coe are quick to note that this assumption is somewhat simplistic, 

they offer no superior choice; note that this assumption implicitly posits that the 

cyclically neutral output gap is zero. 

5. As in Roberts (1995), annual data are used in order to match the frequency of the 

Livingston data. 


