
MPRA
Munich Personal RePEc Archive

A unified differential information
framework assessing that more
information is preferred to less
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1 Introduction.

Uncertainty and information are central issues in economic analysis: economic decisions, con-

tracts among agents and, in fact, all economic activities take place under conditions of general

uncertainty and involve incomplete information. Research in economic theory has long rec-

ognized their importance and has shown that, regarding the introduction of uncertainty and

information into general equilibrium analysis, the Arrow-Debreu model has turned to be a solid

framework.

The incorporation of exogenous uncertainty into the classical Walrasian equilibrium model

was made by means of a set of possible states of nature that is built into the definition of a

commodity. Modeling uncertainty in this way and the resulting “state-contingent” approach

to uncertainty was first introduced by Arrow (1953) and further detailed by Debreu (1959) in

Chapter 7 of his “Theory of Value” and, precisely, was made famous in the late 1960s with the

seminal work of Radner (1968) in which differential information was considered in a model of

general equilibrium for the first time.

“Asymmetric in information” emerges when information is incomplete and lack of informa-

tion exhibits different degrees from one agent to the other. Every agent is assumed to have

her own private information structure concerning exogenous uncertainty, that is, a mechanism

which she uses to perceive the world and only these observation results allow the agent to draw

conclusions about the states of nature. So agents do not necessarily know which state of nature

has actually occur and what each agent observes is element of her information set, so-called an

event, containing the realized state of nature.

Radner’s work (1968) is particularly relevant in this context and gives rise to a growing liter-

ature in equilibrium theory. These works, usually referred as differential information economies,

consider that an agent’s information is described either by a σ− algebra or, for the case of

finitely many states of nature, by a partition of the set of states. All these models of economies

with asymmetric information share the same assumption regarding the impact of information

on an agent’s decisions: incomplete information restricts an agent’s choice of action plans in

such a way that her admissible plans have to be measurable with respect to her own private

information. Up until now, all studies has focused on this Radner-type approach (e.g. Yannelis
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(1991), Koutsougeras and Yannelis (2003) or Glycopantis, Muir and Yannelis (2003, 2004)). As

Glycopantis and Yannelis (2004) recently note “we believe that the natural and intuitive way to

proceed is to analyze concepts in terms of measurability of allocations”.

Our analysis will develop in this context of general equilibrium in the spirit of Radner but

differs from the standard measurability outline. This paper deals with different approach to

differential information where information is not about measurability. How private information

describes the realizations an agent can discern? This question leads us to concentrate on highlight

that an agent’s private information on the environment does not permit discrimination among

the states belonging to any element of her information structure. We consider two alternative

scenarios-the set of states of the world can either be a set of points or a measurable space. In

either case, our modeling of information goes to a step further: private information is considered

as an application mapping states of nature to future realizations or results, usually referred in

the literature as events. One of the contributions of this paper is to provide a unified framework

in which both outlines-partitions and σ-algebras- can be accommodated.

Our aim is to analyze how imperfect information places a restriction on the feasible action

plans. We present a new specification of this constraint by introducing the notion of the set

of admissible action plans determined by an agent’s information. In this fashion, we set up a

partial order on the information of the agents that empowers us to establish not only when an

agent is at least or even better informed than the others but also that better informed agents,

due to asymmetric information constraints, choose their plans in a bigger subspace.

All along this paper we consider a simple example which enables us not only to illustrate to

bear witness to a very recent work by Dubra and Echenique (2004). In that paper, they propose

a modeling of information based on the use of σ-algebras and provide an example from which

they conclude that in a differential information model “a decision maker prefers less information

to more”. Being cognizant of their wrong argument and their completely erroneous conclusion,

we finally formalize an essential principle in the differential information analysis: an agent is

going to be better off endowed with more information.

The rest of the paper is organized as follows: in Section 2 our modeling of information is

developed. The notion of uncertainty realizations is defined in such a way that all the states the
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agent is not able to distinguish conform a realization. Thus, an agent’s information describes

which realizations this agent can discern. In Section 3 it is discussed that impact of information

on an agent’s decisions. We present a new specification of this constraint by introducing the con-

cepts of informational feasibility and the set of admissible action plans determined by an agent’s

information. In Section 4 we state a characterization of economic agents by their information

structures that permit us to decide who the better informed agents are and to firstly formalize

the basic proposition that more information is preferred to less. Finally, in Section 5 we present

different examples that permit us to illustrate our approach.

2 The information of the agents.

As mentioned in the introduction, the analysis of economies with asymmetric information tackles

two essential elements. Agents are assumed to be incomplete informed and also differences in

information among economic agents are allowed. This concept of information is often interpreted

in the literature in the following way: every agent is assigned an information structure on the set

of states of the world and if an element of her information set comprises several states of nature,

the agent will not be able to discriminate among those states. Being mindful of this formulation,

let us now introduce our differential information framework.

Let T be the set of agents and let Pt denote the information set of each agent t ∈ T. Each

agent t ∈ T has access only to a mechanism which she uses to perceive the world. Let (Ω, Pt)

denote the realizations of the states that agent t observes in accordance with her own information

Pt. The idea is that the states contained in an element of (Ω, Pt) cannot be made out under Pt.

As different agents are assumed to have different information, any other agent t′ with private

information Pt′ beholds (Ω, Pt′) that can be distinct from (Ω, Pt) “recognized” by agent t.

Firstly, we consider that exogenous uncertainty is represented by a finite set of states of nature

and let Ω be a set of points. In this context, the private information of an agent t is usually

represented in the literature by an application Pt : Ω → 2Ω. For each ω ∈ Ω, denote by Pt(ω) the

element of her information structure that contains ω. Then, Pt(ω) = Pt(ω′) whenever the states

ω and ω′ are indistinguishable by agent t under information Pt. Thus, private information Pt
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arranges the states of the world by means of an equivalence relation ∼t in such a way that two

states of nature ω and ω′ are perceived by agent t as the same uncertainty realization whenever

Pt(ω) = Pt(ω′). Therefore, the equivalence relation ∼t is defined by Pt as follows:

ω ∼t ω′ if and only if Pt(ω) = Pt(ω′).

Note that this equivalence relation classifies the set Ω as equivalence classes: if ω is the true

state of nature, agent t observes the event [ω] which represents the equivalence class of ω. Hence,

the agent’s information is defined by an application Pt : Ω → (Ω, Pt) that describes the set of

realizations this agent can discern in Ω as the set of equivalence classes, i.e., the quotient set

Ω/ ∼t = {[ω]t = {ω′ ; ω′ ∼t ω} ; ω ∈ Ω} . So (Ω, Pt) = Ω/ ∼t .

Now suppose that uncertainty is modelled by a measurable space (Ω,B, µ) where B is a

σ-algebra denoting the set of all possible results and µ is probability measure on B. In this

context, agent t recognizes the possible future outcomes of uncertainty by using a σ-algebra

Bt which is coarser than B. The fact that Bt is coarser than B implies that the identity map

Pt : (Ω,B, µ) → (Ω,Bt, µ) is measurable 1. Therefore, the environment realizations observed by

agent t when her information is Pt are represented by a measurable space (Ω,Bt, µ) so the set

of events she realizes is (Ω, Pt) = (Ω,Bt, µ).

Note that, in both differential information contexts, each agent t ∈ T with private information

Pt perceives the environment as realizations (Ω, Pt). So a private information structure maps

states of the world to uncertainty realizations, so-called events. We remark precisely that our

definition of information provides a single approach and allows us for taking into account both

aspects of uncertainty and information.

At this point, we drew our attention to the example from Dubra and Echenique (2004).

There, the state of the world can be a real number between 0 and 1... a decisionmaker can choose

either be perfectly informed, so that she gets to know the exact value of ω or only be told if

the true ω is smaller or larger that 1/2. From now on, this situation is referred in our work as

Example 1 and, as we will show in Section 5, more information is going to be preferred to less

which contradicts the result of Dubra and Echenique.
1Mathematically, a function f : (Ω,B, µ) → (Ω,Bt, µ) is measurable if and only if f−1(A) ∈ B for any open

set A in Bt.
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Example 1. Let Ω = [0, 1] be the set of possible states of nature. We consider two agents, 1

y 2, whose information is P1 and P2. Agent 1 is assumed to be incompletely informed about Ω

and only knows if the realized state of nature is smaller or larger than 1/2. Agent 2 is supposed

to be perfectly informed and knows the state ω that has been exactly realized.

Agent 1 under P1 : [0, 1] → (Ω, P1), understands uncertainty as two equivalence classes

[ω1]1 = [ω < 1/2]1 = [0, 1/2) and [ω2]1 = [ω ≥ 1/2]1 = [1/2, 1]. Then, her information P1 leads

to know two events and (Ω, P1) = Ω/ ∼1= {[ω1]1, [ω2]1}.

Agent 2, with her information P2 : [0, 1] → (Ω, P2), is able to detect all states of the world,

i.e., ω ∼2 ω′ if and only if ω = ω′. In this case, the set of events (Ω, P2) coincides with the set of

states of nature, i.e., (Ω, P2) = Ω/ ∼2= {{ω} ; ω ∈ [0, 1]} = [0, 1].

3 The impact of information on action plans. The infor-

mational feasibility constraint.

In this section we analyze the basic assumption regarding the impact of information on agents

decisions.

The essential feature in Debreu’s approach to uncertainty is that each state of the world

determines the entire history of all aspects of the economy that are beyond the control of any of

the agents. Then, action plans are indexed by the state of nature and all agents are supposed

to choose their plans in the same state-contingent commodity space. Let B denote the set of

commodities in each state. An action plan f is defined by a function that maps states of nature

(Ω or (Ω,B, µ) depending on the uncertainty representation) into B.

Once the asymmetries in information are incorporated, every agent that is incompletely

informed must make a decision without being able to discern all the states: she cannot choose

different plans on those states she is not able to distinguish. The agents are then supposed to

choose her action plans in a subset of the contingent commodity space defined as the set of

all state-dependent commodities that are compatible with her own information. Therefore, in

contrast with a large part of literature on general equilibrium, due to the information constraints,
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their choice is limited to smaller subsets that indeed differ from agent to agent. Keeping in mind

this basic feature we firstly introduce a new notion of information feasibility for admissible action

plans:

Definition 3.1 An action plan f is informationally feasible for an agent t with information

Pt if and only if f is factorized by Pt, i.e , if

f

{states of nature} −→ B

Pt ↘ ↗ f̃ f = f̃ ◦ Pt

(Ω, Pt)

is a commutative diagram.

The idea of our characterization is that each agent’s private information factorizes state-

dependent action into those that are informationally compatible so the admissible action plans

for the generic agent t are interpreted as a correspondence from the set of realizations (Ω, Pt)

she realizes under Pt into B. Note that our definition differs from that formulation in terms

of measurability introduced by Radner (1968, p.37) but provides a common framework that

comprises both settings regarding the exogenous uncertainty representation.

We now turn our attention to the factorization mechanism running. Let us first move to

our initial outline and suppose that Ω is the set of states of the world. In this context, private

information of agent t is represented by Pt : Ω → Ω/ ∼t and an action plan defined by f : Ω → B

is said to be informationally feasible for agent t if and only if there exists f̃ : Ω/ ∼t → B such

that f = f̃ ◦ Pt, where Pt(ω) = [ω]t

f

Ω −→ B

Pt ↘ ↗ f̃

(Ω, Pt) = Ω/ ∼t
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In the measurable space background, (Ω,B, µ) represents the possible states of nature and

(Ω,Bt, µ) shows the set of events that agent t can discern under Pt. An action plan f : (Ω,B, µ) →

B is said to be compatible with her own private information if and only if there exists f̃ :

(Ω,Bt, µ) → B such that f = f̃ ◦ Pt

f

(Ω,B, µ) −→ B

Pt ↘ ↗ f̃

(Ω, Pt) = (Ω,Bt, µ)

In this case, her information represented by Pt : (Ω,B, µ) → (Ω,Bt, µ) is the identity map so

Pt(ω) = ω. Note that for Pt to be well defined, i.e, for f = f̃ ◦ Pt to be well defined, it is

necessary that if any two functions f y g are B-measurable and such that [f ] = [g] with respect

to the σ-algebra B, it should be verified that [f̃ ] = [g̃] and, precisely, it is enough that f̃ and

g̃ are Bt-measurable. Therefore, it is required that the identity Pt : (Ω,B, µ) → (Ω,Bt, µ) is

measurable.

This position leads us to incorporate the information constraint in each agent’s action plans

set so at this point we introduce an essential concept in our work: the subspace of action plans

that are informationally feasible.

Let IPt = {f : Ω → B ; ∃ f̃ : (Ω, Pt) → B such that f = f̃ ◦ Pt} denote the set of action

plans that are compatible with the information Pt of agent t. Note that in IPt the following two

operations are hold:

(i) (Addition) For all f, g ∈ IPt the sum f + g ∈ IPt.

(ii) (Scalar multiplication) For all f ∈ IPt and any scalar λ, λ · f ∈ IPt.

so the set IPt is a vector space2. Observe that not any vector space is betoken for defining the
2It is easy to prove that if f, g ∈ IPt there exit f̃ : (Ω, Pt) → B and g̃ : (Ω, Pt) → B such that f = f̃ ◦ Pt and
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subspace of action plans satisfying the information feasibility assumption. A basic proposition

regarding the subspace IPt ⊂ {f : Ω → B} is that, for representing the set of action plans

that are informationally attanaible for a generic agent t, it must contain constant functions
3 This assumption is justified by the fact that in this context an agent can choose identical

actions contingent on all the states of the world. We stress that constant functions are always

informationally feasible and, in fact, are the only one elements in the set IPt if agent t cannot

discriminate any state in the environment set. In this case, if IPt = {f : Ω → B ; f constant}

then set of events (Ω, Pt) comes down to a point, i.e., either Ω/ ∼t= {[ω]t} or the σ-algebra Bt

is the trivial σ-álgebra Bt = {Ω, ∅} depending uncertainty model.

A case in point is that where Ω = {ω1, . . . , ωk} is a finite set. In this position the achievable

action plans for an agent t are given by

IPt = {(x(ω1), . . . , x(ωk)) ∈ Bk ; x(ωj) = x(ωj′) si Pt(ωj) = Pt(ωj′)}.

Note that if x = (x(ω1), . . . , x(ωk)) ∈ IPt then it follows that x+λ·1̄ = (x(ω1)+λ, . . . , x(ωk)+λ) ∈

IPt, for any λ.

There again, suppose that agent t makes out the state ωj , i.e., Pt(ωj) = [ωj ]t = {ωj}. This

implies that this agent’s subspace of admissible action plans in the informational sense has none

restriction on this state ωj . Formally, if (x(ω1), . . . , x(ωj), . . . , x(ωk)) ∈ IPt then it follows that

(x(ω1), . . . , x, . . . , x(ωk)) ∈ IPt for any x ∈ B.

Hence, the requirement of informational consistency obviously implies that the subspace

of action plans achievable for an agent t who is incompletely informed about the states of

nature is restricted to the set IPt that we characterize as the subspace of action plans that are

informationally feasible and, therefore, compatible with the private information Pt.

g = g̃ ◦ Pt respectively. Then, f + g = (f̃ + g̃) ◦ Pt ∈ IPt and λ · f = λ · (f̃ ◦ Pt) = (λ · f̃) ◦ Pt ∈ IPt.
3If f is a constant function then f(ω) = k for all ω so f̃ : (Ω, Pt) → B where f̃(·) = k is well defined and

verifies that f = f̃ ◦ Pt and, therefore, f ∈ IPt.

9



4 Better informed agents.

Our main concern in this section is to balance private information of different economic agents

by providing an order in their information sets. However, it is an essential feature that this order

must be necessarily partial on account off that information structures may not be comparable.

Note that the informationally feasible action plans common for different economic agents can be

restricted to constant functions that, as we have already point out, are always attainable in the

informational sense (see Example B).

Precisely, this setting in which different economic agents’ information sets are comparable is

our starting point. Our claim is that in the position of more information, an agent recognizes

more realizations into the set of possible states of the world and this, in point of fact, allows

for more action plans contingent on discernable events. On a first stage our aim is to define an

application relating the set of uncertainty realizations that information structures describe for

each agent and that enable us to check whether an agent is better informed than any other one.

Secondly, we show that better informed agents make their choices in a broader set of admissible

action plans. This permit us to demonstrate that in this position an agent is better off so we

conclude that an economic agent always prefers more information to less in contradiction with

the work of Dubra and Echenique (2004).

We consider two agents t and t′ with private information Pt and Pt′ respectively.

Definition 4.1 Agent t is at least as informed as t′ if and only if environment realizations that

t is not able to discern cannot be either distinguished by agent t′.

This definition expresses the idea that what a better informed agent cannot recognized is not

either discriminated by a worse informed agent.

In the measurable space uncertainty setting, Definition 4.1 implies that agent t is going

to discriminate more events than t′, so her σ-algebra is finer than that belonging to agent t′.

Therefore, in this case agent t is said to be at least as informed as t′ only if the identity map

given by i : (Ω,Bt, µ) → (Ω,Bt′ , µ) is measurable.

If Ω is a set of points, the idea is that two any states of nature ω and ω′ that are not recognized
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by agent t cannot be either discerned by individual t′. Note that if t cannot discriminate between

ω and ω′ then Pt(ω) = Pt(ω′) so agent t is said to be at least as informed as any other t′ whenever

Pt(ω) = Pt(ω′) and Pt′(ω) = Pt′(ω′). This implies that the application

i : (Ω, Pt) → (Ω, Pt′)

[ω]t → i([ω]t) = [ω]t′

is well defined. Observe that the application i is well defined if for any two states of nature

ω y ω′ such that [ω]t = [ω′]t, it is satisfied that [ω]t′ = [ω′]t′ . Therefore, it is the existence of

i : (Ω, Pt) → (Ω, Pt′) what determines that t is at least as informed as t′. The fact is that if two

any states ω and ω′ are understood by t as the same realization, i.e., Pt(ω) = Pt(ω′), then it must

occur that i([ω]t) = i([ω′]t) which only helds if [ω]t′ = [ω′]t′ , that is, only if Pt′(ω) = Pt′(ω′).

Next we state a basic characterization:

Proposition 4.1 Agent t is at least as informed as agent t′ if and only if Pt′ is factorized by

Pt, that is, if the application given by i : (Ω, Pt) → (Ω, Pt′) such that Pt′ = i ◦ Pt is well defined.

Pt′

Ω −→ (Ω, Pt′)

Pt ↓ ↗ i

(Ω, Pt)

Really, as we have already mentioned, it is the existence of the application i : (Ω, Pt) →

(Ω, Pt′) what enables us to say that agent t is at least as informed as t′. Let us specify the

intuition underlying our factorization of Pt′ by Pt or, equivalently, that i is well defined: if

(Ω, Pt) is a measurable space, this factorization means the measurability of application i; if

(Ω, Pt) is the set of equivalence classes, the factorization implies that the identity map i : [ω]t ∈

(Ω, Pt) → i([ω]t) = [ω]t′ ∈ (Ω, Pt′) is well defined, i.e., the image of the equivalence class does

not depend on the representant considered.

Draw to a close, we now turn over in our minds the examples stated in Section 2. There,

the private information of each agent describes the events (Ω, P1) = Ω/ ∼1= {[ω1]1, [ω2]1} and

11



(Ω, P2) = Ω/ ∼2= {{ω} ; ω ∈ Ω}. In this case,

i : (Ω, P2) → (Ω, P1)

[ω]2 → i([ω]2) = [ω]1

is a well defined application and, therefore, agent 2 is better informed than 1.

Here and now, agent t is supposed to be at least as informed as t′. Our next goal is to show

that agent t selects actions in the subspace IPt of plans satisfying the informational feasibility

assumption. Obviously, if IPt′ ⊂ IPt agent t can choose all those action plans that are available

for agent t′ and, in the case of strict inclusion, is able to opt even for another plans that are

not achievable for agent t′. Hence, our main concern is to show that better informed agents have

more chances to choose her action plans than those agents who are worse informed.

Theorem 4.1 Agent t is at least as informed as any other individual t′ if and only if IPt′ ⊂ IPt.

Demonstration.

Let t and t′ be two agents whose private information is Pt and Pt′ respectively. Now assume

that agent t is at least as informed as agent t′. By Proposition 4.1, this is equivalent to the

existence of i : (Ω, Pt) → (Ω, Pt′) such that Pt′ = i ◦ Pt

f

Ω −→ B

↘

Pt ↓ Pt′ ↑ f̃

↘

(Ω, Pt) −→ (Ω, Pt′)

i

The fact f ∈ IPt′ implies that f = f̃ ◦ Pt′ = f̃ ◦ i ◦ Pt. Then, f is factorized by Pt via f̃ ◦ i, and

this leads to f ∈ IPt.

Q.E.D.
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This Theorem highlights that better informed agents are less restricted, due to the informa-

tion restrictions, when choosing their actions than those other worse informed agents. Then,

chances of agent t′ are all included in IPt and indeed are all possible and attainable for agent

t. Extreme cases are those situations in which an agent can either be completely informed or

not informed at all: in the case of perfect information, the agent has no constraint, beside the

classical ones, when choosing her plans; on the contrary, if the agent is not able to discern any

state, she is going to perceive the set of possible states of the world as a point and, in this case,

her achievable plans are in the set of constant functions.

In this final section, we want to complete our view over our characterization of better informed

agents by illustrating Theorem 4.1. Let us turn once again to the the setting provided in Example

1. There, agent 1 is completely informed and realizes Ω as the two events defined by [ω1]1 and

[ω2]1; her set of admissible action plans is IP1 = {f : [0, 1] → B ; ∃ f̃ : (Ω, P1) → B such that f =

f̃ ◦ P1} so f = f̃ ◦ P1 if and only if f(z) = f(z′) for all z, z′ ∈ [ωi]1 with i = 1, 2. Then, f ∈ IP1

only if f is constant on the two events she perceives, i.e., IP1 = {f : [0, 1] → B ; f(z) =

a for all z ∈ [0, 1/2) y f(ẑ) = b for all ẑ ∈ [1/2, 1]}. Nevertheless, agent 2 is completely informed

and exactly knows the realized state of nature so she will choose her action plans in the set

IP2 = {f : [0, 1] → B ; ∃ f̃ : (Ω, P2) → B such that f = f̃ ◦ P2} = {f : [0, 1] → B}.

Consequently, any function f : [0, 1] → B is an informationally admissible action plan for agent

2. Obviously, IP1 ⊂ IP2.

Therefore, by considering the same setting as that provided by Dubra and Echenique (2004)

we have come to the opposite conclusion. Their point is the use of σ-algebras as a model of

information based on the fact that finer partitions need not generate finer σ-algebras. This

is in direct conflict to a well know part of some oral tradition in the literature on ”asymmet-

ric in information”. The results stated and proved in this paper allow us to firstly formalize

the following basic proposition that, although it is well known, has not appeared in print yet:

finer information allows, in accordance with the informational constraint, for more action plans

contingent on events each agent can discern and then, the more information an agent has, the

larger is the subspace of informationally action plans attainable. We formally draw the following

conclusion: an agent always prefers more information to less.
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5 Some examples

To complete our view over original modeling of information in the spirit of the Radner approach,

we provide some examples. We eye up all possible situations about the representation of infor-

mation depending on whether the uncertainty is represented by a measurable space, a finite set

of the states of the world and even the unit real interval [0, 1].

Example A. Consider that the possible states of nature are represented by a measurable space

([0, 1],B, µ) where B is the Borel σ-algebra and µ is the Lebesgue measure.

Let Bt be a sub-σ-algebra of B. An agent t who is incompletely informed perceives the realized

state of nature by Bt so (Ω, Pt) = ([0, 1],Bt, µ).

In this context, admissible action plans in the informational sense for an agent who is com-

pletely informed on the possible states of the world are given by any measurable function such

that f : ([0, 1],B, µ) → B. Now, suppose that there exists an agent t who, in accordance to her

private information Pt, recognizes the realizations ([0, 1],Bt, µ), so the set of action plans that

are informationally admissible is

IPt = {f : ([0, 1],B, µ) → B ; ∃ f̃ : ([0, 1], Pt) → B such that f = f̃ ◦ Pt}.

Here, factorization means that Pt : ([0, 1],B, µ) → ([0, 1],Bt, µ) is measurable and, therefore,

IPt = {f : ([0, 1],B, µ) → B ; f is Bt −measurable}. If f and g are measurable functions then

{ω ∈ [0, 1] | f(ω) 6= g(ω)} is also measurable. Note that two action plans f y g are identical for

agent t whenever f and g are Bt-measurable functions that differ in a set of measure zero. That

is,

f ∼t g ⇐⇒ g ∈ [f ] = {h : ([0, 1],Bt, µ) → B Bt-measurable

such that µ{ω ∈ [0, 1], h(ω) 6= f(ω)} = 0}.

Note that in this setting, it might occur that two Bt -measurable functions f and g can be

indiscernible for agent t as µ{ω ∈ [0, 1] | f(ω) 6= g(ω)} = 0. At the same time, for any other

agent t′ 6= t either function f or g may not be admissible action plans in the way that they are

not Bt′ -measurable.
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The subspace IPt of attainable action plans for agent t is the set of (classes of) measurable

(or integrable, etc.) functions f : (Ω,B, µ) → B. If agent t is better informed than t′, the

identity map i : (Ω,Bt, µ) → (Ω,Bt′ , µ) is measurable and, consequently, IPt′ = {f : (Ω,B, µ) →

B ; f is Bt′ −measurable} ⊆ IPt = {f : (Ω,B, µ) → B ; f is Bt −measurable}.

Example B. Consider a three agents economy, T = {1, 2, 3}, with four states of nature Ω =

{ω1, ω2, ω3, ω4}. Let P1, P2 and P3 denote the private information of each agent.

Consider the following information structure: P1 does not allow agent 1 to make a distinction

either between ω1 and ω2 or ω3 and ω4; agent 2 cannot distinguish any state under P2 and agent

3 with P3 identifies ω1 with ω3 and ω2 with ω4.

Let us see how private information establishes for each agent an equivalence relation among

all those states she is not able to discern. In the case of agent 1, as P1(ω1) = P1(ω2) and

P1(ω3) = P1(ω4), her information P1 : Ω → (Ω, P1) defines the following equivalence relations

ω1 ∼1 ω2 and ω3 ∼1 ω4. Therefore, agent 1 knows two events in Ω given by two equivalence

classes

[ω1]1 = [ω2]1 = {ω1, ω2} and [ω3]1 = [ω4]1 = {ω3, ω4}

Agent 1 then observes (Ω, P1) = Ω/ ∼1= {[ω1]1, [ω3]1} so Ω/ ∼1 represents the two uncertainty

realizations she is able to discern in Ω.

Agent 2 under the information P2 : Ω → (Ω, P2) cannot discriminate any state of the world

so P2(ω1) = P2(ω2) = P2(ω3) = P2(ω4), which implies that ω1 ∼2 ω2 ∼2 ω3 ∼2 ω4. Thus, her

information determines a set of events Ω/ ∼2 with a unique element, that is, (Ω, P2) = Ω/ ∼2=

{[ω1]2} where [ω1]2 = [ω2]2 = [ω3]2 = [ω4]2.

The information available for agent 3 is given by P3 : Ω → (Ω, P3) and implies that

P3(ω1) = P3(ω3) and P3(ω2) = P3(ω4). So ω1 ∼3 ω3 y ω2 ∼3 ω4. In this case (Ω, P3) =

Ω/ ∼3= {[ω1]3, [ω2]3}, where [ω1]3 = [ω3]3 = {ω1, ω3} and [ω2]3 = [ω4]3 = {ω2, ω4} are the two

environment results that agent 3 makes out.

An action plan f : Ω → B is now given by f = (f(ω1), f(ω2), f(ω3), f(ω4)). For being
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attainable for agent 1 with private information P1, it must be an element of IP1 = {f : Ω →

B ; ∃ f̃ : (Ω, P1) → B such that f = f̃ ◦ P1} which implies that

f(ω1) = f̃ ◦ P1(ω1) = f̃([ω1]1)

f(ω2) = f̃ ◦ P1(ω2) = f̃([ω2]1) = f̃([ω1]1)

f(ω3) = f̃ ◦ P1(ω3) = f̃([ω3]1)

f(ω4) = f̃ ◦ P1(ω4) = f̃([ω4]1) = f̃([ω3]1).

Note that f(ω1) = f(ω2) y f(ω3) = f(ω4) so an action f is informationally admissible for agent 1

if and only if it takes at most two different values. Therefore, IP1 = {(f(ω1), f(ω2), f(ω3), f(ω4)) ∈

B4 ; f(ω1) = f(ω2) and f(ω3) = f(ω4)}.

In the case of agent 2, an action f = (f(ω1), f(ω2), f(ω3), f(ω4)) is compatible with her

information P2 only if there exists f̃ : (Ω, P2) → B such that f = f̃ ◦ P2, so

f(ω1) = f̃ ◦ P2(ω1) = f̃([ω1]2)

f(ω2) = f̃ ◦ P2(ω2) = f̃([ω2]2) = f̃([ω1]2)

f(ω3) = f̃ ◦ P2(ω3) = f̃([ω3]2) = f̃([ω1]2)

f(ω4) = f̃ ◦ P2(ω4) = f̃([ω4]2) = f̃([ω1]2)

Therefore, the set of informationally feasible action plans for agent 2 is given by IP2 = {f : Ω →

B ; ∃ f̃ : (Ω, P2) → B such that f = f̃ ◦ P2} = {(f(ω1), f(ω2), f(ω3), f(ω4)) ∈ B4 ; f(ω1) =

f(ω2) = f(ω3) = f(ω4)} which is a line in B4 (i.e., the set of multipliers of any vector x ∈ B4

with x 6= 0).

An action plan f = (f(ω1), f(ω2), f(ω3), f(ω4)) is allowable for agent 3 if and only if there

exists f̃ : (Ω, P3) → B such that f = f̃ ◦ P3, so

f(ω1) = f̃ ◦ P3(ω1) = f̃([ω1]3)

f(ω2) = f̃ ◦ P3(ω2) = f̃([ω2]3)

f(ω3) = f̃ ◦ P3(ω3) = f̃([ω3]3) = f̃([ω1]3)

f(ω4) = f̃ ◦ P3(ω4) = f̃([ω4]3) = f̃([ω2]3)
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As f(ω1) = f(ω3) and f(ω2) = f(ω4), it follows that an action plan f for agent 3 is in accordance

with the two observations she realizes through her private information P3. Then her set of action

plans that are informationally feasible is IP3 = {(f(ω1), f(ω2), f(ω3), f(ω4)) ∈ B4 ; f(ω1) =

f(ω3) and f(ω2) = f(ω4)}.

We stress that the private information endowments of agent 1 and 3 are not comparable:

each of these agents according to her own information observes Ω as a set of two events and the

set IP = IP1

⋂
IP3 of action plans held in common is given by

IP = {(f(ω1), f(ω2), f(ω3), f(ω4)) ∈ B4 ; f(ω1) = f(ω2) = f(ω3) = f(ω4)},

and, therefore, the only admissible action plans are constant vectors on B4. However, information

structures of agents 1 and 3 are comparable with the information of agent 2. Note that agents 1

and 3 observes two possible realizations while agent 2 is not able to discern any state and realizes

Ω as a unique point; therefore, the classification of agent 2 is coarser than that that of the other

agents. Indeed, it is easy to see that those states that cannot be distinguished by 1 or 3 are not

either observed by agent 2.

Let us first consider agents 1 and 3. On one hand, the application

i : (Ω, P1) → (Ω, P3)

[ω]1 → i([ω]1) = [ω]3

is not well defined as [ω1]1 = [ω2]1 but i([ω1]1) = [ω1]3 and i([ω2]1) = [ω2]3 where [ω1]3 6= [ω2]3.

On the other hand, the application

i : (Ω, P3) → (Ω, P1)

[ω]3 → i([ω]3) = [ω]1

is not well defined either. Then, neither agent 1 is better informed than agent 3 nor agent 3 is

better informed than individual 1.

However, each of the following applications

i : (Ω, P1) → (Ω, P2)

[ω]1 → i([ω]1) = [ω]2
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and
i : (Ω, P3) → (Ω, P2)

[ω]3 → i([ω]3) = [ω]2

is well defined. Consequently, we conclude that agents 1 and 3 are better informed than 2. The

choice of admissible action plans for agents 1 and 3 is made in broader sets that the choice of

agent 2 who has none information on Ω and, therefore, her set IP2 is limited to those action plans

constant on B4. So IP2 ⊂ IP1 and IP2 ⊂ IP3.

Example C. Suppose that there is a finite set of agents T = {1, 2, . . . , N} and the set of

possible states of the world is the interval [0, 1]. The information of each agent t ∈ {1, 2, . . . , N}

is assumed to be a partition of [0, 1] given by Pt = {0 < xt
1 < . . . < xt

n(t) = 1}.

Each agent t “classifies” the uncertainty set Ω as n(t) events so (Ω, Pt) = {[ω1]t, . . . , [ωn(t)]t},

where [ω1]t = [0, xt
1), . . . , [ωn(t)]t = [xt

n(t)−1, x
t
n(t)]. In this case, the set of events (Ω, Pt) is formed

by n(t) elements.

The set of action plans satisfying the informational feasibility constraint for an agent t is

IPt = {f : [0, 1] → B ; ∃ f̃ : (Ω, Pt) → B tal f = f̃ ◦ Pt}. The set of results she realizes is

(Ω, Pt) = {[ω1]t, . . . , [ωn(t)]t}, where for each i ∈ {1, . . . , n(t)}, [ωi]t = {z ; z ∈ [xt
i−1, x

t
i)}. Then

f = f̃ ◦ Pt if and only if f(z) = f(z′) for all z, z′ ∈ [ωi]t and for any i ∈ {1, . . . , n(t)}. That

is, f ∈ IPt whenever f is a step function which takes at most n(t) values and whose steps are

intervals [xt
i−1, x

t
i). That is, IPt is the space of functions f : [0, 1] → B that are constant on each

interval [xt
i−1, x

t
i).

Let us consider two agents t and t′. Agent t through her information Pt : [0, 1] → (Ω, Pt)

distinguishes n(t) events given by the set (Ω, Pt) = {[ω]t ; ω ∈ [0, 1]} = {[ω1]t, . . . , [ωn(t)]t},

where [ω1]t = [0, xt
1), . . . , [ωn(t)]t = [xt

n(t)−1, x
t
n(t)]. Agent t′, in accordance with her information

Pt′ : [0, 1] → (Ω, Pt′), realizes n(t′) events defined by the set (Ω, Pt′) = {[ω]t′ ; ω ∈ [0, 1]} =

{[ω1]t′ , . . . , [ωn(t′)]t′} where [ω1]t′ = [0, xt′

1 ), . . . , [ωn(t′)]t′ = [xt′

n(t′)−1, x
t′

n(t′)].

In this position, the application

i : (Ω, Pt) → (Ω, Pt′)

[ω]t → i([ω]t) = [ω]t′
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is well defined if and only if for any xt′

j where j ∈ {1, . . . , n(t′)}, there exists k ∈ {1, . . . , n(t)}

such that xt′

j = xt
k, i.e,

{xt′

1 , . . . , xt′

n(t′)} ⊂ {xt
1, . . . , x

t
n(t)}

To make clear this point we consider that private information of agent t is the finite par-

tition Pt = {0 < 1/3 < 1/2 < 3/4 < 9/10 < 1} and for agent t′ is Pt′ = {0 < 1/3 <

1/2 < 1}. Information Pt determines for agent t the set (Ω, Pt) = {[ω]t ; ω ∈ [0, 1]} =

{[ω1]t, [ω2]t, [ω3]t, [ω4]t, [ω5]t}, so she can discern five events given by [ω1]t = [0, 1/3), [ω2]t =

[1/3, 1/2), [ω3]t = [1/2, 3/4), [ω4]t = [3/4, 9/10) y [ω5]t = [9/10, 1]. Agent t′, under the infor-

mation Pt′ , observes (Ω, Pt′) = {[ω]t′ ; ω ∈ [0, 1]} = {[ω1]t′ , [ω2]t′ , [ω3]t′} where [ω1]t′ = [0, 1/3),

[ω2]t′ = [1/3, 1/2) y [ω3]t′ = [1/2, 1]. If this is the case, the application i : (Ω, Pt) → (Ω, Pt′) is

well defined and, therefore, agent t is said to be better informed than t′. However, the application

i : (Ω, Pt′) → (Ω, Pt) is not well defined since for all ω ∈ [ω3]t′ = [1/2, 1] while i([ω]t′) = [ω]t

depends on representant of the class [ω]t that is considered.

In this setting, agent t is said to be better informed than t′ if and only if {xt′

1 , . . . , xt′

n(t′)} ⊂

{xt
1, . . . , x

t
n(t)}. Then, IPt′ ⊂ IPt which implies that the set of attainable action plans is wider for

agent t and in fact includes all those action plans informationally feasible for agent t′.
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