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Abstract

An empirically veri1ed characteristic of the expanding area of Internet is the long tailness
of phenomena such as cpu time to complete a job, call holding times, 1les lengths requested,
inter-arrival times and so on. Extreme values of the above quantities are liable to cause prob-
lems to the e'cient operation of the network and call for e7ective design and management.
Extreme-value analysis is an area of statistical analysis particularly concerned with the system-
atic study of extremes, providing useful insight to 1elds where extreme values are probable to
occur and have detrimental e7ects, as is the case of teletra'cs. In this paper, we illustrate the
main elements of this analysis and proceed to a detailed application of extreme-value analysis
concepts to a speci1c teletra'c data-set. This analysis veri1es, too, the existence of long tails
in the data.
c© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

In the last decade, a rapid evolution in telecommunications has taken place. The In-
ternet, as the most representative of the telecommunication means, has also experienced
an exponential growth, which, however, was accompanied by a high cost represented
by network and servers delays. Accordingly, an impelling need has emerged for per-
formance evaluation and subsequent network design.
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A useful step is the adequate statistical modelling of quantities such as cpu time to
complete a job, call holding times, 1le length requested, inter-arrival times and so on. It
is fortunate that the expansion of Internet also led to a proliferation of enormous-sized
data-sets of high-quality network tra'c measurements. However, the investigation of
such data-sets provided researchers with strong indications of deviations from the usual
assumptions of classical statistical theory. In the literature, one may 1nd many articles
reporting the long tailness of teletra'c data (see, for example, Naldi, 1999; Crovella
et al., 1998; Fang et al., 1997; Resnick, 1997; Willinger et al., 1997; Kratz and Resnick,
1996; Resnick and StGaricGa, 1995; Du7y et al., 1994). In such cases, the classical
queuing and network stochastic models, with their simplifying assumptions (assuming,
at least, 1nite moments) are inappropriate and may lead to unreliable results. In the
present paper, we present a statistical analysis that can successfully deal with long-tailed
teletra'c data, providing researchers with useful insight about the extreme behaviour of
the phenomena under study and enhancing, thus, the e'cient design and management
of the network.

Extreme-value analysis is the 1eld of statistics particularly concerned with the
systematic study of extreme values. The cornerstone of extreme-value theory is Fisher–
Tippet’s theorem for limit laws for maxima (Fisher and Tippet, 1928). According to
this theorem, if the maximum value of a distribution function (d.f.) tends (in dis-
tribution) to a non-degenerate d.f. then this limiting d.f. can only be the general-
ized extreme-value (GEV) distribution, with d.f. H�(x) = exp{−(1 + �x)−1=�}, where
1 + �x¿ 0, and �∈R.

A comprehensive sketch of the proof can be found in Embrechts et al. (1997).
The random variable (r.v.) X (or equivalently, the d.f. F of X ) is said to belong to
the maximum domain of attraction of the extreme-value distribution H� if there exist

constants cn ¿ 0, dn ∈R such that c−1
n (Mn − dn) d−→H�. We write X ∈MDA(H�).

The parameter �, called extreme-value index, determines, essentially, the behaviour
of extremes. Generally speaking, �¡ 0 corresponds to upper-bounded distributions (i.e.
with no problem of extreme values), �¿ 0 describes long-tailed distributions (with
many extremes), while � = 0 refers to moderately increasing to in1nity distributions
(here most usual distributions are included such as the Normal, the Gamma, the expo-
nential, and so on).

Extreme-value analysis is a topic of major importance in many 1elds of application
where extreme values may appear and have detrimental e7ects. Such 1elds range from
hydrology (Smith, 1989; Davison and Smith, 1990; Coles and Tawn, 1996; Barão
and Tawn, 1999) to insurance (Beirlant et al., 1994; Mikosch, 1997; McNeil, 1997;
RootzNen and Tajvidi, 1997) and 1nance (Danielsson and de Vries, 1997; McNeil, 1998,
1999; Embrechts et al., 1998, 1999; Embrechts, 1999). Its usefulness in teletra'cs, as
previously mentioned, is recently proving its value.

In this paper, we deal with the extreme-value analysis (ranging from exploratory
analysis up to estimation of �) of a data-set from the 1eld of teletra'c engineering.
This issue is discussed in Section 3. Before that, in Section 2, the main ideas of
extreme-value theory and corresponding analysis are brieOy reviewed. In Section 4,
some concluding remarks are provided.
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2. Estimation issues of extreme-value analysis

2.1. Extreme-value index estimators

The most popular estimation approach in the context of extreme-value analysis is
the so-called ‘maximum domain of attraction approach’ (Embrechts et al., 1997). In
this framework, we are interested in the distribution of the maximum value. According
to the Fisher–Tippet theorem, the limiting d.f. of the (normalized) maximum value (if
it exists) is the GEV d.f. H�. The procedure followed in practice is that we assume
that the asymptotic approximation is achieved for the largest k observations (where
k is large but not as large as the sample size n), which we subsequently use for
the estimation of the extreme-value index �. However, the choice of k is a rather
controversial issue and is further elaborated in Section 2.2. In the sequel, we present
the most prominent answers to the issue of parameter estimation.

Pickands estimator �̂P (Pickands, 1975) is the 1rst suggested estimator for the pa-
rameter � and is given by the formula

�̂P =
1

ln 2
ln
(
X(k=4):n − X(k=2):n

X(k=2):n − Xk:n

)
;

where X1:n¿X2:n¿ · · ·¿Xn:n are the descending-order statistics of the corresponding
sample of observations. A particular characteristic of Pickands estimator is the fact
that the largest observation is not explicitly used in the estimation. The properties of
Pickands estimator were mainly explored by Dekkers and de Haan (1989), who proved,
under certain conditions, weak and strong consistency, as well as asymptotic normality.

However, the most popular tail index estimator is the Hill’s estimator (Hill, 1975),
which, though, is restricted to the case �¿ 0. Hill’s estimator is provided by the
formula �̂H = (1=k)

∑k
i=1 ln Xi:n − ln Xk+1:n. Weak and strong consistency, as well as

asymptotic normality of Hill’s estimator hold under the assumption of independent and
identically distributed data (Embrechts et al., 1997). Though the Hill’s estimator has
the apparent disadvantage that is restricted to the case �¿ 0, it has been widely used
in practice and extensively studied by statisticians. Its popularity is partly due to its
simplicity and to the fact that in most of the cases where extreme-value analysis is
called for, we have long-tailed d.f.’s (i.e. �¿ 0).

The popularity of Hill’s estimator made the problem of trying to extend this estimator
to the general case �∈R a tempting one. Such an estimator has been proposed by
Dekkers et al. (1989). This is the moment estimator, given by �̂M =M1 + 1− 0:5(1−
(M1)2M−1

2 )−1, where Mj ≡ (1=k)
∑k

i=1 (ln Xi:n− ln X(k+1):n)j, j=1; 2. Weak and strong
consistency, as well as asymptotic normality of the moment estimator have been proven
by Dekkers et al. (1989).

Concentrating on cases where �¿ 0, the main disadvantage of Hill’s estimator is that
it can be severely biased, depending on the second-order behaviour of the underlying
d.f. F . Based on the behaviour of an asymptotic second-order expansion of the d.f.
F , Danielsson et al. (1996) proposed the moments-ratio estimator: �̂MR = 0:5 ·M−1

1 M2.
They proved that �̂MR has lower asymptotic square bias than the Hill’s estimator (when
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evaluated at the same threshold, i.e. for the same k), though the convergence rates are
the same.

Apart from the above estimators, many others can be found in the literature, either
for �∈R or for more speci1c ranges of �. The aforementioned estimators share some
common desirable properties, such as weak consistency and asymptotic normality. On
the other hand, simulation studies or applications on real data can end up in large
di7erences among these estimators. In any case, there is no ‘uniformly best’ estimator.
Of course, Hill, Pickands and moment estimators are the most popular ones. This could
be partly due to the fact that they are the oldest ones. Actually, most of the rest have
been introduced as alternatives to the above estimators and some of them have been
proven to be superior in some cases only.

2.2. Smoothing modi5cations of extreme-value index estimators

One of the most serious objections one could raise against the aforementioned es-
timators is their sensitivity towards the choice of k (number of upper-order statistics
used in the estimation).

An exploratory way to subjectively choose the number k is based on the plot of
the estimator �̂(k) versus k (or �̂(n�) versus � in the so-called alternative plot). A
stable region of the plot indicates a valid value for the estimator. The need for a stable
region results from adapting theoretical limit theorems which are proved subject to the
conditions that k(n) → ∞ but also k(n)=n → 0. However, since extreme events by
de1nition are rare, there is only little data (few observations) that can be utilized and
this inevitably involves an added amount of statistical uncertainty. A possible solution
would be to smooth ‘somehow’ the estimates with respect to the choice of k (i.e.
make the plot more insensitive to the choice of k), leading to a more stable plot and
a more reliable estimate of �. Such a method was proposed by Resnick and StGaricGa
(1997,1999) for smoothing Hill and moment estimators, respectively.

The authors proposed simple averaging techniques for reducing the volatility of the
corresponding Hill and moment plots. In both cases, the smoothing procedure consists
of averaging the estimator’s values corresponding to di7erent values of order statistics
p. The generic formula of the proposed averaged estimators is

av �̂(·)(k) =
1

k − [ku]

k∑
p=[ku]+1

�̂(·)(p);

where �̂(·) is Hill’s or moment estimator, u¡ 1, and [x] the smallest integer greater
than or equal to x.

The authors (Resnick and StGaricGa, 1997) derived the adequacy (consistency and
asymptotic normality) of the averaged-Hill’s estimator, as well as its improvement
over Hill’s estimator (smaller asymptotic variance).

In the case of averaged-moment estimator (Resnick and StGaricGa, 1999), the conse-
quent reduction in asymptotic variance is not so profound. The authors actually showed
that through averaging (using the above formula), the variance of the moment estima-
tor can be considerably reduced only in the case �¡ 0. For �¿ 0, the simple moment
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estimator turns out to be superior, while for � ≈ 0 the two moment estimators are
almost equivalent.

In Tsourti and Panaretos (2001), the idea of the above smoothing procedure has
been applied to other standard extreme-value index estimators and their adequacy has
been evaluated via a simulation study.

3. Application of extreme-value analysis to teletra�c data

3.1. Introduction

One of the areas where extreme-value theory has recently gained ground is teletra'c
engineering. Indeed, as the Internet becomes more and more popular, the need for
evaluating its performance becomes more compelling. In order to achieve that and go
on to possible modi1cations, one needs to know the behaviour of the users’ ‘demands’
from the system. This can be expressed either in 1le length, cpu time to complete a
job, call holding times and so on. In order for the system to function adequately, its
capacity should be adjusted so as to handle even the largest ‘demands’. Hence, the
study of the extremal ‘demands’ (e.g. longest 1le length, longest call holding times,
etc.) turns out to be very relevant to teletra'c engineers.

In this paper, we apply the notion of extreme-value theory to teletra'c data-set
obtained from the Internet tra'c archive (ITA) (http://ita.ee.lbl.gov/index.html). In
particular, we analyse data from the ‘EPA-HTTP’ trace. This trace contains a day’s
worth (August 30, 1995) of all HTTP requests to the EPA WWW server. In the present
extreme-value analysis, we concentrate on the analysis of the 1le length requested (i.e.
on the bytes in the reply). In Section 3.2, an exploratory data analysis is provided,
while in Section 3.3 the core extreme-value analysis is presented consisting of the
estimation of extreme-value index � as well as some large quantiles.

3.2. Exploratory data analysis

3.2.1. Description of the data
The original data-set contained 47,748 cases of requests. Still, in 5331 of these the

1le length requested was not recorded, while in 5718 additional observations no 1le
was actually requested (i.e. the 1le length is zero). These 11,049 observations, in total,
were removed. So the 1nal data-set, on which the analysis that follows has been based,
considers 36,699 cases of requests (expressed as 1le lengths in bytes). In Table 1 that
follows, we present the main descriptive statistics of the variable under investigation,
while a more intuitive description of the data is provided by the histograms that follow
in Fig. 1. Fig. 1a is the histogram of the smaller values of ‘File length’, while in Fig.
1b the histogram of large ‘File length’ is depicted. It is obvious that we are dealing
with a possible heavy-tailed underlying distribution. Still, a more thorough discussion
on this issue is postponed until the next section.

A raw histogram may, however, be misleading as an indicator of how frequently
high levels occur, since it fails to capture phenomena such as seasonality of data or

http://ita.ee.lbl.gov/index.html
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Table 1
Descriptives statistics of ‘File length’ (in bytes)

Measure Statistic

Mean 8497.89
5% Trimmed mean 3046.79
Median 1897.00
Std. deviation 70718.24

the tendency of extreme values to occur in clusters. These are better revealed by a
sequence plot (see Fig. 2). A 1rst examination of it reveals no problems of seasonality
or clustering.

3.2.2. Investigation of independence
One of the assumptions required for almost all the results in extreme-value the-

ory is that of independence of the data. For the case of Hill’s estimator, there are
results that prove the good properties of the estimator under quite general conditions
of non-independence. Still, these results are not veri1ed (at least yet) for other estima-
tors. In general, in cases that some kind of dependence of data is detected, adjustments
in the statistical methods used are needed. So, before proceeding with any analysis
of the data, it is useful to check whether independence holds. This issue is espe-
cially crucial in the context of World Wide Web, where correlations may occur, for
example, in servers providing patches. In such cases, large communities might begin
downloading patches as soon as they contact the server and, thus, extremal events
may occur in clusters. When such phenomena take place, the good properties of the
aforementioned estimators do not necessarily hold and special techniques need to be
developed. In Embrechts et al. (1997), this issue is dealt with in depth, where the
extremal index is introduced in order to characterize the dependence structure of the
data and its connection to its extremal behaviour.

So, in order to examine whether further actions are needed in our case, we apply
several tests of randomness and visually examine the autocorrelation plot.

In our case, we used the standard di7erence-sign test as well as a test of ran-
domness based in records (Embrechts et al., 1997). In this context, records refer-
ring to ‘temporary maximum values’ (i.e., a value Xn is characterized as a record if
Xn¿max{X1; : : : ; Xn−1}), are indicative of the extreme-value behaviour of the phe-
nomenon under study, too. Embrechts et al. (1997) explored their distribution under
the assumption of independence, leading, thus, to a (rough) non-parametric test of
randomness.

According to the di7erence-sign test, the hypothesis of independence cannot be re-
jected (the observed level of signi1cance is 0.08). Moreover, for the data-set under
investigation the expected number of records is 11.1 with variance 9.4, while the ob-
served number of records equals 12. These values seem to support the hypothesis of
independence (the observed level of signi1cance under the approximate assumption of
normality is 0.77).
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Fig. 1. Histograms of separate parts of data (File length).
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Fig. 2. Sequence plot of ‘File length’ (in bytes).

Another exploratory, informal method for testing for independence can be based on
the sample autocorrelation function. However, in many cases of heavy-tailed data the
centering by the sample mean is omitted, since if the mathematical expectation does
not exist, it is totally meaningless to center by the sample mean. In such cases, the
following heavy-tailed modi1cation of autocorrelation function is more appropriate:

�̂H(h) =
∑n−h

i=1 XiXi+h∑n
i=1 X

2
i

; h∈ℵ+:

If, on graphing the sample heavy-tailed autocorrelation function, one 1nds only small
values, then it may be possible to model the data as independent and identically dis-
tributed. The heavy-tailed autocorrelation plot for our data is given in Fig. 3. The
majority of values do not exceed the limit 0.015, while the largest autocorrelation is
observed for lag 57 and is approximately 0.04. Generally speaking, one could judge
these values to be ‘small’, indicating lack of autocorrelation in the data. Moreover,
the fact that the autocorrelation function does not display any particular pattern with
respect to the lag h, is reassuring that no statistical autocorrelation exists in the data.

Since all the previous non-parametric and graphical checks of independence do not
give us an indication that dependence in our data exists, we proceed to other analyses
assuming that our data are indeed independently (and identically) distributed. Moreover,
even the nature of our data do not suggest that any form of dependence or correlation
should exist.

3.2.3. Investigation of heavy tails
Before proceeding to the formal study of extremes of the data in hand, there are sev-

eral exploratory methods that can be used to give us a 1rst insight into the
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Fig. 3. Heavy-tailed autocorrelation plot of ‘File length’ for lags h = 1; : : : ; 100.

behaviour of the extremes of a data-set. Such methods include the mean excess plot
and QQ plots based on exponential or other long-tailed d.f.’s. The usefulness of
these tools is mainly that they provide us with an indication of whether our data
are long tailed (�¿ 0), or short tailed (�¡ 0). Knowledge, even rough, of the sign
of � can direct us to the choice of more appropriate extreme-value index estimators.
Moreover, in the former case, our interest should be focused on the estimation of
large quantiles, while in the latter case the estimation of upper end-point is more
meaningful.

The de1nition and properties of mean excess functions (MEF) and the corresponding
mean excess plots (MEP) are given in Beirlant et al. (1996). If the MEF of the
logarithmic-transformed data is ultimately increasing, then the d.f. belongs to MDA(H�)
with �¿ 0, and the values of the MEF converge to the true value of �. However, one of
the main assumptions of MEP, in order to be reliable, is that the underlying distribution
has a 1nite 1rst moment, which makes them inappropriate for long-tailed distributions
with �¿ 1. For this reason, we proceed to QQ plots, which do not have such restrictive
assumptions.

The use of QQ plots as exploratory tools in extreme-value analysis is described in
detail in Beirlant et al. (1996). The idea is that by constructing QQ plots of standard
distributions (medium or heavy tailed) and by focusing on the upper right part of
these plots (i.e. largest values), the evaluation of the 1t of the data to the tails of
the standard distribution may be insightful about the tails of the data themselves. In
the sequel, we present the QQ plots of our data-set, with respect to the exponential
(Fig. 4) and the Pareto (Fig. 5) distributions. These are distributions medium and long
tailed, respectively, commonly used in practice.
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Fig. 4. Exponential QQ plot of the ‘File length’ data-set.

As we have previously mentioned, any interpretation of the above plots is going
to be focused on the upper right part of those. In the exponential QQ plot, even if
we ignore the very few extreme values which display great variability, not a straight
pattern can be detected in the right part of the plot and, thus, gives us no indication
that the tails of the teletra'c data in hand have exponential tails. On the other hand,
in the right part of the Pareto QQ plot a linear pattern is made apparent, implying that
ultimately the data do seem to follow a Pareto d.f. This remark suggests that, probably,
we are dealing with a long-tailed underlying d.f. F , that is, F ∈MDA(H�), �¿ 0. Still,
the formal investigation of the extremal behaviour of the data-set under study, comes
in the section that follows.

3.3. Extreme-value analysis

3.3.1. Estimation of extreme-value index �
We now deal with the main scope of the current analysis, which is the investi-

gation of the extremal behaviour of ‘File length’ transported via the site of EPA.
This is, essentially, achieved through the estimation of extreme-value index �. From
the previous exploratory analysis, we believe that � is positive. For this reason, apart
from extreme-value index estimators applicable to �∈R, we are also going to use
extreme-value index estimators restricted to the case �¿ 0. Based on simulation
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Fig. 5. Pareto QQ plot of the ‘File length’ data-set.

studies that exist in the literature (e.g. Deheuvels et al., 1997; Rosen and Weissman,
1996; Tsourti and Panaretos, 2001), we are going to estimate � using moments-ratio,
moment and Hill’s estimators, which are judged to be more e'cient for the case �¿ 0.
Each of these estimation techniques provides us with a sequence of estimated values
of � (one for each k, number of upper-order statistics used in the estimation). In the
sequel we provide the plots (k; �(k)) of the estimators used, as well as the corre-
sponding ‘alternative plots’, which are more useful and reliable in the case that our
data do not follow closely a Pareto d.f. (as is probably the case here). Moreover, in
each plot, apart from the standard estimators, the mean-averaged estimators are de-
picted. Note that in the graphs to follow, we display the estimated values of � that
correspond to k up to 10,000 (27% of the whole data-set). The purpose of this is
to focus only on the part of data that essentially concern us (large values). In this
way, we can get a better view of the part of the graph that we are actually interested
in (Figs. 6–8).

It is fortunate that in our case all the estimators tend to approximately the same
value of �, the value 1. Especially, moments-ratio and moment estimators which have
(according to Tsourti and Panaretos, 2001) the best performance for positive �, display
almost a straight line to 1. So, we can deduce that the value of � that best describes
the sizes of requested 1les from the size of EPA is close to 1. This implies that
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the underlying distribution of the data under study belongs to the maximum domain
of attraction of the GEV(1) distribution, i.e. it is a Pareto-type d.f. asymptotically
decaying like a Pareto (1) ( YF(x)−−−−−→

x→∞ x−1).
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3.3.2. Estimation of large quantiles
Though the value of extreme-value index estimator is indicative of the tail heav-

iness of the underlying distribution of our data, a quantity that is more useful for
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Fig. 8. Plot (a) and alternative plot (b) of Hill’s estimator of � (—) and the corresponding mean-averaged
(· · ·) estimator.

practical purposes is large quantiles. That is, in practice what is desirable to know
is the ‘File Length’ that has exceeded only 1 in x times/transactions (x large). Each
extreme-value index estimator leads to a di7erent estimation formula for large quan-
tiles, which is, also, dependent on k. Here, we use the generic formula proposed by
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Fig. 9. Plot of 99-quantile based on moments-ratio estimator (—) and the corresponding mean-averaged
(· · ·) estimator.

Dekkers et al. (1989):

x̂p =
a�̂(·)n − 1
�̂(·)

· X(k+1):nM1

�1(�̂(·))
+ X(k+1):n

where an =
k

n(1 − p)
; �1(�) =

{
1; �¿ 0;

(1 − �)−1; �¡ 0;

substituting each di7erent estimator �(·).
In Figs. 9–11 we present the estimators of 99% quantile based on the extreme-value

index estimators previously used, versus k (the straight line indicates the empirical
99% quantile).

An interesting 1nding of these 1gures is that the behaviour of quantile estimators
does not seem to display the nice stability (with respect to k) as was the case for the
extreme-value index estimators themselves. In any case, the 99% quantile estimator
based on the moments-ratio estimator displays the most stable behaviour indicating a
value of 99-quantile approximately 100 Kb (though constantly larger than the corre-
sponding empirical estimate which is 82 Kb).

In Table 2, we provide the estimators of 95%, 99%, and 99.9% quantiles, based on
the moments-ratio estimator of �, for several values of k.

To sum up it can be concluded that, we may assume that the size of 1les requested
from the particular site of EPA follows a long-tailed distribution (which decays sim-
ilarly to a Pareto (1) distribution). This property may be further exploited in order



100 Z. Tsourti, J. Panaretos / Computational Statistics & Data Analysis 45 (2004) 85–103

kappa

9
9
-q

u
a
n
ti
le

 e
s
ti
m

a
to

r 
(i
n
 K

b
)

0 2000 4000 6000 8000 10000

0
5
0

1
0
0

1
5
0

Fig. 10. Plot of 99-quantile based on moment estimator (—), and the corresponding mean-averaged (· · ·)
estimator.
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Fig. 11. Plot of 99-quantile based on Hill’s estimator (—), and the corresponding mean-averaged (· · ·)
estimator.
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Table 2
Estimation of large quantiles (in Kb) using moment-ratio estimator of �

Moments-ratio Quantiles
estimation of � 95% 99% 99.9%

Empirical estimate - 25.846 82.054 1136.764

k used
1000 0.945 19.133 89.760 795.025
2000 0.905 25.579 95.276 734.338
3000 0.871 22.631 93.820 700.947
4000 0.930 19.974 95.793 828.905
5000 1.012 18.467 100.483 1047.887
6000 1.045 18.653 103.873 1161.415
7000 1.047 19.526 105.445 1174.495
8000 1.047 20.248 106.693 1182.169
9000 1.034 19.680 104.126 1127.136
10000 1.035 19.680 104.182 1128.756

to derive other useful outcomes. As far as large quantiles are concerned, we could
say that, based on the extreme-value approach, the 95-quantile is roughly 20 Kbs, the
99-quantile reaches 100 Kbs, while a 1le larger than 1 Mb is requested only one in
thousand times.

4. Conclusions

The sharp increase of Internet’s popularity, as this can be expressed by the expan-
sion of the number of servers and the number of users, led the Web to performance
problems and generated the need for e'cient design and administration. In order to
achieve this, teletra'c engineers proceed to measurement and study of Internet be-
haviour’s, through phenomena such as cpu time to complete a job, call holding times,
1le length requested and inter-arrival times. Increasing instrumentation of teletra'c net-
works has made possible the acquisition of large amounts of data, indicating, though,
that the usual assumptions of classical queuing models are not valid, since long-tailed
behaviours are observed. Extreme-value analysis can prove to be particularly helpful
in such circumstances, providing systematic information on the extremes observed in
a network.

In this paper, we have presented an application of extreme-value analysis on data
from the 1eld of teletra'c engineering. Particularly, the right tail of distribution of the
size of 1les requested from EPA site has been examined. Graphical methods as well as
the estimation of extreme-value index indicate the ‘heavy-tailness’ of the phenomenon
under study. Based on our analysis, we concluded that a 1le of size 100 Kbs is re-
quested once in hundred times, while a 1 Mb 1le only once in a thousands requests.
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