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Multi-asset Spread Option Pricing and Hedging

Abstract

We provide two new closed-form approximation methods for pricing spread options on a basket
of risky assets: the extended Kirk approximation and the second-order boundary approximation.
Numerical analysis shows that while the latter method is more accurate than the former, both
methods are extremely fast and accurate. Approximations for important Greeks are also de-
rived in closed-form. Our approximation methods enable the accurate pricing of a bulk volume
of spread options on a large number of assets in real time, which offers traders a potential edge
in a dynamic market environment.



I. Introduction

Spread options are widely traded both on organized exchanges and over the counter in equity,

fixed income, foreign exchange and commodity markets. They play an increasingly important

role in hedging correlation risks among a set of assets of concern. In terms of the contract struc-

ture, the level of complexity rises constantly and the scope covers more and more asset classes.

For instance, in the fixed income markets, instruments are traded on exchanging securities with

different maturities (such as Treasury notes and bonds), with different quality levels (such as the

Treasury bills and Eurodollars), and with different issuers (such as French and German bonds,

or Municipal bonds and Treasury bonds). In the agricultural markets, the crush spread options

traded on the Chicago Board of Trade (CBOT) exchanges raw soybeans with a combination

of soybean oil and soybean meal (Johnson et al 1991). Asset pricing and risk management in

energy markets embody a large variety of spread options. In the crude oil markets, crack spread

options, which either exchange crude oil and unleaded gasoline or exchange crude oil and heat-

ing oil, are traded on the New York Mercantile Exchange (NYMEX). In the electricity markets,

spark spread option and its variants designed for exchanging one or several types of fuel for

electricity are commonly utilized in hedging both short-term and long-term cross-commodity

risks.

Moreover, there is a growing demand for pricing spread options involving 3, 4 and even

more assets in bulk quantity with contract parameters spanning a large range. Such scenarios

arise from the application of valuing physical assets such as fossil fuel electric power plants,

transmission assets (see Deng et al. 2001 and Routledge et al. 2001) and natural gas storage

facilities. In valuing a fossil-fuel power plant, one could approximate the plant value by a

portfolio of spread options with maturity spanning 15 to 20 years. At each time instant over

the life span of the plant, owner of the plant receives a payoff resembling that of a spread option

paying off the positive part of electricity price less fuel price, emission permit prices, operating

and maintenance costs. If considering the granularity in maturity to be as fine as one day, then

the total number of spread option prices that need to be computed is between 5000 and 7500.

Similarly, in valuing a natural gas storage facility, a portfolio consisting of hundreds to thousands

of daily spread options on forward contracts of different terms with maturities spanning from

one year to ten years, are commonly used for approximating the facility value. In these kinds

of applications, numerical algorithms that are capable of pricing a large quantities of spread

options on multiple assets with varying parameters fast and accurately, are in great demand. As

for applications of spread options on multi-assets in the corporate finance arena, there have been

1



proposals on using the spread between own firm’s stock performance and an index level reflecting

the average performance of a basket of peer firms as compensation for executives working in the

own firm (see Johnson and Tian 2000).

While the spread options written on more than two underlyings are becoming more and

more popular, it is very challenging to price such spread options efficiently and accurately since

closed-form expressions are not available. A number of research works have studied the pricing

of two-asset spread options, such as Jarrow and Rudd (1982), Wilcox (1990), Shimko (1994),

Pearson (1995), Mbanefo (1997), Zhang (1997), and Carmona and Durrleman (2003). More

recently, Deng, Li and Zhou (2006) provide a very accurate closed-form approximation formula

for the efficient pricing of two-asset spread options. However, when the number of asset in-

volved in the spread option is larger than two, not many approaches are available for computing

the spread option price efficiently and accurately, even under the classical Black-Scholes frame-

work. This is because when the dimension (the number of assets) is high, numerical approaches,

such as numerical integration method, numerical solutions to partial differential equations and

Monte Carlo simulation, become extremely slow and often inapplicable. A noticeable work that

approximates the multi-asset spread option price is Carmona and Durrleman (2005). While Car-

mona and Durrleman’s method is quite accurate, it suffers from a somewhat major shortcoming.

Carmona and Durrleman’s method does not give the option price in closed form. To compute

each option price, one would have to solve a high-dimensional system of nonlinear equations

numerically, usually by using the Newton-Raphson’s algorithm. However, our extensive experi-

ments with these equations indicate that it takes considerable effort to solve them because the

convergence of numerical algorithms depends very sensitively on the initial values, and a good

understanding of how to choose the initial values is still lacking.

In this paper, we directly approximate multi-asset spread option prices under the jointly nor-

mal return framework based on the approximation of the exercise boundary. There are several

main contributions of this paper. The most important contribution of this paper is that we give

two closed-form approximation methods. The first method is an extension of Kirk’s approxima-

tion (1995) for two-asset spread options to the multi-asset case. As pointed out in Deng, Li and

Zhou (2006), Kirk’s method can be thought of as a linear approximation of the exercise bound-

ary. Our numerical experiment shows that in most cases, the extended Kirk approximation is

quite accurate. The main advantage of the extended Kirk approximation is that it is extremely

fast and robust. The second method is an extension of Deng, Li and Zhou (2006)’s method of

approximating the exercise boundary using a quadratic function. Using matrix algebra, we show

that the computational cost of the second-order boundary approximation is very low. Compared
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with the method in Carmona and Durrleman (2005), both our methods are in closed form and

only involve arithmetic calculations, thus they are quite straightforward to implement. We also

extend both our methods to price hybrid spread-basket options through a technique commonly

used in valuing Asian options.

Second, we consider the Greeks of the multi-asset spread option. In practical applications

such as dynamic hedging and Value-at-Risk calculations, the calculation of Greeks is very im-

portant. Because the second-order boundary approximation is more accurate than the extended

Kirk approximation, we use the former to compute the Greeks. We give closed-form approx-

imations for the deltas and kappa of the multi-asset spread option in two important cases of

our general framework, namely, the geometric Brownian motions case and the log-Ornstein-

Uhlenbeck process case. Because the second-order boundary approximation is extremely fast

and accurate, Greeks other than the deltas and kappa can be very efficiently computed using

finite difference approximation.

Finally, we perform extensive numerical experiments to study the performance of our meth-

ods and other existing methods, including Monte Carlo simulation, Carmona and Durrleman’s

method and numerical integration. We first perform the comparisons with different number of

assets in the spread option, namely, 3, 20, 50 and 150 assets. Numerical integration is only

performed for the three-asset case because it quickly gets inapplicable when the dimension gets

higher. All results indicate that our methods are extremely fast and accurate. Between our

methods, the second-order boundary approximation is a little bit slower than the extended Kirk

approximation but more accurate. In particular, for the second-order boundary approximation,

it takes about 3×10−3 second to compute the price of a spread option written on 50 underlying

assets. The relative pricing error of the second-order boundary approximation is usually in the

order of 10−4. For the three-asset case, because computation of the Greeks using numerical

integration is still feasible, we also perform a comparison of the deltas and kappa between the

extended Kirk approximation and the second-order boundary approximation. We find that for

the purpose of calculating Greeks, it is preferable to use the latter method. Our last comparison

uses two hypothetical spread options. The first one is between the S&P 500 index and the 30

component stocks of the Dow Jones Industrial Average (DJIA) index, while the second one is

between the S&P SmallCap 600 index and the DJIA components. The purpose of this exper-

iment is to examine the performance of our methods with more realistic parameters. Also, in

practice, the spreads between large company stocks and the whole market and between large

and small company stocks are closely watched by industry practitioners. The results again show

that our methods are fast and most accurate.
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The paper is organized as follows. Section II discusses the general framework under which our

spread option pricing results are derived, and then gives the spread option price in integration

form. Section III develops two closed-form approximations for multi-asset spread option prices,

namely, the extended Kirk approximation and the second-order boundary approximation. The

implementation of the latter method is discussed in detail. We also study the Greeks of multi-

asset spread options and extend both our methods to hybrid spread-basket options. Section IV

compares our methods with alternative numerical approaches and other approximations in terms

of both speed and accuracy. Section V concludes. Proofs are given in the Appendix.

II. The model setup

Consider N+1 assets whose prices at time t are denoted by S0(t), S1(t), · · · , and SN (t). We are

interested in spread options with time-T payoff [S0(T )−∑N
k=1 Sk(T )−K]+, where the strike K

is a pre-specified constant. We will first assume that K ≥ 0. Negative K cases are treated later

when we discuss hybrid basket-spread options. Assuming that the interest rate r is a constant,

by the martingale pricing approach, the price of a spread option Π is given by

Π = e−rTEQ
[
S0(T )−

N∑

k=1

Sk(T )−K
]+ (1)

where Q is the risk-neutral measure under which discounted security prices are martingales.

To compute these option prices, we assume that log S0(T ), log S1(T ), · · · , and log SN (T ) are

jointly normally distributed conditioning on the initial asset prices. Specifically, conditioning on

S0(0) = s0, S1(0) = s1, · · · , and SN (0) = sN , we assume

EQ[log Sk(T )] = µk, VarQ[log Sk(T )] = ν2
k , k = 0, 1, · · · , N

where µ ≡ {µk} and ν ≡ {νk} are two deterministic vectors. Recasting in more familiar terms

of asset returns Rk,T ≡ log(Sk(T )/sk), we have

µk = log sk + EQ[Rk,T ], and ν2
k = VarQ[Rk,T ], k = 0, 1, · · · , N. (2)

Next, we define

X =
log S0(T )− µ0

ν0
, Yk =

log Sk(T )− µk

νk
, k = 1, 2, · · · , N. (3)

In our setup, we will assume that X and Y ′
ks are jointly normally distributed with mean vector 0,

variance vector 1, and the following (N + 1)×(N + 1) correlation matrix

Σ = (ρi,j) =
(

1 Σ10
′

Σ10 Σ11

)
,
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where Σ10 is a N×1 column vector and Σ11 is the N×N correlation matrix of the Yk’s. We

assume that the determinant of Σ is not zero. That is, the returns of the N + 1 assets are not

perfectly correlated.

This general setup incorporates two important cases, namely, the geometric Brownian mo-

tions (GBMs) case and the mean-reverting log-Ornstein-Uhlenbeck (log-OU) case. Geometric

Brownian motions are frequently used to model stock prices while the log-OU processes are fre-

quently used to model commodity prices. Specifically, let Wk(t), k = 0, 1, · · · , N , be Brownian

motions with correlation matrix % = (%i,j). In the GBMs case, we have

dSk = (r − qk)Skdt + σkSkdWk, (4)

where r is the risk-free interest rate, σk’s are the volatilities, and qk’s are the dividend rates. A

simple application of Ito’s lemma yields

µk = log sk + (r − qk − σ2
k/2)T, νk = σk

√
T , ρi,j = %i,j , (5)

The GBMs case can be easily generalized to incorporate seasonality in parameters by allowing

σk’s, qk’s and Σ to be deterministic functions of the calendar time t. This is useful since for

some spread options, their underlying assets exhibit strong seasonality in price volatilities and

in their return correlations. Our general framework incorporates this generalized GBMs case.

In the log-OU case, we have

dSk = −λk(log Sk − ηk)Skdt + σkSkdWk, (6)

where λk’s are the mean-reverting strength parameters and ηk’s are parameters controlling the

long-run means. The application of Ito’s lemma now gives

µk = ηk −
σ2

k

2λk
+ e−λkT

(
log sk − ηk +

σ2
k

2λk

)
, νk = σk

√
1− e−2λkT

2λk
, (7)

ρi,j = 2%i,j

√
λiλj

λi + λj

1− e−(λi+λj)T

√
1− e−2λiT

√
1− e−2λjT

. (8)

Again, with some modifications on the µk’s, νk’s and Σ, our general framework can incorporate

the log-OU case with time-varying parameters.

Before introducing our methods for computing the spread option price, we present an analysis

of the exercise boundary. At time T , the spread option is in-the-money if S0(T )−∑N
k=1 Sk(T )−

K ≥ 0. If K ≥ 0, this condition is the same as

X ≥ log(
∑N

k=1 eνkYk+µk + K)− µ0

ν0
.
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Thus, conditioning on Yk = yk, the option is in-the-money if X ≥ x(y), where

x(y) ≡ log(
∑N

k=1 eνkyk+µk + K)− µ0

ν0
. (9)

Notice that since K ≥ 0, equation (9) is always binding since the right hand side is a finite real

number. Also notice that x(y) is a nonlinear function in the components of y.

Throughout the paper, we use φ(z;m,Σ) to stand for the multivariate normal density func-

tion with mean vector m and covariance matrix Σ, and Φ(z) for the one-dimensional cumulative

normal distribution function. Notice that the random variables X and Y in equation (3) are

jointly normally distributed with density φ({x,y};0,Σ). Thus the computation of Π involves

an (N+1)−dimensional integration as follows:

Π = Π(µ, ν,Σ) = e−rT

∫

RN

∫

R

(
eν0x+µ0 −

N∑

k=1

eνkyk+µk −K
)+

φ({x,y};0,Σ) dxdy. (10)

However, in the following proposition, we reduce the above integral to N + 2 N -dimensional

integrations based on a technique in Pearson (1995).

Proposition 1. Under the jointly-normal returns setup with K ≥ 0 and detΣ 6= 0, the price of

the spread option can be written as

Π = e−rT+µ0+ 1
2
ν2
0 I0 −

N∑

k=1

e−rT+µk+ 1
2
ν2

k Ik −Ke−rT IN+1.

The integrals Ii’s are given by

I0 =
∫

RN

φ(y;0,Σ11) Φ
(
A(y + ν0Σ10) + ν0

√
Σx|y

)
dy,

Ik =
∫

RN

φ(y;0,Σ11) Φ
(
A(y + νkΣ11ek)

)
dy, k = 1, 2, · · · , N

IN+1 =
∫

RN

φ(y;0,Σ11) Φ
(
A(y)

)
dy,

where ek is the unit column vector (0, · · · , 0, 1, 0, · · · , 0)′ with 1 at the k-th position, and

A(y) =
µx|y − x(y)√

Σx|y
,

with

µx|y = Σ10
′Σ−1

11 y, Σx|y = 1−Σ10
′Σ−1

11 Σ10.
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Notice that when detΣ 6= 0, we have Σx|y 6= 0 and detΣ11 6= 0, so A(y) is always well-

defined. Also, notice that in the geometric Brownian motions case, the price Π reduces to the

more familiar form

Π = s0e
−q0T I0 −

N∑

k=1

ske
−qkT Ik −Ke−rT IN+1.

The proof of Proposition 1 is given in the Appendix. Proposition 1 highlights the importance

of the exercise boundary and is the starting point of our approximation. Our goal now is to

approximate A(y) so that the Ik’s can be performed in closed form.

III. Closed-form approximations

A. Extended Kirk approximation

Kirk (1995) gives a fairly accurate closed-form approximation for two-asset spread option prices.

Deng, Li and Zhou (2006) compares its performance with other methods and points out that

Kirk’s formula can be obtained by a linear approximation of the exercise boundary. In this sub-

section, we extend Kirk’s approximation to a multi-asset setting. Our idea is to first approximate
∑N

k=1 Sk(T ) as a lognormal random variable and then apply Kirk’s approximation for two-asset

spread options. This can be achieved by approximating
∑N

k=1 Sk(T )/N by the corresponding

geometric average
(∏N

k=1 Sk(T )
)1/N , a technique commonly used in pricing Asian options. The

result is the following

Proposition 2. Under the general jointly-normal returns setup, the multi-asset spread option

price can be approximated as

Π ≈ e−rT+µ0+ 1
2
ν2
0Φ

(
dK +

νK

2

)
−

( N∑

k=1

e−rT+µk+ 1
2
ν2

k + Ke−rT
)
Φ

(
dK − νK

2

)
, (11)

where

νK =
√

ν2
0 − 2ρaν0νam + ν2

am2, dK =
log m0

νK
,

with

m0 =
eµ0+ 1

2
ν2
0

∑N
k=1 eµk+ 1

2
ν2

k + K
, m =

∑N
k=1 eµk+ 1

2
ν2

k

∑N
k=1 eµk+ 1

2
ν2

k + K
,

νa =
1
N

√√√√
N∑

i=1

N∑

j=1

ρi,jνiνj , ρa =
1

Nνa

( N∑

k=1

ρ0,kνk

)
.
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The proof of the above proposition is given in the Appendix. Notice that the above propo-

sition works for all models in our general jointly normal returns setup, in particular, for the

GBMs and the log-OU case. In the GBMs case, equation (11) becomes

Π ≈ s0e
−q0T Φ

(
dK +

νK

2

)
−

( N∑

k=1

ske
−qkT + Ke−rT

)
Φ

(
dK − νK

2

)
, (12)

and resembles the Black-Scholes formula or more closely, the Margrabe formula. The extended

Kirk approximation is extremely easy to implement and extremely fast. Another advantage of

the above approximation is that it also works when detΣ is very close to 0.

As we will see later, the extended Kirk approximation is extremely fast and fairly accurate.

Numerical experiments in Section IV show that the extended Kirk approximation is most ac-

curate when the Sk(T )’s (k = 1, · · · , N) are more symmetric. That is, the ρi,j ’s are about the

same, initial asset prices si’s are about the same, and µi’s and νi’s are about the same. The

reason is that in this case, the geometric average of the Sk(T ) is closer to the arithmetic average.

We also conduct an experiment where the Sk(T )’s (k = 1, · · · , N) are not very symmetric using

a hypothetical spread option between the S&P 500 Index and the 30 component stocks of the

Dow Jones Industrial Average Index. We see that when the assets are not very symmetric, the

extended Kirk approximation is not as accurate as the second-order boundary approximation

which we are introducing below. Also, by the nature of its design, the extended Kirk approxi-

mation does not give as accurate Greeks as the second-order boundary approximation does.

B. Second-order boundary approximation

Deng, Li and Zhou (2006) derive an approximation for two-asset spread options based on a

second-order approximation of the exercise boundary. They also show that when the curvature

of the exercise boundary is not large, the second-order boundary approximation is extremely

efficient and more accurate than existing methods such as Kirk’s approximation. Below we

extend their results to spread options on arbitrary number of assets.

Two observations of Proposition 1 are very useful. First, the integrals Ii’s all involve

φ(y;0,Σ11) which is quite peaked around y = 0. Second, around y = 0, the exercise boundary

x(y) is quite close to being linear in y. Hence the same is true for the function A(y). Figure 1

confirms this by giving a sample plot of A(y) when N = 2. The parameters used are the same

ones we use later for numerical comparisons in the three-asset case, and we fix K = 30 with

σi = 0.3 for all three assets.
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We now derive the approximations for the exercise boundary x(y) of the spread option and

the function A(y) to second order in y around y = 0 as follows:

Proposition 3. The exercise boundary x(y) can be approximated to second order in y as

x(y) ≈ x(0) +∇x|′0 y +
1
2
y′∇2x|0 y,

where

x(0) =
log(R + K)− µ0

ν0
,

(∇x|0)k =
eµkνk

ν0(R + K)
, k = 1, 2, · · · , N,

(∇2x|0)i,j = − νiνje
µi+µj

ν0(R + K)2
+ δi,j

ν2
j eµj

ν0(R + K)
, i, j = 1, 2, · · ·

with δi,j being the Kronecker delta function, and

R =
N∑

k=1

eµk .

Accordingly, the function A(y) can be approximated as

A(y) =
µx|y − x(y)√

Σx|y
≈ c + d′y + y′Ey,

where

c = − log(R + K)− µ0

ν0
√

Σx|y
, (13)

d =
1√
Σx|y

(Σ−1
11 Σ10 −∇x|0), (14)

E = − 1
2
√

Σx|y
(∇2x|0). (15)

Our goal is to use an approximation of A(y) in Proposition 1 so that we can perform the

integrals Ik’s. For this purpose, we further expand Φ
(
c+d′y+y′Ey

)
into three terms to second

order in y′Ey around y′Ey = ε, for some suitably chosen ε. With the help of an identity in Li

(2007), we are now able to perform the integration and obtain a closed-form approximation for

the spread option price as presented in Proposition 4. Proposition 4 is one of the most important

results of this paper. The proof of Proposition 4 is given in the Appendix.
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Proposition 4. Let K ≥ 0 and detΣ 6= 0. The spread option price Π under the general

jointly-normal returns setup is given by

Π = e−rT+µ0+ 1
2
ν2
0 I0 −

N∑

k=1

e−rT+µk+ 1
2
ν2

k Ik −Ke−rT IN+1. (16)

The integrals Ii’s are approximated as

Ii ≈ J0(ci,di) + J1(ci,di)− 1
2
J2(ci,di), i = 0, 1, · · · , N + 1 (17)

where the scaler function Ji’s are defined as

J0(u,v) = Φ
(

u√
1 + v′v

)
, (18)

J1(u,v) =
λ√

1 + v′v
· φ

(
u√

1 + v′v

)
, (19)

J2(u,v) =
u

(1 + v′v)3/2
· φ

(
u√

1 + v′v

)
(20)

{
λ2 + 2tr[(PFP)2]− 4λ(1 + v′v)(v′P2FP2v) + (4u2 − 8− 8v′v)‖PFP2v‖2

}
,

with

P = P(v) ≡ (I + vv′)−1/2, (21)

λ = λ(u,v) ≡ u2v′P2FP2v + tr(PFP)− tr(F), (22)

where tr stands for the trace operator of a matrix. The scalers ci, vectors di,and matrix F are

given by

c0 = c + tr(F) + ν0

√
Σx|y + ν0Σ10

′d + ν2
0Σ10

′EΣ10, (23)

d0 = Σ
1
2
11(d + 2ν0EΣ10), (24)

ck = c + tr(F) + νkek
′Σ11d + ν2

kek
′Σ11EΣ11ek, k = 1, 2, · · · , N (25)

dk = Σ
1
2
11(d + 2νkEΣ11ek), k = 1, 2, · · · , N (26)

cN+1 = c + tr(F), (27)

dN+1 = Σ
1
2
11d, (28)

F = Σ
1
2
11EΣ

1
2
11, (29)

with Σx|y given in Proposition 1 and c,d,E given in Proposition 3.
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Notice that we have used boldface subscript i in di to denote the i-th vector in order to avoid

confusion with the i-th component di of the vector d. As we see, the calculation of the spread

option price is quite straightforward in the second-order boundary approximation. A naive look

at Proposition 4 might imply that we need to perform a lot of costly matrix multiplications.

However, Proposition 5 below shows that we only need to perform a very limit number of matrix

multiplications. The critical observation in obtaining Proposition 5 is that v is an eigenvector

of P(v) defined in equation (21). The proof of Proposition 5 is in the Appendix.

Proposition 5. With P = P(v) as defined in equation (21), we have

P = I− θvv′, P2 = I− ψvv′,

where the scalars θ and ψ are given by

θ = θ(v) =
√

1 + v′v − 1
v′v

√
1 + v′v

, ψ = ψ(v) =
1

1 + v′v
. (30)

Furthermore, we have

tr[(PFP)2] = tr(F2)− ψ(1 + ψ)v′F2v, (31)

v′P2FP2v = ψ2v′Fv, (32)

‖PFP2v‖2 = ψ2
[
v′F2v − ψ(v′Fv)2

]
, (33)

tr(PFP) = tr(F)− ψv′Fv. (34)

Thus the scaler function Ji’s given in (18) can be simplified as

J0(u,v) = Φ
(
u
√

ψ
)

, (35)

J1(u,v) = ψ
3
2 (ψu2 − 1)v′Fv · φ

(
u
√

ψ
)

, (36)

J2(u,v) = uψ
3
2 · φ

(
u
√

ψ
){

2tr(F2)− 4(1− tr(F))(ψ − ψ2)v′Fv (37)

+ ψ2(9 + (2− 3u2)ψ − u2(4− u2)ψ2)(v′Fv)2 − 2ψ(5 + (1− 2u2)ψ)v′F2v
}

.

Proposition 5 is very useful in the actual implementation of the second-order boundary

approximation because it reduces the calculation of the four computationally costly terms in

Proposition 4, tr[(PFP)2], v′P2FP2v, ‖PFP2v‖2 and tr(PFP), to four much simpler expres-

sions, namely, tr(F), tr(F2), v′Fv, and v′F2v. Our numerical analysis shows that Proposition 5

reduces the computational time of the second-order boundary approximation as presented in

Proposition 4 by about several hundred times. In the Appendix we comment more on the

implementation of the second-order boundary approximation.

In the next subsection, we consider the Greeks of the spread options.
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C. Spread option Greeks and their approximation

Proposition 2 and Proposition 4 give approximations for multi-asset spread options prices. Below

we derive approximations for the important Greeks in our setup. Fast and accurate calculation

of these Greeks is very important because the Greeks are very useful in hedging, portfolio

rebalancing, risk assessment such as VaR calculations, among other things. There are many

approaches to calculating the Greeks, including finite difference method using Monte Carlo,

numerical integration, and more recently, Malliavin calculus. For multi-asset spread options,

especially when the number of assets is large, numerical methods often prove to be extremely

slow to be applicable in practice. Thus a closed-form approximation is extremely useful. We use

the second-order boundary approximation in the computation of the Greeks because although

the extended Kirk approximation is fairly accurate for the prices, it does not give as accurate

Greeks as the second-order boundary approximation does.

We will focus on the most important Greeks, the deltas and kappa. Because the second-order

boundary approximation is extremely fast and accurate, Greeks other than the deltas and kappa

can be very efficiently computed using finite difference method.

To compute the deltas and kappa, we need to know the dependence of µk’s and νk’s on the

initial asset prices sk’s and the strike price K. We will assume that for each k, µk is a function

of sk while νk is independent of sk. This is not very restrictive because both the two important

special cases of our general setup, namely, the GBMs case and the log-OU case, satisfy this

requirement.

Now let us define the price vector

S = (e−rT+µ0+ 1
2
ν2
0 ,−e−rT+µ1+ 1

2
ν2
1 , · · · ,−e−rT+µN+ 1

2
ν2

N ,−Ke−rT )′.

Notice that in the GBMs case, equation (5) holds so

S = (s0e
−q0T ,−s1e

−q1T , · · · ,−sNe−qNT ,−Ke−rT ). (38)

In the log-OU case, equation (7) gives us that for k = 0, 1, · · · , N ,

Sk = exp
(
− rT + ηk(1− e−λkT ) + e−λkT log sk −

σ2
k

4λk

(
1− e−λkT

)2
)
. (39)

From Proposition 1 and 4 , we have the following result for the deltas and kappa. The proof

of Proposition 6 is in the Appendix.
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Proposition 6. Let K ≥ 0. Suppose that in the general jointly normal returns setup, µk is only

a function of sk while νk is independent of sk for each k = 1, · · · , N. Then

∆0 ≡ ∂Π
∂s0

=
∂µ0

∂s0
S0I0, (40)

∆k ≡ ∂Π
∂sk

= −∂µk

∂sk
SkIk, k = 1, 2, · · · , N (41)

κ ≡ ∂Π
∂K

= −e−rT IN+1. (42)

In particular, in the geometric Brownian motions case, we have

∆0 = e−q0T I0, ∆k = −e−qkT Ik, k = 1, 2, · · · , N.

In the log-Ornstein-Uhlenbeck case, with Sk’s given in equation (39), we have

∆0 =
e−λ0T

s0
S0I0, ∆k = −e−λkT

sk
SkIk, k = 1, 2, · · · , N.

The vector I = {Ik} can then be approximated by Proposition 4.

Proposition 6 shows that Proposition 4 is not only useful for computing spread option prices,

but also useful for computing the deltas and kappa of the spread option. In particular, if

Proposition 4 is implemented with the vectorization technique, then the computation of the

vector I simultaneously gives us all the deltas and kappa. This is not the case if one uses Monte

Carlo simulation to compute the prices and then uses finite difference to approximate the Greeks.

D. Extension to hybrid spread-basket option prices

We now extend both the extended Kirk approximation and the second-order boundary approx-

imation to a generic hybrid spread-basket option with time-T payoff

[ M∑

i=1

wiSi(T )−
M+N∑

j=M+1

wjSj(T )−K
]+

,

where K, wi’s are positive constants. Again, we assume that conditioning on the initial asset

prices, log Si(T ) are jointly normally distributed with mean µi, variance ν2
i , and correlation

matrix ρi,j for i, j = 1, 2, · · · , M + N . Without loss of generality, we will assume that all

wi equal 1 as the weights wi can be easily absorbed by defining S′i = wiSi and noticing that

µ′i = log wi + µi, ν ′i = νi and ρ′i,j = ρi,j . In addition, we allow one of Si (i = 1, · · · ,M) to be a

constant, thus effectively allowing K to be negative. Except for the possibility of a constant Si

for some i, we assume the correlation matrix of log Si’s is positive definite.
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To compute the price of this hybrid spread-basket option, we again utilize the well-known

technique in pricing Asian options. Specifically, let

H0(t) ≡
M∑

i=1

Si(t), and Hk(t) ≡ Sk+M (t) k = 1, 2, · · · , N.

Notice that the final payoff of the hybrid option now formally reduces to that of a standard

spread option

[
H0(T )−

N∑

k=1

Hk(T )−K
]+

.

However, the Hi’s are no longer jointly normally distributed, nor is H0(T ) normally distributed.

The idea is to approximate the distribution of H0(T ) by the corresponding geometric average

of the Si’s. In addition, in order to apply Proposition 4, we need the correlation matrix of the

Hi’s. The detailed procedure is as follows.

Define random variables X and Yk’s by

X =
log H0(T )− µH

0

νH
0

, Yk =
log Hk(T )− µH

k

νH
k

, k = 1, 2, · · · , N

with µH
k = µk+M and νH

k = νk+M for k = 1, · · · , N , and

µH
0 = log

( M∑

i=0

eµi+
1
2
ν2

i
)− 1

2
(νH

0 )2, νH
0 =

1
M

√√√√
M∑

i=1

M∑

j=1

ρi,jνiνj .

Then X and the Yi’s can be approximated as jointly normally distributed with mean vector 0,

variance vector 1, and correlation matrix Σ = (%i,j), i, j = 0, 1, · · · , N , where

%0,0 = 1,

%0,k = %k,0 =
1

MνH
0

( M∑

i=1

ρi,kνi

)
, k = 1, 2, · · · , N

%i,j = ρM+i,M+j , i, j = 1, 2, · · · , N.

The above equations can be proven in a very similar way to Proposition 2. Notice that under

the GBMs case, the quantity µH
0 are usually further approximated as

µH
0 = log H(0) +

(
rT − 1

M

M∑

i=1

qiT +
1

2M

M∑

i=1

ν2
i

)
.

Once we have approximated the Hi’s using the jointly normal setup, we can use either the

extended Kirk approximation in Proposition 2 or the second-order boundary approximation in

Proposition 4 to compute the price of the hybrid spread-basket option. This extension to hybrid

spread-basket options greatly enhances the applicability of our approximation methods.
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IV. Comparison of accuracy and speed with existing methods

A. Existing pricing methods

When the number of assets is small, numerical integration method can be used to calculate

spread option prices by using Proposition 1. Although very accurate, it is not quite applicable

for multi-asset spread options when the number of assets is large because of the huge computation

cost. The same is true for partial differential equation technique. Another widely used numerical

method is Monte Carlo simulation. The advantage of Monte Carlo simulation is that it is very

flexible and is able to value spread options under many different distributional assumptions. The

shortcomings are that the results are not always accurate enough, even after variance reduction

techniques such as antithetic method, control variate and importance sampling are applied.

Also, the Greeks need to be calculated with extra effort, usually by approximating them using

finite difference. The biggest shortcoming is that Monte Carlo simulation is generally very time-

consuming, especially when the dimension is high and the number of option prices need to be

computed is large.

Given the high computational cost of numerical methods for multi-asset spread option, it is

extremely useful to design approximation techniques. However, until very recently, not much

work has been done on this subject. Carmona and Durrleman (2005) propose approximate

formulas for the lower and upper bounds of multi-asset spread options by solving a nonlinear

optimization problem. They only consider the geometric Brownian motions case. The lower

bound is quite accurate while the upper bound is less accurate. Therefore we just compare our

method with their lower bound. We give a brief description of the Carmona and Durrleman

method below. Interpreting σN+1 = 0 and letting C = Σ ⊕ 1, the lower bound of the spread

option price is given as follows.

Π =
N+1∑

i=0

SiΦ
(
d∗ + (C

1
2 z∗)i σi

√
T

)
,

where the scaler d∗ and unit length vector z∗ satisfy the following system of nonlinear equations

N+1∑

i=0

Siσi

√
T (C

1
2 )ij φ

(
d∗ + (C

1
2 z∗)iσi

√
T

)
− µz∗j = 0, for j = 0, · · · , N + 1 (43)

N+1∑

i=0

Si φ
(
d∗ + (C

1
2 z∗)iσi

√
T

)
= 0, (44)

and µ is the Lagrangian multiplier. Notice that Carmona and Durrleman’s method is not in

closed form because it requires the numerical solution of a system of nonlinear equations. In
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addition, like our second-order boundary approximation, Carmona and Durrleman’s method also

requires the somewhat expensive calculation of the square root of Σ. Interpreting sN+1 ≡ K,

the deltas and kappa are given by

∂Π
∂si

=
Si

si
· Φ

(
d∗ + (C

1
2 z∗)iσi

√
T

)
, i = 0, 1, · · · , N + 1. (45)

One very nice feature about this method is that it always gives a lower bound for the actual

price. The main difficulty of applying Carmona and Durrleman’s method is in solving the system

of nonlinear equations, because there is not much guidance on the choice of initial values for d∗,

z∗ and µ.

B. Numerical performance

We now compare our methods, namely, the extended Kirk approximation and the second-order

boundary approximation, with Monte Carlo simulation, numerical integration method based on

Proposition 1, and Carmona and Durrleman’s method. We perform the comparisons for four

different dimensions N+1, namely, 3, 20, 50, and 150 using an artificial correlation matrix similar

to the one used in Carmona and Durrleman (2005). In addition, in order to test various methods

using a more plausible correlation matrix, we also apply the methods to two hypothetical spread

options. One is between the S&P 500 index and the 30 component stocks of the Dow Jones

Industrial Average (DJIA) index and the other is between the S&P SmallCap 600 index and the

DJIA components. All methods are implemented in MATLAB 7.0 on a Dell Optiplex GX620

with 3.80 GHz Intel Pentium(R) 4 CPU and 3G RAM. For the purpose of definiteness and the

fact that Carmona and Durrleman (2005) only consider the geometric Brownian motions case,

we will only compare models in this special case.

For the Monte Carlo simulation, we generate 10,000,000 replicates. We use Proposition 1

rather than equation (10) because if one uses equation (10), then the information on the random

variables x and y is completely lost if the option happens to be out of money. The use of Propo-

sition 1 amounts to an importance sampling technique. In the actual implementation we find

that it gives very large variance reduction in Π. The numerical integration method is only used

for the 3-dimension case because the computational cost is exceedingly high when the dimension

is high. The numerical integration results computed with error tolerance level 10−8 are used as

actual option prices to calculate the relative pricing errors (ΠApproximation−ΠActual)/ΠActual. For

Carmona and Durrleman’s method, we use the globally convergent Newton-Raphson method as

described in Press et al. (1992). We find that the globally convergent Newton-Raphson method

is slightly more stable than the Newton-Raphson method and slightly faster to converge to the
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optimal solution. However, the optimization is still extremely sensitive to the choice of initial

values and very often fails. The region of initial values that will lead to solutions is an unknown

function of the parameters of the spread option, namely, µi, νi and Σ, and Carmona and Dur-

rleman (2005) does not give much guidance on how to choose the initial values. Because of this,

extensive numerical experiments are often needed to find out the appropriate initial values for

different options, which can take from one minute to as long as half an hour. We thus conclude

that some guidance on how to choose the initial values in Carmona and Durrleman’s method is

crucial for the method to be useful in large scale real-life computations.

Spread options on 3 assets.

As a first example, we consider spread options on 3 assets. We set T = 0.25, r = 5%, and the

dividend rate zero. The initial asset prices are s0 = 150, s1 = 60, and s2 = 50. The volatilities

of all three assets are given by the same σ and we vary σ to be 0.3 and 0.5. We vary K to be

from 30 to 50 with increment 5. The correlation matrix for the asset returns is given by

Σ =




1 0.2 0.8
0.2 1 0.4
0.8 0.4 1


 .

Table 1 reports the prices for each of the five methods we compare together with the average

computing times. The numerical integration results are used as the actual prices. Looking

at the relative errors, both our methods are quite accurate with the second-order boundary

approximation being more accurate than the extended Kirk approximation. In particular, the

relative pricing error of the extended Kirk approximation is in the order of 10−2, while that of

the second-order boundary approximation is in the order of 10−5. Monte Carlo simulation with

10,000,000 replications and the use of Proposition 1 gives quite accurate results, but usually

still not as accurate as the second-order boundary approximation. Carmona and Durrleman’s

method is also quite accurate but not as good as our second-order boundary approximation.

Furthermore, in the actual implementation we need to spend about 20 minutes to find good

starting values for the nonlinear equations that one has to solve in their method. Even if good

starting values are found, their method is still slower than both our methods. The average

computing times for both our methods are in the order of 10−3 second, while both the numerical

integration and Monte Carlo simulation methods take considerably more time.

Table 2 lists the results for four important Greeks for all the methods, namely, the three

deltas and the kappa. Here we fix K = 30. Again, the qualitative conclusions are the same for

the prices. Both our methods are extremely fast, with the second-order boundary approximation

gives the most accurate results. Figure 2 further compares the accuracy of the four important
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Greeks between the extended Kirk approximation and the second-order boundary approxima-

tion. Parameters are still the same, but now with K varies in the range [30, 50] and σ varies

in the range [0.1, 0.9]. The actual values for the Greeks are computed using numerical integra-

tion. The Greeks for the extended Kirk approximation are obtained by differentiating equation

(11) in Proposition 2. The Greeks for the second-order boundary approximation are given in

Proposition 6. The Greeks for Carmona and Durrleman’s method is given in equation (45).

Figure 2 indicates that for the purpose of calculating the Greeks, the second-order boundary

approximation should be preferred to the extended Kirk approximation.

Spread options on 20, 50 and 150 assets.

Next, we consider spread options on multiple assets with numbers of assets N + 1 equal 20, 50

and 150, respectively. We will consider symmetric target assets with initial prices s0 = 10(N +1)

and s1 = · · · = sN = 10. We set T = 0.25, r = 5%, and dividend rate zero. The correlation

matrix is set to be

Σ =




1 ρ · · · ρ

ρ 1
. . .

...
...

...
. . . ρ

ρ · · · ρ 1




(46)

with ρ = 0.4. All assets returns have the same volatility σ and we vary σ to be either 0.3 or 0.6.

We vary K from 0 to 20 with increment 5.

Table 3 reports the prices of spread options with different number of assets, different volatil-

ities σ and strikes K for each of the four methods we consider, together with the average

computing time of each method. The results for different dimension N +1 are reported in three

different panels. Since N is large, numerical integration is no longer feasible so we do not know

the exact actual option prices and as a result, we do not know the exact relative pricing errors.

However, the results from Monte Carlo simulation can serve as a rough comparison benchmark.

The results indicate that when the target assets are more symmetric, the extended Kirk approx-

imation is more accurate. Again, both our methods are among the fastest and the second-order

boundary approximation is much more accurate than the extended Kirk approximation and

Carmona and Durrleman’s method.

Figure 3 gives the computing time as a function of dimensions N + 1. The horizontal axis is

dimension N +1, which we vary from 3 to 200. The vertical axis is time in log scale. We do not

plot the computing times for Carmona and Durrleman’s method because it often takes more than

20 minutes to search for good initial starting values for their algorithm. If we do not include

the search time, which is significant, the curve for Carmona and Durrleman’s method would
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lie somewhere between the second-order boundary approximation and Monte Carlo simulation.

As we see, up to dimension 25, both our methods take less than 10−3 second to compute the

price of one spread option. The extended Kirk approximation remains within 10−3 second for

all dimensions, while the second order boundary approximation remains within 10−1 second.

Monte Carlo simulation takes considerable more time, ranging from 8 seconds in dimension 3

to over 500 seconds in dimension 200. For all dimensions, the computing times in the extended

Kirk approximation are about 0.001% or 0.0001% of those in Monte Carlo simulation while

the computing times in the second-order boundary approximation are about 0.01% of those in

Monte Carlo simulation.

Spread options on two S&P indices and DJIA components.

Our final numerical example considers two hypothetical spread options. The first one is written

on the S&P 500 index and the 30 component stocks of the Dow Jones Industrial Average (DJIA)

index. The second one is written on the S&P SmallCap 600 index and DJIA components.

Both options are very interesting in practice because industrial practitioners pay very close and

constant attention to the different performance among large company stocks, small company

stocks and the whole market. For our numerical experiments, these options are very interesting

because now the target assets are not completely symmetric.

For the first spread options, the final payoff is given by
[
S0(T )−∑30

k=1 Sk(T )−K
]+, where

S0 is chosen to be the S&P 500 index multiplied by 1.15, and S1, · · · , S30 the prices of the DJIA

component stocks. The weight 1.15 is chosen such that the spread option is near the money.

Because of occasional additions and deletions of the DJIA components, the DJIA component

stocks are fixed as those on August 29th, 2007. For the second spread option, S0 is chosen to

be the S&P SmallCap 600 index multiplied by 4.

We consider two different maturities, T = 1/6 and T = 1/3. For each maturity T , to obtain

µk and νk, we use equation (2) and compute the mean and variance of the historical T -period

returns Rk,T . For the first option, we use historical daily price data from the CRSP (Center

for Research in Security Prices) data base from July 9th, 1986 to August 29th, 2007 because

the stock prices for several companies are only available after July 9th, 1986. The returns

are calculated using daily close prices after adjusting for stock splits. The prices on August

29th, 2007 are used to determine the initial asset prices sk’s. Alternatively, we could have used

equations (5) to compute µk’s and νk’s by estimating the dividend rates. The correlation matrix

Σ is estimated from the historical correlation matrix of the Rk,T ’s. For the second option, we

use historical daily price data from August 16th, 1995 to August 29th, 2007 because the S&P
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SmallCap 600 index is only available after August 16th, 1995. To include both in-the-money

and out-of-the-money options, we vary K from 0 to 75 with increment 15 for the first option,

and vary K from 0 to 120 with increment 30 for the second one.

Table 4 and Table 5 report the prices of the two spread option with different maturities T

and strikes K, together with the average computing time of each method. Because actual prices

are not available, we use the results from the Monte Carlo simulation as a rough benchmark. As

we see, the extended Kirk approximation in this nonsymmetric case becomes less accurate, with

relative pricing error sometimes quite significant. Our second-order boundary approximation

give more accurate approximation for the option prices than Carmona and Durrleman’s method.

V. Conclusion

In this paper, we study spread options written on multiple assets. We develop two closed-form

approximations for pricing them, namely, the extended Kirk approximation and the second-

order boundary approximation. Numerical analysis demonstrates that both our methods are

very robust, fast and accurate, with the second-order approximation being more accurate than

the extended Kirk approximation and Carmona and Durrleman’s method. For spread options

written on 3 assets, the relative pricing error of the second-order approximation is in the order

of 10−4 with an average computing time for each option of 2×10−4. For dimensions up to about

100, the second-order boundary approximation takes less than 10−2 second. Thus, our method

enables the accurate pricing of a bulk volume of spread options on multiple assets with different

contract specifications in real time, which offer traders a potential edge in financial markets. We

also extend our results to hybrid spread-basket options.

In addition, our approximations, especially the second-order boundary approximation, can

be used to approximate the Greeks of spread options, which serve as valuable tools in finan-

cial applications such as calculating the delta-hedging position of a portfolio containing spread

options.

There are a few directions that one can take to extend and improve the results in this paper.

First, in the geometric Brownian motions case, our results can be easily extended to incorporate

jumps in the price processes of the assets. Second, the boundary approximation idea might be

useful for pricing other types of more exotic derivatives. We leave these to future research.
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Appendix

A. Proofs

Proof of Proposition 1:

The conditional density of X given Y = y is φ(x; µx|y, Σx|y). By formula for the determinants

for partitioned matrix, we have Σx|y 6= 0 since

detΣ = det(Σ11 −Σ10Σ′
10) = (det(Σ11))−1Σx|y 6= 0.

Thus, we can compute the price of the spread option as follows:

Π = e−rT

∫

RN

∫

R

(
eν0x+µ0 −

N∑

k=1

eνkyk+µk −K
)+

φ({x,y};0,Σ)dxdy

= e−rT

∫

RN

φ(y;0,Σ11)dy
∫ ∞

x(y)

(
eν0x+µ0 −

N∑

k=1

eνkyk+µk −K

)
φ(x; µx|y, Σx|y)dx.

By virtue of the identity
∫ ∞

x0

etxn(x; µ, σ2)dx = eµt+σ2t2/2Φ
(

µ− x0

σ
+ σt

)
, (47)

the inner integral can be performed to yield

Π = e
1
2
ν2
0Σx|y+µ0−rT

∫

RN

eν0µx|y φ(y;0,Σ11) Φ
(
A(y) + ν0

√
Σx|y

)
dy

−
N∑

k=1

e−rT

∫

RN

eνkyk+µk φ(y;0,Σ11) Φ
(
A(y)

)
dy

−Ke−rT

∫

RN

φ(y;0,Σ11) Φ
(
A(y)

)
dy. (48)

Completing the square after a change of variable z = y − ν0Σ10 gives

e
1
2
ν2
0Σx|y+µ0−rT

∫

RN

eν0µx|y φ(y;0,Σ11) Φ
(
A(y) + ν0

√
Σx|y

)
dy

= e−rT+µ0+ 1
2
ν2
0

∫

RN

φ(z;0,Σ11)Φ
(
A(z + ν0Σ10) + ν0

√
Σx|y

)
dz.

Similarly, a change of variable z = y − νkΣ11ek, for k = 1, 2, · · · , N , gives

e−rT

∫

RN

eνkyk+µk φ(y;0,Σ11) Φ
(
A(y)

)
dy

= e−rT+µk+ 1
2
ν2

k

∫

RN

φ(z;0,Σ11)Φ
(
A(z + νkΣ11ek)

)
dz.
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Collecting terms, we get the expressions in Proposition 1.

Proof of Proposition 2:

Consider a spread option on two assets with final payoff (S0(T )−L(T )−K)+, where log S0(T )

and log L(T ) are jointly normal with means µ0, µa, variances ν2
0 , ν2

a , and correlation ρa. Then

the two-asset Kirk approximation for the spread option price is given by

eµ0+ 1
2
ν2
0−rT Φ(d1)− (eµa+ 1

2
ν2

a−rT + Ke−rT )Φ(d2),

where

d1 =
1

νK
log

( eµ0+ 1
2
ν2
0−rT

eµa+ 1
2
ν2

a−rT + Ke−rT

)
+

1
2
νK , d2 = d1 − νK ,

with

νK =
√

ν2
0 + m2ν2

a − 2mρaν0νa and m =
eµa+ 1

2
ν2

a−rT

eµa+ 1
2
ν2

a−rT + Ke−rT
.

To apply the above result for multi-asset spread options with payoff (S0(T )−∑N
k=1 SN (T )−K)+,

we let L(T ) =
∑N

k=1 Sk(T ). A common technique is to approximate the arithmetic average
∑N

k=1 Sk(T )/N by the geometric average
∏N

k=1 Sk(T )1/N .

For νa, notice that

ν2
a = Var(log L(T )) ≈ Var

(
log

(
N

N∏

k=1

Sk(T )1/N
))

= Var
( 1

N

N∑

k=1

log Sk(T )
)

=
1

N2

N∑

i=1

N∑

j=1

ρi,jνiνj .

For ρa, notice that

ρa =
1

ν0νa
Cov(log S0(T ), log L(T )) ≈ 1

ν0νa
Cov

(
log S0(T ), log

N∏

k=1

Sk(T )
1
N

)

=
1

ν0νa
Cov

(
log S0(T ),

1
N

N∑

k=1

log Sk(T )
)

=
1

Nνa

N∑

k=1

ρ0,kνk.

To compute µa, notice that since log L(T ) is approximated normally distributed with mean

µa and variance ν2
a , we have E elog L(T ) ≈ eµa+ν2

a/2. Thus,

µa ≈ logE elog L(T ) − 1
2
ν2

a = logE
N∑

k=1

Sk(T )− 1
2
ν2

a = log
( N∑

k=1

eµk+
ν2
k
2

)
− 1

2
ν2

a .
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The final step of the proof involves simplifying the expressions for m and m0 using the

expression for µa.

Proof of Proposition 3:

This proposition follows directly from Taylor expanding the exercise boundary (9) to second

order in y around y = 0:

(∇x|0)k =
∂x

∂yk

∣∣∣∣
0

=
eµkνk

ν0(R + K)
, k = 1, 2, · · · , N

(∇2x|0)i,j =
∂2x

∂yi∂yj

∣∣∣∣
0

= − νiνje
µi+µj

ν0(R + K)2
+ δi,j

ν2
j eµj

ν0(R + K)
, i, j = 1, 2, · · · , N.

Proof of Proposition 4:

From Proposition 1, we have

Π = e−rT+µ0+ 1
2
ν2
0 I0 −

N∑

k=1

e−rT+µk+ 1
2
ν2

k Ik −Ke−rT IN+1.

First, by Proposition 3, A(y) ≈ c+d′y+y′Ey. Next, we treat y′Ey as an independent quantity

from c + d′y and expand Φ(A(y)) ≈ Φ
(
c + d′y + y′Ey

)
to second order in y′Ey around

y′Ey = ε =
∫

RN

φ(y;0,Σ11)y′Eydy = tr(F).

Since

dΦ
(
c + d′y + y′Ey

)

dy′Ey

∣∣∣∣
y′Ey=ε

= φ(c + ε + d′y),

d2Φ
(
c + d′y + y′Ey

)

d(y′Ey)2

∣∣∣∣
y′Ey=ε

= −(c + ε + d′y) φ(c + ε + d′y),

we have

IN+1 =
∫

RN

φ(y;0,Σ11)Φ
(
A(y)

)
dy (49)

≈
∫

RN

φ(y;0,Σ11)Φ
(
c + d′y + y′Ey

)
dy (50)

≈
∫

RN

φ(y;0,Σ11)
[
Φ

(
c + ε + d′y

)
+ φ(c + ε + d′y)(y′Ey − ε) (51)

− 1
2
(c + ε + d′y) φ(c + ε + d′y)(y′Ey − ε)2

]
dy (52)

≡ J0
N+1 + J1

N+1 −
1
2
J2

N+1, (53)
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where

J0
N+1 =

∫

RN

φ(y;0,Σ11)Φ
(
c + ε + d′y

)
dy,

J1
N+1 =

∫

RN

φ(y;0,Σ11) φ(c + ε + d′y) (y′Ey − ε)dy,

J2
N+1 =

∫

RN

φ(y;0,Σ11)(c + ε + d′y) φ(c + ε + d′y)(y′Ey − ε)2dy.

For J0
N+1, a change of variable w = d′y gives

J0
N+1 =

∫

R
φ(w; 0,d′Σ11d)Φ

(
c + ε + w

)
dw. (54)

The following result in Li (2007) is very useful and we refer readers to Li (2007) for a proof:
∫ ∞

−∞
Φ(a + by)φ(y; µ, σ2) dy = Φ

(
a + bµ√
1 + b2σ2

)
.

With the help of the above identity, the integral in (54) can be performed to give

J0
N+1 = Φ

( c + ε√
1 + d′Σ11d

)
= Φ

(
cN+1√

1 + d′N+1dN+1

)
= J0(cN+1,dN+1). (55)

For J1
N+1, a change of variable z = Σ

−1
2

11 y gives

J1
N+1 =

∫

RN

φ(z;0, I) φ(c + ε + d′N+1z) (z′Fz− ε)dz (56)

=
∫

RN

φ(z;0, I) φ(c + ε + d′N+1z) (z′Fz)dz− ε√
1 + d′N+1dN+1

φ
( cN+1√

1 + d′N+1dN+1

)
.

(57)

We now perform a second change of variable z = a + Pw, where

P = (I + dN+1d′N+1)−1/2, a = −(c + ε)P2dN+1.

This choice of P and a gives

(c + ε + d′N+1z)
2 + |z|2 = |w|2.

The determinant of the Jacobian is given by

det
∣∣∣∣
dz
dw

∣∣∣∣ = detP = (1 + d′N+1dN+1)−1/2,
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where we have used Schur’s formula: det(I + dN+1d′N+1) = 1 + d′N+1dN+1. Completing the

square in equation (56), we can simplify J1
N+1 to

J1
N+1 =

φ
(

c√
1+d′N+1dN+1

)

√
1 + d′N+1dN+1

(∫

RN

φ(w;0, I) (a + Pw)′F(a + Pw)dw − ε

)
.

Let W be a random variable with density φ(w;0, I), then

E[Wi] = 0, E[WiWj ] = δi,j , E[WiWjWk] = 0,

E[WiWjWkWl] = δi,jδk,l + δi,kδj,l + δi,lδj,k, E[WiWjWkWlWm] = 0.

Thus, with λ given in the text, we have

E(a + PW)′F(a + PW)− tr(F) = λ = λ(cN+1,dN+1),

and

J1
N+1 =

λ(cN+1,dN+1)√
1 + d′N+1dN+1

φ
( cN+1√

1 + d′N+1dN+1

)
= J1(cN+1,dN+1).

For J2
N+1, similar changes of variable give

J2
N+1 =

φ
(

cN+1√
1+d′N+1dN+1

)

√
1 + d′N+1dN+1

{
ε2E

[
c + ε + d′N+1(a + PW)

]

− 2εE
[
(c + ε + d′N+1(a + PW))((a + PW)′F(a + PW))

]

+ E
[
(c + ε + d′N+1(a + PW))((a + PW)′F(a + PW))2

]}
.

After tedious calculations of the above expectation, we get that J2
N+1 = J2(cN+1,dN+1) as in

Proposition 4.

For I0, notice that

I0 =
∫

RN

φ(y;0,Σ11)Φ
(
A(y + ν0Σ10) + ν0

√
Σx|y

)
dy

≈
∫

RN

φ(y;0,Σ11)Φ
(
(c + ε + ν0

√
Σx|y) + d′(y + ν0Σ10) + (y + ν0Σ10)′E(y + ν0Σ10)

)
dy

=
∫

RN

φ(y;0,Σ11)Φ
(
c0 + d′0y + y′Ey

)
dy.

Comparing the last equation with equation (50), we immediately get without any calculations

that

I0 ≈ J0(c0,d0) + J1(c0,d0)− 1
2
J2(c0,d0).
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Similarly, we get

Ik =
∫

RN

φ(y;0,Σ11)Φ
(
A(y + νkΣ11ek)

)
dy

≈
∫

RN

φ(y;0,Σ11)Φ
(
c + ε + d′(y + νkΣ11ek) + (y + νkΣ11ek)′E(y + νkΣ11ek)

)
dy

=
∫

RN

φ(y;0,Σ11)Φ
(
ck + d′ky + y′Ey

)
dy

≈ J0(ck,dk) + J1(ck,dk)− 1
2
J2(ck,dk).

Proof of Proposition 5:

By the definition of P,

P2 = (I + vv′)−1 = I− ψvv′,

where the last equality follows from the so-called updating formula (see, for example, Greene

2000). To see that I− θvv′ is the unique square root of P2, notice that I− θvv′ is symmetric,

and 2θ − θ2v′v = ψ, so

(I− θvv′)2 = I− (2θ − θ2v′v)vv′ = I− ψvv′.

The other equations now follow from brute-force computations.

Proof of Proposition 6:

Notice that

Π = e−rT

∫

RN

φ(y;0,Σ11)dy
∫ ∞

x(y)

(
eν0x+µ0 −

N∑

k=1

eνkyk+µk −K
)
φ(x; µx|y, Σx|y)dx.

Thus,

∂Π
∂s0

= e−rT ∂µ0

∂s0

∫

RN

φ(y;0,Σ11)dy
∫ ∞

x(y)
eν0x+µ0φ(x;µx|y,Σx|y)dx

− e−rT

∫

RN

φ(y;0,Σ11)
(
eν0x(y)+µ0 −

N∑

k=1

eνkyk+µk −K
)∂x(y)

∂s0
φ(x(y);µx|y, Σx|y)dy

=
∂µ0

∂s0
S0I0.

The other deltas and kappa can be proven similarly. The two special cases can be obtained by

using equations (38) and (39).
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B. Implementation of the second-order boundary approximation

While it is very straightforward to implement the second-order boundary approximation, an

efficient implementation which minimizes the computing time requires some effort. Below we

comment on some of the details of the actual implementation along with some useful tricks:

1. Σ−1
11 Σ10. Matrix inversion is a costly operation and should be avoided. Instead, we use

matrix division to find the solution z of Σ10 = Σ11z. Because Σ11 is positive definite and

symmetric, Cholesky factorization is useful in solving the linear system. Alternatively, one

could use Gaussian elimination. The quantity Σ−1
11 Σ10 is referred to in the computation

of Σx|y, d and many other places.

2. Σ
1
2
11. Notice that since Σ11 is positively definite and symmetric, an efficient algorithm to

compute its square root is through the similarity transformation Σ11 = Q′ΛQ, where Q

contains all the eigenvectors of Σ11 and Λ is a diagonal matrix containing all the corre-

sponding eigenvalues. Then the square root of Σ11 is given by Σ
1
2
11 = Q′Λ

1
2Q. Efficient

algorithm for performing similarity transformation of a positive definite and symmetric

matrix exists.

3. tr(F2). Once the matrix F is computed from equation (29), we can avoid computing F2

by computing tr(F2) as follows:

tr(F2) =
N∑

i=1

N∑

j=1

[
Fij

]2
.

The right-hand-side can be computed very efficiently by first taking the element-by-element

square of F and then taking the sum of all the elements. This is computationally more

efficient than computing the matrix F2 because the former involves N2 multiplications of

two real numbers while the latter involves N3 multiplications.

4. v′v, v′Fv and v′F2v. Define a (N + 2)×N matrix D as follows

D = (d0,d1, · · · ,dN ,dN+1)′.

Notice that we need to compute v′v, v′Fv and v′F2v for v = di for i = 0, 1, · · · , N + 1.

It is extremely useful to treat the scalers v′v, v′Fv and v′F2v as vectors, where the index

is for v ranging from d0 to dN+1. All the equations below should be interpreted this way.
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We use the following identities to compute the vectors v′v, v′Fv and v′F2v:

v′v = rowsum(D.2), (58)

v′Fv = diag(DFD′), (59)

v′F2v = rowsum((DF).2), (60)

where rowsum is the operator of taking the row sum of a matrix and A.2 stands for the

element-by-element square of a matrix A. Written out component-wise, we have

(di)′di =
N∑

j=1

(
Dij

)2
, (61)

(di)′Fdi = (DFD′)ii, (62)

(di)′F2di =
N∑

j=1

[
(DF)ij

]2
. (63)

Equations (61), (62) and (63) can be seen easily by noticing that F is symmetric.

5. Vectorization. It is very important to use vectorization technique in the actual imple-

mentation to avoid for-loops in the program and further improve the efficiency. This is

especially important when N is large. All the scaler quantities involving v, such as ψ(v),

θ(v), v′v, v′Fv, v′F2v, tr[(PFP)2], v′P2FP2v, and ‖PFP2v‖2 should be treated as

(N + 2)×1 vectors, where the index is on v ranging from d0 to dN+1. In particular, this

means that we should use equations (58), (59) and (60) instead of (61), (62) and (63).

Furthermore, λ(u,v), J0(u,v), J1(u,v) and J2(u,v) should be treated as (N + 2)×1 vec-

tors where u ranges from c0 to cN+1 and v ranges from d0 to dN+1. Equation (17) then

allows us to treat I as a (N + 2)×1 vector. In turn, the spread option price in equation

(16) is simply given by

Π = S0I0 −
N∑

k=1

SkIk −Ke−rT IN+1 = S′ I.

Despite its seemingly complexity, the second-order boundary approximation is very straight-

forward to implement and our code in MATLAB is only about 30 lines. The second-order

boundary approximation is also extremely fast and the computation of Σ
1
2
11 is actually where

more than half of the computing time is spent. For example, when N = 50, the second-order

boundary approximation needs less than 3×10−3 second to compute the price of one spread

option and the computation of Σ
1
2
11 takes about 1.8×10−3 second.
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Table 3
Prices of spread options on 20, 50 and 150 assets

This table reports the spread option prices of different methods when the numbers of assets are
20, 50 and 150. EK represents the extended Kirk approximation. SB represents the second-order
boundary approximation. CD represents Carmona and Durrleman’s method, using globally
convergent Newton-Raphson method to solve the set of nonlinear equations. MC represents
Monte Carlo simulation with 10,000,000 replications, whose standard error is in the order of
10−3 or 10−4. The time listed is the average computing time of one option price. The asterisk
on Carmona and Durrleman’s method indicates that the searching time for initial values is not
included.

Panel A: 20 assets

σ = 30% σ = 60%

K EK SB CD MC EK SB CD MC

0 15.1119 15.1132 15.1122 15.1133 23.9279 23.9394 23.9283 23.9395
5 12.1229 12.1243 12.1233 12.1243 21.3570 21.3684 21.3577 21.3685
10 9.5495 9.5509 9.5498 9.5509 19.0032 19.0144 19.0038 19.0146
15 7.3867 7.3881 7.3870 7.3880 16.8596 16.8706 16.8603 16.8708
20 5.6119 5.6132 5.6122 5.6131 14.9173 14.9280 14.9180 14.9282

Time(s) 0.00018 0.00069 0.57∗ 51.81

Panel B: 50 assets

σ = 30% σ = 60%

K EK SB CD MC EK SB CD MC

0 28.5062 28.5078 28.5070 28.5078 51.4195 51.4316 51.4211 51.4318
5 25.8944 25.8959 25.8952 25.8959 49.0466 49.0586 49.0482 49.0588
10 23.4514 23.4529 23.4522 23.4528 46.7603 46.7722 46.7620 46.7715
15 21.1754 21.1769 21.1761 21.1769 44.5593 44.5712 44.5611 44.5714
20 19.0633 19.0647 19.0641 19.0648 42.4423 42.4541 42.4442 42.4543

Time(s) 0.00021 0.0032 7.39∗ 136.24

Panel C: 150 assets

σ = 30% σ = 60%

K EK SB CD MC EK SB CD MC

0 74.6046 74.6062 74.6066 74.6044 143.8020 143.8143 143.8070 143.8268
5 72.1642 72.1657 72.1666 72.1640 141.5173 141.5296 141.5239 141.5421
10 69.7800 69.7815 69.7818 69.7818 139.2615 139.2737 139.2653 139.2741
15 67.4519 67.4534 67.4544 67.4537 137.0342 137.0464 137.0404 137.0589
20 65.1795 65.1810 65.1820 65.1811 134.8354 134.8477 134.8396 134.8601

Time(s) 0.00038 0.035 292.91∗ 452.10
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Table 4
Prices of spread options on S&P 500 and DJIA components

This table reports the spread option prices of different methods, where the options are written
between the S&P 500 index and the Dow Jones Industrial Average (DJIA) component stocks.
EK represents the extended Kirk approximation. SB represents the second-order boundary
approximation. CD represents Carmona and Durrleman’s method, using globally convergent
Newton-Raphson method to solve the set of nonlinear equations. MC represents Monte Carlo
simulation with 10,000,000 replications. Numbers in parenthesis are the standard errors. The
time listed is the average computing time of one option price. The asterisk on Carmona and
Durrleman’s method indicates that the searching time for initial values is not included.

T = 1/6 T = 1/3

K EK SB CD MC EK SB CD MC

0 49.7453 50.1471 50.1336 50.1464 53.5266 53.5267 53.4684 53.5260
(6×10−3) (8×10−3)

15 36.5853 37.2481 37.2276 37.2481 40.7162 41.9215 41.8499 41.9211
(5×10−3) (7×10−3)

30 24.9909 25.9129 24.8859 25.9125 30.2193 31.6552 31.5736 31.6558
(5×10−3) (6×10−3)

45 15.5874 16.6634 16.6329 16.6635 21.3773 22.9449 22.8581 22.9449
(4×10−3) (5×10−3)

60 8.7325 9.7825 9.7531 9.7820 14.3348 15.9007 15.8156 15.9045
(3×10−3) (4×10−3)

75 4.3312 5.1864 5.1628 5.1866 9.0686 10.4988 10.4218 10.5013
(2×10−3) (3×10−3)

90 1.8802 2.4619 2.4457 2.4622 5.3921 6.5866 6.5227 6.5874
(1×10−3) (2×10−3)

Time(s) 0.00019 0.0013 1.71∗ 82.83
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Table 5
Prices of spread options on S&P SmallCap 600 and DIJA components

This table reports the spread option prices of different methods, where the options are written
between the S&P SmallCap 600 index and the Dow Jones Industrial Average (DJIA) component
stocks. EK represents the extended Kirk approximation. SB represents the second-order bound-
ary approximation. CD represents Carmona and Durrleman’s method, using globally convergent
Newton-Raphson method to solve the set of nonlinear equations. MC represents Monte Carlo
simulation with 10,000,000 replications. Numbers in parenthesis are the standard errors. The
time listed is the average computing time of one option price. The asterisk on Carmona and
Durrleman’s method indicates that the searching time for initial values is not included.

T = 1/6 T = 1/3

K EK SB CD MC EK SB CD MC

0 46.7497 47.0864 47.0697 47.0878 61.0999 61.6068 61.5581 61.6163
(8×10−3) (1×10−2)

30 31.1304 31.4923 31.4754 31.4994 45.8508 46.3877 46.3389 46.3960
(7×10−3) (9×10−3)

60 19.4500 19.7945 19.7799 19.7963 33.3758 33.9092 33.8627 33.9161
(5×10−3) (8×10−3)

90 11.3518 11.6436 11.6315 11.6475 23.5374 24.0361 23.9946 24.0426
(3×10−3) (6×10−3)

120 6.1692 6.3901 6.3811 6.3914 16.0680 16.5082 16.4726 16.5094
(6×10−3) (4×10−3)

150 3.1157 3.2657 3.2599 3.2668 10.6130 10.9806 10.9517 10.9851
(1×10−3) (3×10−3)

180 1.4610 1.5529 1.5494 1.5535 6.7817 7.0730 7.0511 7.0735
(7×10−4) (2×10−3)

Time(s) 0.00019 0.0013 1.71∗ 82.83
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