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ABSTRACT 
 

Cooper showed how a filter method could be used to predict equity returns for 
the next week by using information about returns and volume for the two 
previous weeks. Cooper's method may be regarded as a crude method of Machine 
Learning. Over the last 20 years Machine Learning has been successfully applied 
to the modeling of large data sets, often containing a lot of noise, in many 
different fields. When applying the technique it is important to fit it to the 
specific problem under consideration. We have designed and applied to Cooper's 
problem a practical new method of Machine Learning, appropriate to the 
problem, that is based on a modification of the well-known kernel regression 
method. We call it the Prototype Kernel Regression method (PKR). In both the 
period 1978-1993 studied by Cooper, and the period 1994-2004, the PKR method 
leads to a clear profit improvement compared to Cooper's approach. In all of 48 
different cases studied, the period pre-cost average return is larger for the PKR 
method than Cooper's method, on average 37% higher, and that margin would 
increase as costs were taken into account. Our method aims to minimize the 
danger of data snooping, and it could plausibly have been applied in 1994 or 
earlier. There may be a lesson here for proponents of the Efficient Market 
Hypothesis in the form that states that profitable prediction of equity returns is 
impossible except by chance. It is not enough for them to show that the profits 
from an anomaly-based trading scheme disappear after costs. The proponents 
should also consider what would have been plausible applications of more 
sophisticated Machine Learning techniques before dismissing evidence against 
the EMH. 
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1. INTRODUCTION 

In the past studies have discovered a considerable number of 'anomalies' that suggest 

that stock returns are predictable by using information available at the time the stock is 

bought. Moreover the many people in the investment industry that manage active equity 

portfolios must believe that stock returns are to some extent predictable. Yet there are 

many others, particularly in the academic community, who believe that the evidence of 

predictability is completely or largely spurious and/or irrelevant, using arguments such as 

z The profit resulting from any practical method of using the supposed 

predictability will disappear after taking account of trading and information 

costs; 

z Results supporting the existence of predictability were obtained after simulating 

past returns based on a large set of possible anomalies and reporting only those 

few that by chance showed high returns, i.e. they are due to snooping; 

z Even if precautions to minimize snooping had been taken, market conditions 

might change in the future so that the anomaly disappears. 

All these questions merit serious consideration, and we must accept that there will 

never be definitive answers one way or the other. However, many of the doubters about 

the existence of predictability seem to exhibit an almost religious fervor [Lo and 

Mackinlay 1999] rather than approaching the problem as a dispassionate scientist should. 

They concentrate exclusively on objections to the studies that suggest predictability, 

without making any attempt to determine whether the methods of the studies might have 

been legitimately improved to produce even stronger evidence for predictability. 



It is from this point of view that we examine the work of Cooper [Cooper 1999], in 

particular Section 3 devoted to a real-time simulation of filter strategies to predict one-

week stock returns based on price and volume data for the previous two weeks. We 

observe that Cooper's implicit method of return prediction may be regarded as a primitive 

application of the principles of Machine Learning (ML see for instance [Hastie, 

Tibshirani, and Friedman 2003�Mitchell 1997]). We propose and apply to this case a 

new variant of a ML method (called the PKR method) designed specially for the problem 

at hand. Our work strongly suggests that the return predictability of Cooper's method 

could have been increased by the use of ML. It is of interest to note that what we have 

done could have been done years ago by someone who had the requisite contemporary 

knowledge of ML and financial economics. 

We note that we and other authors are interested only in measuring the accuracy of 

significantly high or low return predictions, since the accurate prediction of roughly 

average returns does not appear to have much economic value. That is what we take the 

term 'return predictability' to mean throughout this report. 

To obtain a measure of the value of his return predictions Cooper formed weekly a 

portfolio of stocks chosen using those predictions. Following Cooper and the precepts of 

ML, we do our best to mitigate the dangers of snooping. Over a period of many weeks the 

measure of predictability is given by the performance of the portfolio, such as average 

return, volatility, etc. Since our aim is to compare the return predictability of Cooper's 

method with our ML method, we have used a different, simpler way of forming 

portfolios, because Cooper's portfolio construction method is difficult to apply to our 

predicted returns. As a result any differences in portfolio performance that we report are 



due entirely to differences between the two return prediction methods. We show that 

portfolio returns over a long period would have been consistently higher for the new 

method as compared to Cooper's (implicit) method. Implications for the Efficient Market 

Hypothesis [Fama 1970] are discussed. 

Section 2 describes the general framework of machine learning that we use to develop 

a stock return prediction system, and its application in the style of Cooper and in the new 

PKR form. Section 3 explains the common portfolio construction scheme used to 

evaluate both methods of return prediction, and compares results for the two cases. 

Section 4 concludes with a discussion.  

 

2. MACHINE LEARNING AND RETURN PREDICTION 

2.1. BASIC STRUCTURE 

We assume that trading days (when the market is open) are divided into 'weeks' of 

five days labelled by the index t. Our task is to find the predicted return RP(j,t) of each 

stock j  in the set (universe) of stocks that we choose for week t, given only information 

 available at the start of  the week. The process that we (or any investment manager) 

use may be formally written as 

tΦ

 ( , ) ( , ),tRP j t GP j= Φ  (1)

where GP describes the procedure, mathematical or otherwise, that transforms the data 

into a prediction. 



Cooper [Cooper 1999], and many other writers on anomalies, implicitly assume that 

the information used to construct RP(j,t) is a function of a small number M of predictors  

P(i,j,t), i=1,...,M, so that we write 

 ( , ) ( ( , ), ),RP j t G P j t t=  (2)

 
where P(j,t) is a vector with components P(i,j,t), i=1,...,M. 

We stress that the above framework assumes that the predicted return of stock j 

depends only on the predictors associated with that stock, and that the prediction function 

for stock j is independent of j apart from the dependence on P(j,t). In principle both these 

assumptions could be relaxed. 

There remain two key decisions to be made. 

z What choice to make for the predictors? 

z How to find the function G(X,t)? 

2.2. PREDICTORS 

We follow Cooper [Cooper 1999] in the choice of predictors and define them as: 

z Predictor 1   P(1,j,t) = the return of stock j for the week t-1. Note that we do not 

include a lag day. 

z Predictor 2   P(2,j,t) = the return of stock j for the week t-2 

z Predictor 3  P(3,j,t) = volume value ratio defined as 1
1 2

V V
V V

2−
+

, where V1, V2 are 

the values of the volume for stock j for weeks t-1, t-2. Note that this is a 



transformation of Cooper's volume value ratio that leads to a more symmetric 

distribution of values.   

We also provide results for the six subsets of these predictors, i.e. one at a time and 

two at a time. 

2.3. PREDICTION FUNCTION 

The prediction function G(X,t) at any given time t is found by a process known as 

'learning'. The information used by the learning process is contained in samples             

, where R(j,k) is the actual return for stock j in week k. When 

determining G(X,t), the learning process may use information in any samples such that 

both the predictor vector P(j,k) and the return R(j,k) are known at time t, so that we 

require k < t. We define SPRED(t) to be the set of samples chosen for use in the learning 

process at time t.     

( , ) { ( , ), ( , )}S j k P j k R j k=

In essence the idea is to find the acceptable function G(X,t)  that comes closest to 

satisfying the relation 

 ( ( , ), )) ( , )G P j k t R j k=  (3)

        

for all samples S(j, k) that we decide to use in the learning process at time t, i.e. the set 

SPRED(t).  

From now on we assume (as applies to the predictors above) that the variable X lies in 

a continuous range of values (i.e. it is not categorical) and that the ideal G(X,t) is a 

smooth function of X. In the sense used above 'acceptable' means that G(X,t) does not 

have rapid short range fluctuations, in addition to the smoothness condition. 



A standard approach is to choose a family of possible forms for the prediction 

function, GFAM(X,t,W), where  { ( ), 1, , }W W i i MW= = L  is a vector of MW parameters 

W(i) that specify the function. The problem of finding G(X,t) is reduced to the question of 

finding the particular parameter vector W so that GFAM(X,t,W) is the acceptable function 

of X that is nearest to satisfying   

  ( ( , ), , ) ( , )GFAM P j k t W R j k= , (4)

for all  j, k  with S(j, k) in SPRED(t).    

This problem, a key part of ML, is the subject of the branch of mathematics known as 

Approximation Theory [Cheney 2000].  

2.4. COOPER'S METHOD 

To find the return prediction function for week t Cooper first, for each predictor, 

divides into deciles the historical distribution of predictor values for a previous period 

that includes all the stocks and  weeks corresponding to the samples in SPRED(t). Using 

the decile boundary values, the three-dimensional space of predictor values is partitioned 

into 1000 cells, with each cell corresponding to a choice of three decile numbers. Let us 

call the cells CL(i), i = 1, ... ,1000. The treatment is analogous for cases with one or two 

predictors.   

We define RCL(t,i) to be the average of the one-week returns of all stocks in cell 

CL(i) in the weeks in the above period. Effectively, although he does not state it 

explicitly, Cooper assumes that the predicted return of stock j for week t is 

 ( , ) ( , )RP j t RCL t ia= , (5)



where , i.e. label of the cell that contains the predictor vector P(j,t).  ( ( , ))ia LAB P j t=

Note that this means that Cooper's version of the prediction function G(X,t) is 

piecewise constant in the 3-dimensional predictor space with coordinate X. Filter methods 

used by other authors may be interpreted in the same way as we have done for Cooper's. 

This result may be derived in the general framework described above. Thus we 

choose the family of prediction functions to be 

 1000

1

( , ) ( , , ) ( ) ( , )
i

G X t GFAM X t W W i STP X i
=

= = ×∑ , (6)

where the step function STP is defined as 

 1: if ( )
( , ) ,

0 : otherwise
i LAB X

STP X i
=⎧

= ⎨
⎩

(7)

If we choose  

( ) ( , )W i RCL t i= , i=1, ... , 1000 

we obtain a result equivalent to (4). It may be shown that this choice of W minimizes the 

mean square error between the two sides of (4). 

2.5. PKR METHOD 

When designing a ML method we must consider the character of the data contained 

in the samples SPRED(t), and also how we intend to use the prediction function G(X,t). 

We note the following points. 

z The sample set that Cooper used for learning contained 300 stocks for say 50 

weeks/year over 15 years, for a total of about 225,000 samples; 



z In contrast to Cooper we would like to extend the data set on a weekly basis so 

that the prediction takes account of the latest available data. The method for 

computing G(X,t) should be designed so that the total time for computations is 

acceptably low; 

z Compared to most applications of ML the data is noisy. The distribution of the 

values of R(j,k) corresponding to a neighbourhood of predictor space is wide; 

z The density of samples in predictor space is high for moderate values of the 

predictors but low for extreme values. Note that the density of samples can be 

changed by transforming the predictor variables; 

z We expect that the more extreme values of G(X,t) that we desire will occur 

where the sample density is lower. 

Apart from the constraint on computing time, the kernel regression method [Hardle 

1990�Wand 1994] is a good candidate for the process to use to find G(X,t).  In that 

method the prediction function is given by 

 
,

1( , ) ( , ( , )) ( , ),

( , ) ( ) and ( , ) ( ),
j k

GKR X t K X P j k R j k
WKR

S j k SPRED t P j k NBD X

= ×

∈ ∈

∑
(8)

where the kernel is often chosen as ( , )K X Y
2( )X Ye μ⎡ ⎤− −⎣ ⎦ , and the weight WKR is 

 
,

( , ), ( , ) ( ) and ( , ) ( ),
j k

WKR K X Y S j k SPRED t P j k NBD X= ∈ ∈∑  (9)

Here we have defined   to be a suitable neighbourhood of the point X. ( )NBD X



The effect of the kernel regression method is to approximate the return at a point X in 

predictor space by an average of the returns for nearby samples, weighted to emphasize 

the nearest samples. The averaging tends to reduce the noise in the sample returns. This 

method produces a result that is smooth in X, in contrast to the cell method used by 

Cooper. In addition  the kernel regression method will lead to return predictions in low 

density regions of predictor space that are not dominated by sample returns in high 

density regions, in contrast to global methods such as neural networks.  

The drawback to the kernel regression method in the present application is the time 

taken to perform the computations if we make predictions every week using the latest 

data. To reduce computing time by a large factor without losing much accuracy, we have 

designed a modified kernel regression method that we call the Prototype Kernel 

Regression method (PKR). The steps in the PKR method are 

z Choice of prototype points  

We choose a set of points called prototypes Q(i), i=1,...,MP, distributed through 

predictor space, where MP is much smaller than the number of samples in 

SPRED(t). The prototypes are fixed for many weeks. In the current application 

we chose to place the prototype points on a regular rectangular grid; 

z Estimate return at the prototype points 

We use the standard kernel regression method to estimate the predicted return at 

the prototype points. For the neighbourhoods we chose the cells in the grid that 

have the prototype point as a corner. The calculations involved change from 

week to week, but those for one week differ little from those for the next week, 



and we save a lot of time by using a recursive operation to take advantage of 

this structure; 

z Estimate the return at the sample points each week   

To find the predicted return at each sample point for a given week (300 points in 

the case of Cooper) we apply the kernel regression method where we take the 

values at the prototype points as input samples. The neighbourhood contains the 

corners of the cell that includes the sample predictor vector.    

3. PORTFOLIO CONSTRUCTION AND RESULTS 

In order to evaluate the accuracy of the stock returns predicted by his method, Cooper 

[Cooper 1999] constructs portfolios of groups of stocks, with a group consisting of an 

equally weighted combination of all the stocks in a given cell. Since the choice of cell 

boundaries is arbitrary and not likely to be of real significance in predicting returns, 

Cooper's approach is open to question. Moreover, our PKR method does not involve 

cells, so that it is not clear how to apply Cooper's method.  

Consequently we have used a simple alternative portfolio formation scheme to 

evaluate the return predictability of both methods. Each week we form a neutral portfolio 

consisting of N stocks long and N stocks short. The long (short) stocks are those with 

highest (lowest) predicted return. Each stock has equal weight (except when there are 

several stocks tied for last place, when all those stocks are chosen with equal reduced 

weight). The returns of these portfolios are what we study. 

3.1. DATA 



The study covers the period 1963 - 2004. The stock universe is revised monthly. It 

consists of the 300 NYSE and AMEX stocks from the CRSP database that have the 

largest market capitalization. In all 504 different stocks were chosen.   

3.2. PROCEDURE 

The universe that applies to any given week of five trading days is the latest of those 

chosen above with a date earlier than the first day of the week. In a given week we omit 

any stock that has missing volume information for any of the previous ten days.  

For the set of samples SPRED(t) used for learning in week t we choose all samples 

relating to weeks prior to week t. Thus the set of samples continually increases in size, 

but always includes the most recent available samples. We choose stocks as described 

above and calculate neutral portfolio weekly return as a percent of the amount invested 

long each week. 

3.3. RESULTS 

We generate results for several cases specified by the following parameters. 

z Choice of return prediction method: 

CF - our version of Cooper's filter method; 

PKR - our method of machine learning; 

z Choice of number of stocks: 

The number of stocks N in long and short portfolios. Choose N = 5,10,...,50; 

z Choice of predictors: 

 Any of 7 possible choices from the three predictors.  



For each combination of the above choices we calculate portfolio statistics (average 

weekly return before any costs and standard deviation) for the periods 1964 - 1977, 1978 

- 1993, 1994 - 2004. We chose the middle period 1978 - 1993 because that was the one 

Cooper used for his tests. 

In Table 1 we provide results for the values N = 5, 10, 15, 20, which are of most 

interest. Some features of these results are as follows. 

 

Table 1.   Percentage weekly returns of portfolios formed using return predictions by the  PKR and 
CF methods. 

 
Neutral portfolios are formed with N equally weighted stocks long (short) chosen on the basis of the highest 
(lowest) predicted returns. For each of the three indicated periods this is done using 7 combinations of the 
three predictors. The table shows the average and standard deviation of the weekly portfolio percentage 
returns for the two prediction methods PKR and CF.  

 
(a) 

1964 -1977   Predictors 
   1 2 3 1+3 2+3 1+2 1+2+3
N=5 Av Ret  PKR 1.32 0.51 0.15 1.19 0.54 1.57 1.21 
  CF 0.94 0.36 0.15 0.84 0.48 1.30 0.73 
 SD  PKR 3.04 2.81 2.36 2.88 2.87 3.18 3.17 
  CF 1.73 1.76 1.11 2.32 2.55 2.64 2.92 
          
N=10 Av Ret PKR 1.22 0.54 0.13 1.17 0.50 1.30 1.09 
  CF 0.89 0.37 0.15 0.81 0.42 1.14 0.63 
 SD PKR 2.20 2.06 1.71 2.08 2.11 2.31 2.16 
  CF 1.52 1.56 1.10 1.73 1.96 2.10 2.09 
          
N=15 Av Ret PKR 1.09 0.48 0.12 0.99 0.52 1.17 1.01 
  CF 0.83 0.38 0.15 0.77 0.40 1.03 0.61 
 SD PKR 1.79 1.84 1.41 1.75 1.82 1.96 1.85 
  CF 1.39 1.43 1.08 1.49 1.71 1.76 1.70 
          
N=20 Av Ret PKR 1.00 0.47 0.08 0.92 0.45 1.07 0.98 
  CF 0.78 0.39 0.15 0.73 0.40 0.96 0.59 
 SD PKR 1.59 1.64 1.23 1.55 1.67 1.73 1.63 
  CF 1.27 1.34 1.05 1.34 1.57 1.58 1.48 

 
 
 



Table 1 
(continued) 

(b) 
1978 -1993   Predictors 
   1 2 3 1+3 2+3 1+2 1+2+3
N=5 Av Ret PKR 1.47 0.36 0.07 1.55 0.17 1.36 1.39 
  CF 0.92 0.21 0.02 1.05 0.45 1.15 0.89 
 SD PKR 3.56 3.11 2.45 3.25 3.06 3.59 3.28 
  CF 2.10 1.93 1.21 2.80 2.61 2.90 2.77 
          
N=10 Av Ret PKR 1.28 0.27 0.05 1.21 0.20 1.15 1.14 
  CF 0.82 0.22 0.02 0.93 0.34 0.91 0.80 
 SD PKR 2.65 2.41 1.71 2.36 2.31 2.67 2.48 
  CF 1.77 1.77 1.18 2.16 2.03 2.22 2.07 
          
N=15 Av Ret PKR 1.10 0.23 0.09 1.07 0.26 0.96 0.99 
  CF 0.73 0.22 0.03 0.83 0.30 0.77 0.67 
 SD PKR 2.20 2.08 1.44 1.94 1.98 2.22 2.10 
  CF 1.58 1.63 1.13 1.80 1.73 1.87 1.79 
          
N=20 Av Ret PKR 1.00 0.22 0.08 0.92 0.27 0.82 0.90 
  CF 0.66 0.22 0.03 0.74 0.26 0.72 0.55 
 SD PKR 1.95 1.86 1.29 1.75 1.80 2.00 1.81 
  CF 1.44 1.56 1.08 1.60 1.56 1.64 1.54 

 
(c) 

1994 -2004   Predictors 
   1 2 3 1+3 2+3 1+2 1+2+3
N=5 Av Ret PKR 0.85 0.09 -0.06 1.16 0.37 1.22 1.21 
  CF 0.67 0.34 -0.04 1.03 0.57 0.98 0.81 
 SD PKR 5.35 5.04 3.69 5.48 5.13 5.66 5.88 
  CF 3.08 2.85 2.88 4.65 4.02 4.87 5.10 
          
N=10 Av Ret PKR 0.88 0.19 -0.09 1.17 0.41 1.17 1.21 
  CF 0.66 0.35 0.01 0.87 0.52 0.91 0.81 
 SD PKR 4.41 4.49 2.80 4.53 4.90 4.50 4.62 
  CF 2.99 2.77 2.43 3.79 3.33 4.31 4.28 
          
N=15 Av Ret PKR 0.94 0.23 -0.06 1.13 0.32 1.00 1.03 
  CF 0.63 0.35 0.01 0.75 0.40 0.87 0.83 
 SD PKR 4.14 3.80 2.46 4.20 3.73 4.29 4.22 
  CF 2.89 2.67 2.13 3.40 2.93 3.91 3.78 
          
N=20 Av Ret PKR 0.89 0.33 -0.04 0.97 0.28 0.87 0.95 
  CF 0.60 0.34 0.00 0.69 0.34 0.81 0.77 
 SD PKR 3.82 3.56 2.23 3.86 3.53 3.97 3.98 
  CF 2.79 2.58 1.91 3.18 2.82 3.66 3.45 

 
 



1. On their own Predictors 2 and 3, the return for the week two weeks before the 

holding week and the volume ratio, have little power for all periods and numbers of 

stocks whether we use the PKR or the CF prediction method. Not surprisingly the same 

goes for the combination of predictors 2 and 3. In the subsequent discussion we shall 

concentrate on the four remaining combinations of predictors that are used to construct 

portfolios, i.e. Combinations 1, 1+2, 1+3, 1+2+3. 

2. The average weekly returns for all periods, numbers of stocks, and four predictor 

combinations, and methods, 96 in total, are positive.  

3.  In all cases out of 48 the average return for the PKR method is greater than that for 

the CF method. The average margin of one over the other is 37.0%.  

4.  The average margin of the ratio avRet/sd for the 48 cases is 13.0% in favor of the 

PKR method, but that ratio has little meaning until costs are included. 

5. The choice of the predictor combinations that leads to the highest average return 

for given period and N varies over the 12 cases, as shown in Table 2. Note that the high 

return combinations change from period to period. Also note that, apart from the period 

64 - 77, the combination with the highest return for a given period and N changes from 

PKR to CF, but often other combinations have a return that is little different from the 

highest. 

 

 

 



Table 2.  Distribution of highest portfolio returns by predictor combination. 
 

For the 12 cases corresponding to 3 periods and 4 values of N (number of stocks) listed in Table 1, the table 
shows how many times a particular combination of predictors has highest average weekly return.  

 

Predictor combination 1 2 3 1+3 2+3 1+2 1+2+3 

No. of cases PKR 3 0 0 3 0 5 1 

 CF 0 0 0 4 0 8 0 

 

6. Generally, in the PKR case for a given period and choice of predictor combination, 

the average return increases steadily as N decreases from 50. Four cases are exceptional 

in Period 94 - 04, where with Combinations 1, 1+3 and 1+2+3 the return decreases for N 

= 5, and similarly Combination 1 for N = 10. See Figure 1 where results for the three high 

return combinations are plotted.      

 
Figure 1.  Weekly average return plotted against N (number of stocks) and period for the four most 

important predictor combinations. 
1964- 1977
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1978- 1993
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4. DISCUSSION 

4.1. PROFITABILITY AND COSTS 

Our results provide strong support the view that four combinations of the three 

predictors have pre-cost predictive power in all three periods studied, whether we use the 

Cooper method of prediction or our new PKR method. Without exception the PKR 

method produces higher average pre-cost returns, on average 37% higher. This number 

could be substantially higher if costs were subtracted from each return at the same rate 



before making the comparison. There will be a range of cost levels where the PKR 

method would make a profit but the CF method a loss.  

The fact that, for a given period and combination of predictors, the PKR average 

return generally increases steadily as the number of stocks N decreases, reinforces the 

view that the PKR method produces meaningful predictability. If our ranking of predicted 

stock returns was accurate then this behavior would be observed. The two exceptions to 

the general trend occur at low N in the period 1994 - 2004 and may be attributable to the 

higher noise level in that period and for lower N. 

4.2. EFFICIENT MARKET HYPOTHESIS 

The Efficient Market Hypothesis (EMH) comes in several flavors. In terms of 

practical applicability Malkiel [Malkiel 2003] expresses a widespread view that 

"Evidence is overwhelming that no anomalous behavior of stock prices creates a 

portfolio trading opportunity that enables investors to earn extraordinary risk adjusted 

returns." 

Supporters of this view would argue that Cooper's work does not contradict this form 

of the EMH because the costs would wipe out any economic profit indicated by his 

results.  

Without reliable information as to what the costs would have been it is impossible 

come to a definitive conclusion. However, it is reasonable to suppose that the costs for 

Cooper's method and our PKR method would have been similar. We have provided 

strong evidence that pre-cost returns from our method are significantly higher than those 



of Cooper's method. This means that the proponents of the EMH now have to 

demonstrate the existence of a higher level of realistic costs than was required to show 

that Cooper's results were inconsistent with the EMH. The cost hurdle for EMH 

advocates has been raised. It is quite likely that the same applies to other anomalies 

previously studied, in that improved methods of Machine Learning might well improve 

their pre-cost returns.      

4.3. CHOICE OF PREDICTOR COMBINATIONS 

Cooper discusses the case when an investor forms weekly portfolios during the period 

1978 - 1993 using information available at the time that may go back as far as 1963. 

Cooper's portfolio construction method differs from ours, but roughly, in our context, the 

procedure would be to use at any time a subset of the four useful predictor combinations 

to form the current portfolio. That subset could be chosen on the basis of what worked 

best in the past 15 years. Our results show that the choice would change from time to 

time. In this report we have not attempted to study how best to make this choice, but the 

general problem is of great importance to investment managers. 
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