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Abstract

This paper considers a model for exogenous coalition formation in e-marketplaces. Using the

informational advantage e-retailer creates coalitions of customers based on geographical prox-

imity. Most of the literature regards this process as endogenous: a coalition leader bundles

eventual purchases together in order to obtain a better bargaining position. In contrast - and

in response to what is being observed in business practice - we analyse a situation in which an

existing e-retailer exogenously forms customers’ coalitions. Results of this study are highly en-

couraging. Namely, we demonstrate that even under highly imperfect warehouse management

schemes leading to contagion effects, suggested combined delivery service may offer significant

efficiency gains as well as opportunities for Pareto-improvement.
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1 Introduction

Over the last decade, electronic marketplaces have witnessed considerable growth and development

in terms of both volume and value. However, in spite of the very diverse contributions from the

scientific world on the obvious opportunities of virtual marketplaces, those used in practice are

still usually very simple (cfr. Tsvetovat, Sycara, Chen and Ying (2000)). Although current

efficiency and low costs of communication offer numerous possibilities for economic agents to meet

and cooperate, companies and services enabling such collaboration remain still on a relatively

sophisticated and, thus, rare level. Few examples include Ag Guild from Chicago,1 US Iowa-

based E-Markets2 or Accompany.com and Mercata.dcom 3 as well as Aerogistics.com 4. A related

theoretical literature has focused mainly on the opportunities for volume discount, essentially

proving that in terms of business practice there is room for an additional intermediary. Internet

has turned this intermediary into a virtual marketplace, where perhaps contributors (depending

on mechanism design) are able to appropriate all the benefits.

In this paper, we consider the coalition formation problem in e-marketplaces from a different

perspective. We study whether the orders of different customers from the same geographical

location (e.g. ZIP code) could be pooled together and generate savings on shipment cost under

highly demanding assumptions of imperfect warehouse management system as well as contagion

effects due to delivery defaults. Based on an informational advantage seller has over the buyers, it

may exogenously form coalitions of orders (not buyers), creating room for shipment cost reductions.

We demonstrate that combining orders can be beneficial to the e-retailers even when potential

savings are redistributed to customers and such a strategy leads to a general Pareto improvement.

The proposed mechanism is not only able to increase profits in the long-run but contributes to

other meta-objectives (e.g. price comparative advantage, enlargement of the potential customer

base and increased loyalty of current clients).

Our setting differs considerably from the ones analysed in the literature. The key idea behind

our approach is to allow the seller use the informational advantage it has over the dispersed clients,

to partially or fully control the coalition formation process. This contrasts with, say, the case of Ag

Guild, where orders are created spontaneously. Moreover, the benefits from coalition formation in
1Ag Guild is a corporation founded by 35 farmers, with an average of 150 acres land each. Every producer

pledges ten percent of his or her output to the management of the guild which specializes in organizing production

and marketing of corn and soybean crops. The guild buys production inputs and sells final products. Companies

which buy and process agriculture find it easier to negotiate with one large seller than with 35 smaller farmers.

Similarly, the guild, as a buyer of production inputs, has the power to negotiate better prices by aggregating

demand. Farmers can pool orders via the Internet. The first farmer specifies the type of product he wants to buy,

e.g., seed, and how long the order may be open. Then other farmers can add their names to the list. Cfr. Robinson

(2000)
2The leader in agricultural-based e-commerce, serving more than 14,000 agrifood companies, grain elevators, and

producers. Cfr. Robinson (2000)
3They allow potential purchasers to form buying coalitions, and offer volume discounts on the size of the group.
4It allows manufacturers of aerospace components to form consortia to bid for larger contracts.
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our setting will come solely from shipment cost reductions (combined shipment discount) - while

we do not neglect potential volume discounts, they are not modeled in the paper.

The motivation for such choice is that literature has convincingly demonstrated that volume

discount is a mechanism fostering coalition formation. Nonetheless, taking a longer term per-

spective, a forum where buyers can pool their orders and who profit from volume discounts is

essentially an intermediary and will develop into a retailer over time. With repeated activities

and the emergence of some operation costs (as well as taxes!) it becomes - in effect - a regular

shop. In other words, the examples literature quotes demonstrate that there is room for one

more intermediary in the purchasing process by using informational advantages to obtain a vol-

ume discount. Conversely, this paper attempts to demonstrate that even without volume discount

combined shipment guarantees Pareto improvements even under quite demanding assumptions.

The remainder of this paper is structured as follows. Section 2 presents a literature review

focusing on contributions to coalition formation in e-marketplaces. In Section 3, we present the

design of the model, including both the buyer decision and exogenous coalition formation mech-

anisms. Based on this framework Section 4 presents the simulation setting and parametrisation

assumptions, while Section 5 presents simulation results and Section 6 offers a discussion of model

sensitivity to parametrisation. Finally, in Section 8, we conclude with some insights into future

research directions.

2 Literature review and motivation

Coalition formation has been an subject of extensive game theoretic research for years (e.g. Moulin

(1988), Osborne and Rubinstein (1999) and Bloch (1996)).5 It also became of interest in the

emerging Multi-Agent System (MAS) literature with the works of Shehory and Kraus (1996) and

Yamamoto and Sycara (2001). However, only a limited number of papers have been published on

coalition formation in e-marketplaces.6

Yamamoto and Sycara (2001) propose a buyer coalition formation scheme, GroupBuyAuction,

which enables a large number of buyers who want to buy a certain good or a type of a good to form

coalitions. In this setting, each buyer specifies a set of (substitutable) goods, one of which he would

be willing to purchase, together with their reservation prices. Based on this information the leader

of the auction group divides all buyers into coalitions in such a way that each coalition purchases

a desired quantity of a particular good profiting from any volume discounts; the resulting surplus

is distributed in a stable way between participating buyers. In reality it seems unlikely that such

a mechanism could grow in popularity, mainly due to the costs incurred by the leader of the group

and the issue of trust.
5See (Moulin 1995) for review of the coalition formation literature.
6He and Ioerger (2000) provides an excellent but general survey and analysis of the state-of-the-art agent-mediated

e-commerce.
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Li, Chawala, Rajan and Sycara (2003) extend this work, discussing the desired mechanism

properties of coalition formation in an e-marketplace from the perspective of cooperative and

non-cooperative game theory. These desirable properties include stability (being in the core)

and incentive compatibility with good efficiency. Li and Sycara (2002) discuss algorithms of

coalition formation in combinatorial auctions analyzing a setting where each buyer places a bid

on a combination of items with a reservation cost, and sellers offer price discounts based on the

volume of each item. Finally, Tsvetovat et al. (2000) also considers the creation of spontaneous

coalitions of similar-minded customers coming together to procure goods at a volume discount

(“buying clubs”as in the Ag Guild example). This study focuses on the economic incentives for

the creation of such groups and present a flexible test-bed system that could be used to implement

and test coalition formation and multilateral negotiation protocols.

We take a different perspective on coalition formation in e-marketplaces. Namely, we study

how an e-retailer could increase profits and/or achieve other objectives by pooling together orders

of customers from the same geographical location. Thus, we acknowledge an informational ad-

vantage for the retailer concerning the geographical distribution of the purchases. This advantage

provides the basis for inducing coalition formation exogenously among the customers. The role

of the e-retailer in our paper in some cases may resemble to some extent the role of the leader in

(Yamamoto and Sycara 2001), because e-retailer divides clients into coalitions. However, in our

model, depending on the strategy chosen, clients can (but do not have to) know that their orders

were pooled together.

The distinction between volume discount and combined shipment discount we introduce is

actually quite significant. The first concept concerns economies of scale irrespectively of shipment,

while the latter refers to the lowering of transportation costs. Note that a coalition of producers in

the Ag Guild case takes advantage of economies of scale both in volume (the volume discount) and

shipment (the combined shipment discount).7 Why should one focus on perceived as potentially

smaller combined shipment discount instead of perceived as potentially bigger volume discount?

The practice of retailers and e-retailers seems to suggest that actually the former does not

provide sources for long-term comparative advantage in the e-economy. In fact, both retailers and

e-retailers seek to emphasise arguable product differentiation by competing on the full range of

marketing variables within their power to determine. These include, in addition to price structures

and levels, variables such as: the products assortment; branding and promotion, store outlet

or website design, warranties, payment securities, delivery options, loyalty campaigns and other

relationship marketing techniques, after-sales services, product upgrades, etc. Brynjolfsson and

Smith (2000) suggest that previous experience (i.e. reliability) is especially important as they

find that customers are willing to pay premium prices for books from online retailers that they
7Accompany offered only volume discounts. We should stress that in this paper by volume discount we mean

volume discount offered to an organized group of clients and not to a single client. We acknowledge that volume

discount can be offered to a single client with a sufficiently big order but we will disregard such a strategy of a

retailer in this paper.
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have dealt with previously. In economic terms, these efforts aim to enable retailers to gain some

monopolistic power and so increase their profit margins. To this end, the study of Pan, Ratchford

and Shankar (2002) on the example of 105 online retailers found that price dispersion is still

considerable and persistent. Consequently, e-markets seem to be quite similar to other types of

commerce, by avoiding profit-destroying competition, especially competitive pricing. In contrast,

shipment discounts does not affect the profit margin of e-retailer, as in most of the cases shipment

service is provided externally to the retailer and charged separately to the customer.

With intensifying competition, retailers’ mark-ups are naturally driven down, which implies

that volume discounts cannot constitute a profit stimulating strategy in the long term perspective.

While differentiation strategies constitute one way to overcome this shortcoming of Bertrand-Nash

equilibrium, they are costly and require a considerable upfront (and sunk!) investment. This model

suggests another way, i.e. benefiting from shipment cost reductions. They are typically born by

buyers (retailer adds this cost to a price of the product, while the amount of shipment costs

depends on delivery time chosen by the buyer) and external to retailers’ warehouse management

technology - thus, external to his cost structure.

In this paper we take the position that, since an e-retailer is already there, he himself can

take the role of coalition creator. The reason he would consider taking such a role is the same

reason he would consider manipulation of any marketing variable within his power to influence:

doing so may be attractive to potential customers and thus provide a competitive advantage over

other retailers who do not employ this strategy. Because exploiting volume discounts already

constitutes the basic activity of the e-retailer we consider the possibility of generating additional

profits from shipment discount to the client from the same geographical location. Our strategy

can be summarized as follows:

1. Basic intuition suggests that combining orders to obtain shipment discounts should be always

profitable as it leads to improving the outlooks of e-retailers and possibly customers (a

Pareto-improvement). The question is about the scale of this improvement and whether it

is sufficient to provide incentives to e-retailers;

2. Answer to this question depends on (i) frequency of same-location orders, (ii) potential gains

from combined shipment and (iii) costs of implementing such a solution. In the paper we

abstract from addressing the last point, as it depends mainly on highly company-specific

conditions. Nonetheless, points (i) and (ii) are addressed from both theoretical perspective

and in as far as the sensitivity of the simulation results is concerned;

3. Our approach is based on probability and coalition formation theories. We propose an

algorithm to combine orders from the same geographical location;

4. To confront the model with realistic assumptions, we consider two warehouse management

systems: a perfect one that allows no delivery delays and a realistic one, which minimises

retailer risks at the expense of delivery delay. In the case of combined shipment, delivery
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delays imply so-called ”contagion effect” (some orders await over time limit another one

with which they are combined). We consider this rather a realistic way of modelling retailers

behaviour;

5. We show that when these real-world imperfections are introduced to the model, combin-

ing orders still provides room for Pareto improvement. This counter-intuitive finding is a

consequence of the fact that although failures, such as a delay, may indeed affect adversely

consumer satisfaction and thus future loyalty, gains from combined shipment are indeed

significant; and

6. We also allow the retailer to redistribute the gains from combined shipment in the form

of price reduction. The protocol for sharing them in facto provides additional reinforcing

mechanism. Downward sloping demand function implies that price reductions increase sales,

boosting profits.8

3 Model assumptions

For a potential (private) consumer, purchasing goods in an e-marketplace has both advantages and

disadvantages compared to shopping in a high-street retail outlet. The advantages usually comprise

of lower prices, variety, availability (24 hours, 7 days a week), while among the disadvantages, one

typically lists both a lack of professional advice and the perceived risk of fraud in commercial

Internet transactions. Moreover, it may impossible to actually assess all the characteristics of the

item on the Internet (for instance, how silent is the laptop that we buy on the net). In this paper

we focus only on prices and delivery times. The interplay of these factors plays a crucial role in

a decision to buy something on-line, because many buyers are not likely to seek e-opportunities

involving considerable waiting if the difference between on-line and traditional shopping is not

sufficiently high.

Consider a case where an e-retailer tries to increase profits (short-term or/and long-term) by

offering to clients a combined delivery service (CDS). Designing a coalition formation mechanism

and redistribution of such a discount between customers or/and itself is be the sole responsibility

of the e-retailer. Following Bennett (1985), we distinguish between exogenous and endogenous

coalition formations.9

In our setting there are two conditions for a coalition to be formed, i.e. for the goods to be

dispatched together: (i) they must be placed by customers residing in the same geographic location;
8To be exact, in economic terms the necessary condition for the profits to grow is that the price elasticity of

demand exceeds unity. However, in our setting demand function is not explicit, so this condition is binding.
9If the e-retailer pools orders of consumers without their participation in choosing coalitions then such a coalition

is exogenous. When consumers take part in a decision process to group orders without incorporating the e-retailer in

the coalition formation process, such a coalition is endogenous.Note that the model of Yamamoto and Sycara (2001)

concerns exogenous coalition formation as it is the leader of a group who divides its participants into coalitions.
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and (ii) their delivery times have to be the same or lie within a sufficiently-short interval.10 This

raises a basic question on the profitability of such a combined delivery system, i.e., how many

orders are actually placed from the same location and with a similar delivery time? Clearly, the

answer depends on many assumptions, e.g., a definition of every location, population density,

seasonal variables, etc. However, one can easily demonstrate that profits from combined delivery

service can actually be considerable.11

3.1 The potential for exogenous coalition formation

The main vehicle for discussing the likelihood of same-location purchase occurrence is the so-called

birthday paradox. Consider a certain number of people - what is the probability that any two

people of this group have birthday on the same day? Actually, this number is strikingly high and

already for 23 people exceeds 50%. For the purpose of this paper birthday paradox demonstrates

in the following problem: with r localisations populated by n people12 what is the probability of

two orders arriving on the same day from a location? Consequently, the likelihood of two orders

coming on the same day from the same location is naturally given by 1 − r!
rn(r−n)! . Importantly,

we do not specify anywhere in the model any rule for the process of orders allocation.

Basing on the birthday paradox one can say that the occurrence of same-location purchases is

likely. To address how profitable this may be, one needs to consider the shipment costs properties.

In the remainder of this paper, we build a model of an e-retailer introducing a combined delivery

service (CDS).13 To formalize the concept of such a discount let c1, c2, ..., cn be the costs of

shipment of n goods to the same area separately. Since in principle goods can differ both in size

and in weight, delivery costs may differ as well. Assume that the courier service provider offers a

discount for combined delivery of these n goods at a price f (c1 + c2 + ...+ cn) which is a function

of a sum of separate shipment costs meeting the following conditions:

0 < f (c1 + c2 + ...+ cn) < c1 + c2 + ...+ cn, (1)

f ′ (c1 + c2, ..., cn) > 0 and f ′′ (c1 + c2, ..., cn) > 0.

In words, the only assumption necessary for the combined delivery shipment to produce costs re-

ductions is that the cost function is increasing and concave. In the real world case, most delivery

companies set pricing strategies along intervals (usually, weight based). Prices are fixed within

these intervals and - if anything - depend on delivery zones. Although this is not a continuous func-
10In principle, in the real world it may frequently happen that customers buy for locations different from their

own, e.g. gifts. However, this would not introduce any change to our model, because the pivotal characteristic of

an order in this model is the address to which the it is to be dispatched. For the purpose of clarity we keep this

simplified setting.
11We pursue with some numerical examples in the analytical section.
12All notations are summarised in a Table 1 at the end of this section.
13Naturally, we need to assume that a courier service provider is willing to offer a discount for the combined

dispatches to the same location, e.g., to the same ZIP-code.
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tion (derivatives do not exist) it guarantees quasi -concavity over the vast majority of cases. Thus,

it seems that the specification suggested above resembles to a large extent real world solutions.14

3.2 Consumer satisfaction

In order to incorporate a long term perspective in the retailer’s behavior this paper introduces

a novel approach taking into account objectives beyond short term profits. Namely, our model

explicitly includes consumer satisfaction from on-line shopping, which deteriorates with delays on

declared delivery. This allows to capture the impact of punishment following from ”disappointing”

the client by delaying his delivery, which is important because once the combined delivery service

is introduced, e-retailer are subjected to evident incentives of delaying some orders due to possible

shipment costs reductions to the detriment of consumer satisfaction. Such strategy is punished

in our model, since any subsequent purchase of each customer is evaluated vis-à-vis based on his

past experience.

As argued in the literature (see, for instance, Zeithaml, Parasuraman and Malhotra (2002)

and Santos (2003)) consumer satisfaction driven by service quality is especially important in e-

commerce. This is because the online comparison (but not assessment) of technical features of

products is essentially costless, feasible, and easier than comparisons of products through tradi-

tional channels. Price may be important in initially attracting customers, but if a company does

not provide good service, customers, trivially, do not come back (Reibstein 2002).15

For the purpose of this paper we develop a relatively simple but comprehensive measure of

consumer satisfaction. Let stfn (t) denote satisfaction of the consumer n at time t from total

up-to-date services of the e-retailer and assume that at the beginning of simulations stfn (0) = 1.

Every time an e-purchase is made and delivered, customer updates stfn(t) taking into account

the (i) utility that was expected from e-purchase, (ii) the utility actually experienced and (iii)

utility which would have been experienced, had the good been purchased from the traditional

retailer. In particular, if the good ordered is delivered within the promised time range, while

the price/delivery ratio was competitive, consumer’s satisfaction increases and vice versa for the

opposite. For exapmle, assume that the good m was delivered at time t to consumer n. Then,

after each good ordered with the e-retailer is delivered, the satisfaction of the consumer is updated

according to the following rule:
14To prevent excessive complexity of the model we do not maintain the interval structure, because it would require

allocating ”weight” property to the purchases. This would constitute rather arbitrary additional parameterisation

in the model and was thus avoided.
15There are many models of consumer satisfaction in the literature, e.g., (Fornell, Johnson, Anderson, Cha and

Bryant 1996), (Bruhn and Grund 2000), (Martensen, Gronholdt and Kristensen 2000) or (Hackl, Scharitzer and

Zuba 2000), most of which deal with Consumer Satisfaction Index (CSI) for high street commerce, which is focused

on physical settings. In contrast, (Hsu 2007) constructs the equivalent e-CSI, which takes into account specific

issues of the e-marchandise, including, for instance, the fact that each online transaction involves a number of third

parties, such as credit card clearance firms and delivery companies. Thus, there is always a possibility of failure

being virtually independent from e-retailer.
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∀t(arrival)stfn (t+ 1) = stfn
(
t̆
) E(t−) (Ue)
E(t−) (Ue)− ε(Ue, E(t−) (Ue) , Us)

(
E(t−) (Ue)− Us

) (2)

= stfn
(
t̆
)
η,

where E(t−) (Ue) denotes expected utility from price and delivery time when purchasing the good

at the e-retailer at the moment of order, Ue is the utility the consumer actually experienced (after

the good arrived) and Us is a potential utility from the price of the good when bought in the high

street shop.16 and ε(Ue, E(t−) (Ue) , Us) is a parameter value of which depends on the eventual

difference between the values of expected and actual utility as well as potential high street utility

in the following way:

1. If the actually experienced utility is lower than expected (i.e. Ue ≤ E(t−) (Ue)) then stfn
(
t̆
)

is positively updated and η grows with the difference between actual and expected utility;

2. If actual utility is higher than expected but it is still lower than utility from the purchase in

the high shop, i.e. E(t−) (Ue) < Ue < Us, then update is moderately negative; or

3. If due to any e-retailer failure actual utility is even higher than this from the high street

shop then satisfaction deteriorates considerably faster.

The rationale behind formula (3) is as follows. Every successful purchase, i.e. when the e-

retailer kept up with the promised delivery time, increases trust and contentment of a consumer

and makes it is more likely that the next purchase will also be made on-line. Thus, satisfaction

stfn(t) grows and this growth is proportional to the difference between expected and actual utility.

In contrast, if delivery is delayed satisfaction decreases. The potential satisfaction from the same

purchase made at high street shop is the natural benchmark point to which consumers relate

deterioration of their satisfaction. Intuitively, if the actual utility is still below the expected one,

consumer feels disappointed but the purchase can be still considered a better alternative when

compared to the traditional retailer (available alternative). However, if actual utility is worse than

high-street purchase then on-line shopping turns out to be the worst alternative. In such a case,

satisfaction from services of the e-retailer deteriorates fastest.

[ Figure (1) about here ]

As depicted by Figure (1), this in-built satisfaction mechanism allows consumers to be more

(or less) eager to buy from the e-retailer when compared to the high street shop based on past

experience. On the other hands, consumers are not directly Bayesian in the sense that in making

their purchase decisions they always believe the declared delivery time. Thus, they do not update
16Note that this formulation of satisfaction function allows for convenient re-scaling of the preferences. With

assigned values of ε 10% of increase in satisfaction will not lead to increase in propensity to buy from e-retailer of

the same size. Since changes in the utility are rather minuscule this mechanism seems necessary.
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their beliefs indirectly (about expected default of the e-retailer) but rather directly (about expected

utility of subsequent purchase from the e-retailer).17 In other words, consumers in this model are

forward looking but do not have projections about probabilities of future outcomes - they focus

on projections of future satisfaction levels instead.

3.3 Model structure

The diagram in Figure (2) presents the general structure of the model. The e-retailer buys m̄

goods and sells them to n̄ consumers grouped in r̄ ZIP-codes.18 Consumers have the choice of

buying goods from high street shop or e-retailer based on preferences for delivery time and price.

In order to make purchase decisions consumers need to have sufficient income, which is distributed

among them in every period with normal distribution.

[ Figure (2) about here ]

Purchases may be made from e-retailers and high-street shops, while the goods purchased are

not distinguishable with respect to suppliers (essentially, from the point of view of the consumers,

item is identical in e-shop and in real shop with only prices and delivery times potentially differing).

Consumers are equipped with preferences, from which it is derived what they want to buy and

from whom (depending on price/time preference). Income distribution is the most indiscretionary

way of allowing for purchases to happen over time (and not in one point in time). Arriving income

values were calibrated in a way enabling repeated purchases (the same consumer will have an

opportunity to make purchase decisions more than once).

Once the decisions about e-purchase are made, e-retailer has the choice of pulling orders made

from the same location. If he does and his warehouse management system is imperfect (delays

occur), contagion effect may materialise. This is the crucial element of this simulation: delays

in some orders may transmit to delays in others if they are pulled into one delivery package.

Consequently, consumer dissatisfaction may spread beyond the natural scope of one disappointed

client. If this effect proves smaller than the shipment cost reductions, combined delivery service

introduces an efficiency gain. However, this may not necessarily be a strict Pareto improvement,

if some clients observe ex post lower satisfaction scores than in benchmark situation of no orders

pulling.

3.4 Consumer choice

To enable modelling of the consumer decision making process, utility functions (choice criteria)

were specified. Utility accounts for price, waiting time and the interaction of the two. More
17See Brynjolfsson and Smith (2005) for a review of multi-category choice behaviour and the use of Bayesian

methods.
18Note that it is irrelevant how many suppliers the e-retailer has, as possible combined deliveries from the sup-

pliers providing more than one good are beyond the e-retailer’s control (they follow from the suppliers warehouse

management system and thus cannot influence decisions by the e-retailer).
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explicitly, both the price to pay and the waiting time are economic “bads”, as they provide

dissatisfaction to the consumer, resulting in (dis)utility. Furthermore, decreasing marginal utility

must hold to ensure that disutility increases, but at a decreasing pace from both price and waiting

time growths. Any convex utility function allowing for an interaction is thus acceptable (cfr.

Holahan (1988)).

Since both the price-to-pay and the delivery period provide negative utility, it is more conve-

nient to work with disutility curves. Let us consider a typical consumer i with a disutility curve

given by:

Ui = αip
2 + βid

2 + γip · d, (3)

where p denotes a price of a good purchased, d stands for the waiting time, while α, β and γ

denote consumer specific preferences. Evidently, d takes the values from 0 in the case of traditional

retailer to a considerable number of days in the case of e-marketplaces. Such a quadratic form

of a disutility function is commonly used in economics: the smaller are the values of either p

and/or d, the better-off is the consumer. Moreover, the cross term is needed to warrant imperfect

substitution between price and delivery time.

Since neither price nor time of delivery can be negative, indifference maps need to be located

in the top-right quadrant of the p-d plane. Nonetheless, utility levels analyzed in this paper

are negative. Thus, the further away one gets from the origin, the lower the satisfaction level.19

Consequently, origin constitutes the preferred location for each consumer, while higher disutility

levels are justified by fixed utility levels derived from consuming particular goods, which remain

beyond the scope of this paper.

Coefficients α and β in equation (3) capture the elasticity of each consumer to changes in price

and in delivery times. The interaction term of p ·d captures a possible interplay for every consumer

in his trade-off profile: some of the buyers might be willing to wait somewhat longer if a price of

the good could be diminished as a result. On the other hand, to some of the buyers it might seem

justified to pay more in order to receive purchases sooner. Consequently, γ can differ substantially

from consumer to consumer both in terms of size and in terms of signs. This is depicted on Figure

(3) with left panel representing utility levels for negative γ values, while right one corresponding

to a positive interplay between price and waiting time.20

[ Figure (3) about here ]

Obviously, the price p contains both the actual wholesale price for the e-retailer and the delivery

costs. Let us define the wholesale price as a cost p̂ and shipment expense as ŝ(t), while the latter

must be dependent on the period of delivery (the longer the waiting period, the lower the shipment
19Importantly, utility functions cannot be concave - their convexity follows necessarily from inverting the decreas-

ing marginal utility principle. Namely, once the time of delivery grows from 100 days to 99, utility must change less

than in the case of twofold growth from just 24 hours shipment period.
20Note that curves do not show the values of the utilities; these could only be observed in the third dimension.

The graph represents the shape of the utility curve maps.
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cost). In addition, the delivery time d consists of handling time w and shipment time z. Thus,

p = p̂+ s(t) and d = w + z which transforms (3) to:

Ui = αi(p̂2 + s2(t)) + βi(w2 + z2) + γi(s(t) · t+ s(t) ·w) + 2βw · z+ 2αp̂ · s(t) + γ(p̂ ·w+ p̂ · z). (4)

In equation (4), the first term measures the utility of direct and indirect purchase costs, while

the second reflects the negative utility derived from waiting. The third term corresponds to the

combined effect of waiting and the costs of shipment and accounts for the substitution effect from

the interplay of cost and waiting.21 Since, in principle, γ can be both negative and positive, the

model allows the interplay to have both possible impacts on the disutility of the buyers.

The term 2βw ·z captures the fact that high street shops always enjoy a comparative advantage

over e-retailers with respective to delivery times: the negative sign of β requires that if any waiting

whatsoever occurs either due to processing by the e-retailer or due to shipment, the consumer will

always prefer purchasing the good from a high-street shop at the same price. Straightforward

assumptions concerning the differences between high street shops and the e-marketplace impose

that for each reservation price (i.e., the utility derived from possessing a good) there are several

alternative combinations of the price to be paid and the time of delivery that can provide uniform

utility level to buyers. In addition, in the case of high street shops, d = 0, and so the mark-up

between wholesale costs and prices listed may be higher for each reservation price, making it

possible to cover the higher costs of operations. Moreover, consumers with the same reservation

price can differ in terms of weight associated with price and waiting, thus, imposing necessary

differentiation of utility function parameters.

Finally, the last two terms in the utility function require explanation. In this model - as

in real world - costs of shipment are assumed to be set independently of the value of goods

ordered (they only depend on the quantity and are fixed with respect to the value of goods -

different parametrizations only consider the relation between transportation costs and a mark-

up). Consequently, delivery times are similarly independent of the product value. Thus, by

assumption, these two vectors (product value p̂ and shipment cost s) need to be orthogonal (p̂⊥s),
which makes their product equal to zero by definition. Finally, similar reasoning can be applied to

the last term γ(p̂ ·w+ p̂ · z). Namely, since costs of shipment are to be independent of the value of

purchase, then so does the shipment time (hence p̂⊥w). By the same token, nothing would justify

considering the waiting time of the retailer dependent on the product value (hence p̂⊥z).
Final remark considers the coalition leadership. One could consider a structure in which the

higher consumers’s relative gains from coalition (the lower the value of ones purchases), the higher

the propensity to take effort to induce coalition emergence. In other words, following Gamson

(1961) and later contributions by Yamamoto and Sycara (2001), Li et al. (2003) and Tsvetovat
21Please note, that this specification allows the e-retailer to incorporate in the utility of buyers the ”cheating” of

the retailer: in principle, the retailer could extend the waiting time in order to hide the fact that he forms coalitions

beyond declared preferences of customers. If he decides to do that, the consumer takes this into account as well,

since this is the total delivery time that matters for his utility.
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et al. (2000) one could in principle allow consumer to encourage purchases from the same location,

resulting in endogenous coalition formation mechanisms. However, in this paper we chose to focus

on potential benefits to the e-retailer from the evident informational advantage in his possession.

Obtaining information on potential purchases from a consumer’s location is obviously costly, while

- from the business point of view - e-retailers already enjoy a hold of this advantage.

3.5 Retailer, warehouse management, demand planning and shipment

Only a few retail companies can afford large and varied stocks. Many of them have liquidity

problems which inhibits keeping stocks. Retailers operate on relatively small margins, thus they

rarely invest in goods that cannot be cashed relatively soon. Moreover, the variety of goods in the

offer is increasing while their life cycles shorten on an accelerating pace. All these elements make

keeping stock excessively expensive. Consequently, one of the main problems of the e-retailer is to

coordinate deliveries from suppliers with customers’ orders: warehouse management and demand

planning.22

For simplicity, our solution to these problems is intuitive and aims to meet only a few basic

requirements: (i) the e-retailer does not keep goods in stock all the time - i.e., sometimes waiting

time is non-zero; (ii) under some specific circumstances delays are possible. Perfect systems - with

no delays and no defaults - can be designed only in theory, as all these warehouse management

and demand planning algorithms follow from stochastic expectations based on past experience and

cannot foresee the future perfectly. Therefore, in reality, for most e-retailers, both of the above

requirements hold - not all the goods are always in stock and defaults occur.

Introduction of a combined delivery service (CDS) introduces additional complexity into the

warehouse management and demand systems. From the e-retailer point of view one order is

going to be composed of (possibly) much bigger variety of goods of different types. Accordingly,

we assume e-retailer purchases quantity qp (m, t) of every type of goods m at a wholesale price

pp (m, t). Moreover, we assume that there exists a certain minimal order quantity qmin
p (m, t) above

which the transport from the producer becomes profitable enough for the e-retailer. There is also

a certain delivery time of good m from the producers to the dispatching unit of the e-retailer - in

our specification, the waiting time.

We assume the following ordering policy of the e-retailer. Let initial stockm (t1) be the initial

stock of good m kept by the retailer at a certain time t1 (either at the beginning of the simulation or

after last order from the producer entered the stock) and assume that initial stockm � qmin
p (m).

Assume further that at some time t2 > t1 the e-retailer runs out of stock of goods m. Referring to

this experience, e-retailer can extrapolate the pace of future purchases of this good and estimate
22One of the strategies adopted by e-retailers to circumvent inventory problems is drop shipping (see Khouja

(2001)). In such a case, a retailer simply forwards customers’ orders to the manufacturer who fills the orders

directly to the customers. Such a strategy would be obviously very difficult to apply in our setting as only goods

produced by the same manufacturer could be pooled.
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when the next delivery from the producer of good m should take place, i.e. when future pur-

chases will exceed qmin
p (m) − intended initial stockm (where intended initial stockm states for

the number of items of good m on stock after clearing all orders). Once the good from the offer

is no longer in stock, a time estimate of the next delivery time is declared on the web in the form

of waiting time announcement. To construct this estimate of the next delivery time, the e-retailer

has to refer to the average time in which one item of good m is purchased E(ptm), which can be

easily computed as:

t2 − t1
number of purchases of good m between t1 and t2

, (5)

where t2 > t1. Then, waiting time w(m, t) for a delivery of goods from producer m announced by

the e-retailer at time t can be computed as:23

w(m, t) = E(ptm)qmin
p (m) (6)

Clearly, in the above warehouse management system is in a sense ”commitment” because in

this setting, it is virtually impossible to default on promised delivery time. Whenever a good is

no longer in stock, the new arrival time is openly communicated to the consumers. Obviously, it

will result in positive stocks from time to time if the e-retailer is not able to sell as many goods

as it has been expected before the next transport is brought from the supplier. Importantly,

although consumers are never deceived, this system imposes considerable cost on the e-retailer

due to excessive stocks.

To circumvent this problem, alternative warehouse management system is also introduced, in

which goods are brought from the producer if and only if the amount of items ordered is greater

than or equal to qmin
p (m). Consequently, positive stocks never occur.24 This system is in a sense

”doomed to default”, as at a certain point in time the e-retailer will make a delivery promise

on which he will subsequently default in order to avoid positive stocks.25 Therefore some of the

customers will face extended delivery times which adversely affects satisfaction. The ”punishment”

to the e-retailer will come in the form of increased purchases from the high street shop and thus

lower customer base over the long term.

The ”doomed to default” system allows us to introduce the crucial element in this model -

the notion of failure to the e-retailer operations and thus consumer dissatisfaction with potential

contagion in case of combined delivery service. Although, in this scenario, the e-retailer bears

no unnecessary warehousing costs, with orders combined for dispatching, delays on some of them

transmits automatically to defaults on others. In contrast, ”commitment” mechanism justifies no
23Note that the above producers’ delivery scheme allows the e-retailer to pursue a whole range of stock policies.
24Warehouse management systems that carry no stock have been already proposed in the literature. See, for

instance, (Barnes-Schuster and Bassok 1997) and (Mitra and Chatterjee 2004). Our approach, is of course, simpler,

however resorts to the similar idea.
25Note that even top of the line e-retailers do not satisfy all the clients due to various reasons. See, for instance,

opinion tags provided for every e-seller at Amazon.
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updating on the side of consumers, as goods are always delivered when promised, but it imposes

the burden associated with positive stocks at certain points in time. Figure (4) shows the example

of stock evolution in both systems. Negative values of stock mean that the good was ordered by

a consumer but is not on stock and is to be brought in the next transport from a producer.

[ Figure (4) about here ]

3.6 Combined Delivery Service

Spontaneous endogenous coalition formation emerges from an efficiency gain as perceived by the

buyers. Such coalitions can only be formed if gains exceed the aggregated informational cost (at

least in the ex ante perception). Coalitions triggered by an e-retailer emerge when the latter

observes an informational advantage at no additional cost of obtaining it - by providing combined

service delivery, shipment costs may be reduced to the customers’ advantage. This provides an

argument finance-wise, to and convince the buyers - they either move along their indifference

curves to another price/delivery combination or to a lower disutility level due to (1) lower waiting

time at the same price, (2) lower price with the same waiting time, or (3) a combination of

the two. Obviously, spontaneous endogenous coalitions of buyers will only be formed if costs

are exceeded by the efficiency gain. In the case of combined delivery service coordinated by the

retailer, information costs converge to zero. Naturally, coalitions like this should only be stable

over the long run if they constitute a Pareto improvement, i.e. none of the parties is worse off and

at least one of the stakeholders improves his situation. 26. It is easy to demonstrate, that such

a result is always achieved under the ”commitment” scenario when all the goods are delivered as

planned. In contrast, under ”doom-to-default” scenario, Pareto-improvement cannot be à priori

guaranteed as some orders will be delayed, while some others will be affected by contagion.

We consider two types of combined delivery services. In CDS I, the e-seller pools together

similar orders but neither offers shipping discounts to clients nor informs them about the combined

delivery. This enables the e-seller to increase profits immediately, however, we may expect that if

delivery defaults are taken into account, this strategy will affect adversely consumer satisfaction.

Conversely, in CDS II we allow e-retailers to combine orders with differentiated order dates. In

real world, each e-retailer announces ”handling” time, which is the period between order approval

and order shipment. In principle, this period could serve to pull orders arriving within a short

interval of time, extending the potential number of coalitions. Finally, in both types of CDS in

the simulation we allow the e-retailer to return the gain from shipment cost reduction back to

the customers in an egalitarian way (no additional redistribution mechanism is introduced). This
26Depending on the distribution of the efficiency gains, the satisfaction of consumers may be affected differently,

but will never be lower. The mechanism of incorporating consumer satisfaction into the retailer optimisation

problem allows to measure the ”punishment” for defaulting on the offered transaction criteria. In the sensitivity

analysis we demonstrate the effect on consumer satisfaction distribution in our model to adress implicitly the Pareto

improvement problem.
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reimbursement implies higher consumer satisfaction on one way and more purchases throughout

the simulation horizon on the other.

[ Table (1) about here. ]

4 Simulation settings

In this section we present the most important aspects of the simulation setup including the

consumer decision making proces, combined delivery service procedures and parametrisation.

E-retailer sells a vector m ≡ [1, 2, ...,m, ..., m̄]T of different types of goods at prices p̂e (t) ≡
[p̂e (1, t) , p̂e (2, t) , ..., p̂e (m, t) , ..., p̂e (m̄, t)]T and shipment costs ŝe (t) ≡ [ŝe (1, t) , ŝe (2, t) , ...,

ŝe (2, t) , ..., ŝe (m̄, t)]T to consumers from set N ≡ {1, 2, ..., n, ... , n̄} populating (possibly in

a semi-random way) the set of areas R ≡ {1, 2, ..., r, ..., r̄} (ZIP-areas). Total prices of the goods

for the consumer are denote by pe (t) ≡ [pe (1, t) , pe (2, t) , ..., pe (m, t) , ..., pe (m̄, t)]T i.e. the

prices that include shipment costs, or pe (t) = p̂e (t) + ŝe (t) .

The basic public offer of e-retailer Φ (t) at time t is composed of vectors of prices, corresponding

shipment costs, waiting time and a shipment time, i.e. Φ (t) = [p̂e (t) , ŝe (t) , w (t) , z] where

w (t) ≡ [w (1, t) , w (2, t) , ..., w (m̄, t)]T is a vector of waiting times and z ≡ [z (1) , z (2) , ..., z (m̄)]T

vector of shipment times.27 Of course, if good m is on stock then w (m, t) = 0. Waiting time and

shipment time combined are called delivery time and are denoted by d (t) ≡ w (t) + z.

It is assumed that the utility of a consumer n from buying good m at prices ps (m, t) or

pe (m, t) and delivery time ds (m, t) or de (m, t) either from high street retailer (s) or e-retailer (e),

respectively, is defined according to 4. Each consumer n lives only in one ZIP-area r (which will

be denoted as nr), obtains an income jn ∈
〈
j, j
〉
, j 5 j per period (jn is randomly predetermined

at the beginning of simulations) and buys only one type of good m ∈ M . Once enough money

is collected to afford good m, the consumers orders it either from the e-retailer or chooses a high

street shop which in the model stands for all the (“rest of the world”) competition. An order

of consumer n purchasing good m from the e-retailer at a certain time t̂ will be denoted by

θ (nm) =
[
m, pm, t̂+ dn

(
m, t̂

)]
where t̂ + dn

(
m, t̂

)
is a delivery date promised by the e-shop at

time t̂, i.e.: t̂+ dn
(
m, t̂

)
≡ t̂+ w(m, t̂) + z(m).

Simulations focus on the core variables of interest i.e. the profit of e-retailer and the consumer

satisfaction. In order to demonstrate the stability of results next section shows simulations per-

formed for differentiated parameters of the utility function, a spectrum of population density and

different ratios of shipment cost to retailer markup.

4.1 Consumer decision making

Let Jn (t) be the total wealth of consumer n at time t. A purchase of a good is made simply once

a total wealth of a consumer surpasses the price of the good. We assume the following decision
27For simplicity we assume that shipment time is constant in this model.
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rule of consumer n:

Us (n,m, t) ≥ Ue (n,m, t)
stfn (t)

, (7)

i.e. consumer n compares both utilities adjusting them with the satisfaction parameter and buys

good m from e-retailer if both Jn (t) ≥ pe (m, t) and (7) hold. If any of these two conditions do

not hold and, at the same time, Jn (t) ≥ ps (m, t) then the good is bought from the high street

shop. Positive experience of a consumer with the e-retailer (i.e. stfn (t) > 1) decreases disutility

from the e-purchase.

The important feature of the above consumer satisfaction measure and decision making process

is that it may create a (long term) customer loyalty which has vital consequences on long-term e-

commerce profitability.28 In our approach, a decision to purchase a good at e-retailer is an interplay

between relationships between e/hs current price, e-delivery time (embodied in the utility) and

client’s past e-loyalty stock-piled in stfn (t). By lowering prices (and/or delivery times), the e-

retailer has always a possibility to rebuild consumer satisfaction which deteriorated due to various

failures in the past, however, such a behaviour is very costly in the long term. The issue of loyalty

deterioration is especially important in our model, as goods bundling means that any failure in

on-time delivery is profiliated to a group of customers and non only one of them. A delay can be

interpreted as any failure from the e-retailer side, and, in other words, depicts the overall e-service

quality related to goods delivery.

4.2 Combined Delivery Service

The crucial problem in implementing the combined delivery system concerns the algorithm of

pulling together orders from the same location (e.g. ZIP-code area). Let Θr (t) be the set of

current orders (on-going orders) in ZIP-code r at time t. Then, this set can be partitioned in

disjoint groups of orders pulled together. Of course, many of such coalitions can be so-called

trivial coalitions - i.e. consist of only one order, which means that no pooling was possible.

More formally, a coalition is any non-empty subset of Θr (t), and will be denoted by Ck (t) . The

cardinality of a coalition Ck (t) is the number of orders (players) in this coalition and will be

denoted by |Ck (t) |.29

Definition 1 A dynamic coalition structure π (Θr (t)) := {C1 (t) , C2 (t) , ..., Cm (t)} is a partition

of the orders/customers set Θr (t) into coalitions at time t; hence, for every time t coalitions
28According to Reichheld and Schefter (2000), mainly due to enormous multi-dimensional competition, acquiring

customers on the internet is expensive, and a creation of a base of loyal customers, which come back over the years,

is the first-order condition for long-term success. However, Ribbink, Liljander and Streukens (2004) point out that

only few companies seem to succeed in creating e-loyalty, and, as far as now, little is known about the mechanisms

involved in generating it.
29Please note that in our setting one customer can have only one current order at a time.
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within coalition structure it satisfy: Ck (t) 6= ∅ for k = 1, 2, ...,m; ∪mk=1Ck (t) = Θr (t) and

Ck (t) ∩ Cl (t) = ∅ if k 6= l.

Let Ck (t) ∈ Θr (t) and let SCk
(t) be the sum of shipment costs of all the customers in coalition

Ck (t) at time t under the condition that all the packages are sent separately (i.e. in a standard

way, without CDS). More formally, SCk
(t) ≡

∑
Ck

sm (mn). Let the negotiated cost of courier service

provided assure convexity, for example the following shorthand formula for a discount function

(2):

CDSCk
(t) =

1
2

√
SCk

(t)
(√

SCk
(t) + 1

)
. (8)

Hence, the surplus (or saving) from CDS can be easily computed as:

SCk
(t)− CDSCk

(t) =
1
2

√
SCk

(t)
(√

SCk
(t)− 1

)
. (9)

[Figure (5) about here.]

Figure (5) is an example of the costs of shipment with and without CDS system for Ck (t) which

consist from 1 to 5 players, i.e. |Ck (t) | = 1, 2, ..., 5. The difference between SCk
(t)− CDSCk

(t)

depicted as a shadowed area on Figure (5) represents the efficiency gain due to CDS. Of course,

the surplus exists only for integer numbers on the horizontal axis. Importantly, from the point

of view of the e-retailer, every coalition Ck (t) ∈ Θr (t) is seen as orders pulled together. Thus,

denote it by:

θ (Ck (t)) =

∑
Ck

m,
∑
Ck

pm, t̂+ d
(
Ck
(
t̂
)) , (10)

where t̂ is the time when coalition Ck (t) was created and d
(
Ck
(
t̂
))

is its delivery time.

4.2.1 Mechanisms for exogenous coalition formation

Following rules were imposed on combined shipment mechanism.

CDS I Let customer nm from ZIP-code r make an order θ (nm) = [m, pm, t+ dn (m, t)] at

time t by the e-retailer and let Θr (t) be the set of all current orders from ZIP-code r partitioned

by the e-retailer into a dynamic coalition structure π (Θr (t)). In CDS I, if θ (nm) is not the

only order from this ZIP-code or Θr (t) 6= {θ (nm)} , then the e-retailer pools order θ (nm) with

such a (possibly trivial) coalition Ck (t) ∈ Θr (t) for which the delivery time of customer nm and

coalition Ck (t) is the same. Note that this choice is a bijection, since there cannot exist two

different coalition of orders from Θr (t) with the same delivery time. In CDS I no party risks

anything.

It is clear that CDS I is an effective mechanism since it leads to a Pareto improvement. It is

also an exogenous coalition formation mechanism that could be called natural, since it only makes

the use of the fact that the information about orders is centralized in the retailer’s IT systems.
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However, its use is limited only to orders with the same delivery date. If the e-retailer wants to

increase the room for pooling coalitions he could artificially create this room, by differentiating

the dispatching time from the availability time, for example by introducing handling time.

CDS II Assume for simplicity that the e-retailer decides to add additional time to delivery

time (d(m, t)) of every good called ”order handling” and denoted by hm ≥ 1.30 Consequently.

d (t) ≡ w (t) + z + h (t) and from the point of view of the e-retailer the delivery time of good

m to a client n is no longer a point in time (a day) but a time span 〈dn(m)− hm, dn(m)〉. In

other words, we assume that handling time hm does not serve as expected maximum handling

time and can be shortened on a case by case basis, thus allowing the e-retailer to gain space for

pulling together orders.31 Importantly, an e-retailer will not indulge the temptation to forgo some

of the clients (and thus some of the revenues) by prolonging total delivery time in order to gain

more space for exogenous coalition formations (and thus cost reduction). The construction of the

utility function as well as the mechanism of consumer satisfaction both insure a ”punishment” in

the form of revenue loss if handling time is excessively prolonged. Thus, benefits follow from the

cost reductions on coalitions with forced delays, but the prolonged waiting times and delays turn

customers away from the e-retailer to the high street shop. Therefore, there is always a profit

maximizing optimum, especially over the longer run.

The algorithm for CDS II runs as follows:

1. If θ (nm) is not the only order from this ZIP-code, or Θr (t) 6= {θ (nm)} , then the e-retailer

pools order θ (nm) with such a (possibly trivial) coalition Ck (t) ∈ Θr (t) for which there

exist a common element between delivery time spans of customer nm and coalition Ck (t),

or

〈dm(n)− hm, dm(n)〉 ∩ 〈dm(Ck (t))− hm, dm(Ck (t))〉 6= ∅;

2. If there are more than one coalitions satisfying condition (1), denote the set of them by

C ′ (t) . Then, the order θ (nm) is pulled together with the coalition of the highest cardinality,

or max
Ck(t)∈C′(t)

|Ck (t) |;

3. If there are more than one coalitions satisfying condition (2), denote the set of them by

C ′′ (t) ∈ C ′ (t) . Then, this coalition is chosen for which order θ (nm) has has the longest

common element of delivery time spans, or

max
Ck(t)∈C′′(t)

{〈dm(n)− hm, dm(n)〉 ∩ 〈dm(Ck (t))− hm, dm(Ck (t))〉} ;

30This approach conforms with the real-world observation that e-marketplaces typically send the message ”in

stock, dispatched in hm days” rather than ”in stock in hm days, dispatched immediately after”.
31This coalition formation mechanism is quite common for courier companies, where the promised handling time

reflects the internal target handling time. It allows to flexibly adjust the order of orders handling as well as possible

overtime of the workers, subject to the promised maximum and temporary work load.
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4. If there are more than one coalitions satisfying condition (3), denote the set of them by

C ′′′ (t) ∈ C ′′ (t) . Then, this coalition is chosen for which the final delivery time is the longest,

i.e. max
Ck(t)∈C′′′(t)

{dm(Ck (t))} .

It is easy to show that the above algorithm turns the problem of the coalition choice for

θ (nm) into bijection. The intuition behind it is straightforward. To maximize a surplus from the

CDS the e-retailer pulls the new order with this (possibly trivial) coalition with a common part

of a time span (condition 1) which has the highest cardinality, i.e. has the highest number of

players (condition 2). Such a strategy directly follows from (9) which is an increasing function

of a coalition’s cardinality. Furthermore, if there is more than one coalition satisfying condition

(2) then the e-retailer opts for the longest common element of delivery time spans in order to

(logistically) ease the process and minimize the probability of any default (condition 3). For the

same reason, he also favours longest delivery time (condition 4).

[Figure (6) about here.]

Figure (6) presents the example where:

Θr (t− 1) = Θr (2) = {θ
(
C1

t−1= (1m1 , 2m2)
)
, θ
(
C2

t−1= (3m3 , 4m4)
)
}, (11)

with θ (C1) t−1= {[m1 +m2, p1 + p2, 2 + 2] , θ (C2) t−1= [m3 +m4, p3 + p4, 2 + 2]} and the new order

θ (5m5) t= [m5, p5, 3 + 3] is placed at t = 3. In other words, by time t = 3 there have been 5 current

orders placed, 4 of which have been already divided by the e-retailer into two coalitions C1 and

C2 and there is a decision being made about what to do with a new order θ (5m5) . As θ (5m5)

has a common element with both coalitions, i.e. both C1 and C2 satisfy condition 1, and they

both also satisfy conditions 2 and 3 as having the same cardinality as well as common element of

the delivery time span, the e-retailer chooses to pool θ (5m5) with C2 as final delivery date of this

coalition is longer. Hence, C2
t= (3m3 , 4m4 , 5m5).

4.2.2 CDS I and CDS II with transfers

Under both CDS scenarios described above one should expect cost reduction compared to the

case where all orders are shipped separately. Therefore, surplus is created. Depending on the

type of mechanism designed e-retailer can further use this surplus to (i) boost his profits; (ii)

lower the prices ex ante to all customers with the amount proportional to the expected surplus,

thus positively influencing the competitive edge vis-a-vis the high street shop; (iii) decrease the

prices ex ante for the coalition members (return the appropriate funds to their accounts).32 If

the e-retailer decides to distribute the surplus, he can still decide on the distribution mechanism,

withholding part of the gain.
32For the sake of simplicity we assume that e-retailer has no investment needs that could be turned into smoother

warehouse management system, better CRM, etc.
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4.3 Parametrization

A natural benchmark corresponds to the situation in which no CDS is provided. We assume

the following values for basic parameters: number of goods m̄ = 30; number of consumers n̄ =

2000; number of ZIP-areas r̄ = 300; e-retailer prices pe (t) are randomly chosen from the set

{21, 22, ...27}, i.e. 21 ≤ pe (t) ≤ 27; shipment cost is the same for every good, ŝe (t) = 2.4; while

shipment time z is set at 11 for both benchmark scenario and CDS I. For the case of CDS II we

assume that total waiting time is still 11 days, but it consist of 3 days handling time and 8 days

actual shipment time.33 For every good qmin
p (m) = 20, initial stockm is chosen randomly, and

intended initial stockm is 0 for simplicity. The price comparative advantage of the e-retailer to

the high-street shop pE/pHS is set to 0.8475. Although this choice may seem arbitrary, the main

motivation was to assure that both markets (electronic and traditional) exist and none of them

dominates. For the chosen parameters, the comparative advantage of 0.8475 serves as a guarantee

that none of the channels is effectively threatened by the other. The mutual relations between the

sizes of both markets and the choice of comparative advantage is depicted by Figure (7), where

point A denotes chosen specification.

[ Figure (7) about here. ]

As far as consumers’ parameters are concerned, we may assume without a loss of generality

that α = 1 (i.e. price plays a role of the numeraire unit for other variables). In other words, it

is not the price per se that is important, but the size of the relation between prices and other

variables. Preference parameters of the utility curves are allocated to the consumers βn ∈ 〈0.9, 1.1〉
and γn ∈ 〈−0.1, 0.1〉. Furthermore, income jn is randomly allocated from a set {1, 2, ..., 50} where

at every point in time income of consumer n grows or not with this number with even odds.

When analyzing this parametrization, there are few main points that require justification.

There are two important groups of parameters. The first one concerns the rate of income arrival

(resulting in a number of total purchases made by clients), whereas the second one decides on the

share of e-purchases. To the first group consists of average number of consumers per ZIP-code

(determined by n̄ and r̄), price levels (defined by vector pe (t)) and income jn. Values of these

parameters determine how often average consumer has enough income to purchase a good either

from the e-retailer or the high-street shop and this, in turn, is one of the factors determining the

probability with which the e-retailer will have an occasion to pool orders together in every ZIP-

code. For the above parametrization there are on average 6,66 consumers per ZIP-code and each

of them makes a (e- or traditional)purchase once in every three weeks (21 days). The sensitivity of

this group of parameters is checked (see Subsection 6) by varying the average number of consumers

in ZIP-codes. Similar effect would be obtained by changing either the average price level or income.
33Sensitivity of the results to the chosen handling/shipment time division is presented in Section 6 along with

other parameters choice.
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To the group of parameters that determine the number of e-purchases in relation to traditional

shopping belong the relationship of the price comparative advantage of the e-retailer to the high-

street shop pE/pHS to the web shipment cost to price level ratio ŝe (t) /pE , and finally the average

waiting time for the goods ordered via internet. In each of theses cases (utility function parameters,

handling time, shipment cost and competitive advantage) the choice for the parameters was a

consequence of the pursuit to assure comparable number of e-purchases and traditional purchases.

As we argue, it is not the value of shipment cost per order that matters here, nor is it the

price vector of the goods, but the relation of between this ratio and the comparative advantage

of the e-retailer34. And, once again, Figure (7) supports our specification. Nonetheless, section 6

presents results stability with respect to this ratio as well.

Secondly, the values of β and γ were chosen in such a way, that consumers chose from both

types of the retailers, sometimes switching between traditional intermediary and the e-seller. Since,

to our best knowledge, studies over the exact value of γ are not available, we decided to center

it at zero. Consequently, both types of substitution effects discussed in Subsection 3.4 occur. Of

course, the intervals over which β and γ are distributed were chosen arbitrarily, but one needs to

bear in mind that these parameters play the role of semi-elasticities. The higher their values, the

less responsive the consumer to changes in pE/pHS ratio (i.e. the price competitive advantage is

less important). Therefore, the chosen sets of moderate values assure that most of the clients will

not be by definition inclined to buy only from the e-retailer or only in a high street shop35.

5 Results

Table 2 compares main results of no CDS with CDS I and CDS II - columns (1), (2) and (3)

under the commitment scenario. In addition, based on the initial simulations, relative size of

reduction was estimated, allowing to incorporate ex ante reduction into pricing strategies of the

e-retailer (CDS I as well as CDS II with transfers). Namely, the results of a general price cut for

all customers were estimated and these ”cuts” were distributed among the clients in the form of

price discount (average percentage to every initial list price).

[Table (2) about here.]

In the benchmark scenario a total of 2000 customers made 18 143 HS-purchases and 16 432

E-purchases. In other words, the setting is parametrized in a way allowing approximately half of
34It was assumed in the model specification that the shipment cost amounts to 2.4, while the average price of the

goods purchased equals 24. However, not these values per se but their relation constitutes the key driving factor.
35Some consumers with extreme values of β and γ buy goods either only from high-street shop or only from the

e-retailer. However, the whole spectrum of consumers in between sometimes chooses one and sometimes the other

marketplace. Such a parametrization ensures us that changes in delivery times and prices have a visible effect on

sales (if most consumers were extremely dedicated to one of the shops then changes in any of these values would

not affect sales).
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the purchases to be conducted via the internet. In addition, results seem fairly robust to the choice

of α, β and γ parameters as more than 60% of consumers buy goods from both the e-retailer and

high street shops. Those are clients who the e-retailer should primarily fight for. Since in this

model we do not control for costs other than supplies, calculating e-retailer’s profit seems only

marginally valuable and therefore is not reported.

Mechanism CDS I shows no change in sales and number of transactions as only natural coali-

tions are implemented by the e-retailer (orders made from the same location and on exactly the

same date). Therefore, the only difference to be observed concerns the costs of shipment, which

are significantly reduced. Mechanism CDS II fosters slightly both sales and costs of supplies be-

cause more coalitions may be formed. This facilitates purchases by the clients (the growth of 27

orders in total) due to possibly shorter waiting times for some clients (the frequency of purchases

increases). More importantly, shipment costs are significantly lowered and both the number and

the average size of the coalition grows considerably.

The results of columns (1), (2) and (3) clearly demonstrate that exogenous formation of coali-

tions creates efficiency gains, lowering significantly shipment costs. There is also an observable

increase in consumer satisfaction comparing benchmark and CDS I to CDS II (1.0213 and 1.0254),

due to benefits some clients incur from shorter than 11 days delivery times in some cases. Cor-

respondingly, the reduction due to combined shipment ranges from 0.47% of input purchases for

CDS I (in the simulated example: £1 909) to 1,72% of input purchases for CDS II (in the simulated

example: £5 103).

Naturally, the shipment cost reduction can be redistributed from the e-retailer to the con-

sumers. Result for this scenario are presented in columns (4) for CDS I and (5) for CDS II.

Consumers automatically buy more from the e-retailer, but total purchases increase due to in-

come effect induced by price reductions. Namely, with the average price decreasing by 0.47%

for CDS I and 1.72% for CDS II, relative income of the consumers subsequently grows which

fosters the growth of purchasing power and thus purchases. Obviously, this is a fading out pat-

tern36. Nonetheless, more coalitions are formed with fairly comparable coalition size, resulting in

significant average shipment cost reductions.

As suggested earlier, the ex ante reduction can alternatively be distributed only among the

coalition members (e.g. returned to their accounts). Evidently, the calculated reductions of £1

909 in the case of CDS I and £5 103 for CDS II might result in higher eventual price reductions

if their coverage is reduced to coalition members only. Similarly, income effect will be stronger

among these consumers. With all the reservations described earlier, such a distribution strategy

would boost the consumer satisfaction to 1.0233 and 1.0254 for CDS I and CDS II respectively.
36In addition, we are not modeling the profit maximizing behavior of the e-retailer, hence we are unable to

ascertain if price reduction is rational. More precisely, e-retailers in our model simply provide a variety of goods

at certain pre-defined prices and do not have any explicit pricing strategy. Therefore, we cannot undermine or

confirm the validity of the amount of the price reductions. Standard profit maximising behaviour could make these

reductions even larger if the demand elasticity was above unity for respective prices.
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Simulation results show that the size of average coalition as well as the number of non-trivial

coalitions remain fairly stable (average coalition size reach to 2.09 and 2.35, while the number of

pooled deliveries to 1456 and 4651).

5.1 Combined delivery systems under ”doomed to default” scenario

As suggested earlier, the warehouse management system in which clients are only offered goods

that are already in stock (or, equivalently, are informed of the waiting times including the delivery

time from the suppliers) can never result in deception of the customers. More explicitly, recalling

Figure (1), under the ”commitment” scenario, customers can never arrive right of the expected

disutility. Correspondingly, only with CDS II can they appear left of this point. However, under

”doomed to default” scenario with CDS II some clients might be forced to wait longer for two

reasons already: (i) their good is not in stock and will only arrive once the sufficient number of

orders is collected by the e-retailer; (ii) their good is in stock but their shipment is combined with

another order that is not in stock for reasons described in (i). The latter option is equivalent

to contagion effect, where the warehouse management system shortcomings spread through the

exogenous coalition formation mechanism. Thus, it seems particularly interesting to inquire this

scenario.

[Table (3) about here.]

Results of simulation under ”doomed to default” scenario with the same parameters as previ-

ously. Similarly to Table (2), no combined delivery service are compared to CDS I and CDS II

- columns (1), (2) and (3) respectively. Similarly as above, general ex ante price reduction are

reported in columns (4) and (5) for CDS I and CDS II, respectively.

As expected, these results demonstrate a decrease in consumers’ satisfaction due to delivery

delays. Interestingly, the size of the contagion effect must be negligible compared to the number

of clients who benefit from earlier arrivals, since consumers’ satisfaction is highest under CDS

II scheme. Nonetheless, the number of e-purchases is lower (due to lower overall coefficient of

consumers’ satisfaction from interactions with the e-retailer), while the e-retailer’s share in the

overall sales falls short of the outcomes under ”commitment” scenario.

The most important conclusion, however, concerns the possible size of the contagion effect. If

orders are pooled while no delays can occur (as under ”commitment” scenario), CDS can only

introduce benefits. However, if delays are in principle possible (as under ”doomed to fail” scenario),

one delayed delivery can be transmitted to other clients, thus deteriorating their satisfaction as

much as the satisfaction of the consumer who ordered this particular good. Of course, the more

orders in coalitions, the wider the range of the contagion effect. On the other hand, the larger

the coalitions, the higher the shipment cost reduction and thus possible compensation to the

consumers can also be higher.
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The size of the contagion effect due to the CDS combined with the possible price reductions

for consumers can be inferred from the satisfaction of consumers in Table (3). The satisfaction

falls comparing to the benchmark when CDS I is introduced exactly due of the contagion effect.

Conversely, satisfaction increases after the introduction of CDS II because some orders are delivered

before time (it is more beneficial for the e-retailer to shorten the handling time - at an additional

expense - for some orders than to deliver them later, when other ordered goods arrive in stock),

thus overweighing the impact of delivery defaults.

6 Analysis of sensitivity to parametrisation

As it was pointed out before there are three important assumptions concerning the benchmark

parametrization which might have significantly influenced the results, either biasing them or ex-

cessively increasing their size. These are: (i) population density (the number of customers at

each location), (ii) handling time length (the relation of handling time to shipment time)37 and

(iii) the comparative advantage ratio (the ratio between shipment cost and price of products in

relation to the price edge enjoyed by e-retailers). The sensitivity analysis with respect to these

three assumptions shall now be presented.

6.1 The effect of population density

The results concerning the ratio of number of consumers to the number of locations are presented

in the panel on Figure (8). As can be inferred, satisfaction is fairly stable for all the densities.

Average size of non-trivial coalitions obviously grows with the increase of population density, but

room for shipment cost reductions appears as soon as there are at least two people per one location.

The positive values for the density of one result from stochastically probable but rather unfeasible

in reality occurrence, that one person places two separate orders within a time sufficiently short

to permit combined delivery. Similar holds for the average cost of shipment, as depicted by Figure

(9) and for average size of combined order, as depicted by Figure (10).

[Figures (8), (9) and (10) about here.]

From the analysis of these graphs, one could not support the hypothesis that results presented

in Table (2) and (3) are driven by the choice of 2000 consumers populating 300 areas. Interest-

ingly, results are fairly stable over warehouse management system chosen (WMS 1 and WMS 2),

distinguishable only for CDS I and CDS II cases.
37For the sake of argument in the case of CDS II it was assumed that handling does not prolong waiting times,

which still cannot exceed 11 days. However, the longer the handling time, the larger the ”space” for coalition

formation and thus possible range of cost reductions.
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6.2 The effect of handling time

If one considers the choice of handling time duration despite the initial choice of 3/8 days pro-

portion, here too results seem to be robust as well. Of course, differences are stark between

”commitment” and ”doomed to default” scenarios, but remain essentially stable within each of

these cases.

[Figures (11), (12) and (13) about here.]

Naturally, the higher the time, the lower the average consumer satisfaction - Figure (11), the

size of average combined order - Figure (12), and consequently the shipment savings - Figure (13).

This is mainly because the purchases over the internet will be less frequent. On the other hand,

Figure (12) suggests a fading out pattern, which implies that even for longer waiting times, there

is still room for e-markets.

6.3 The effect of comparative edge

Finally, it seems that the simulation results are independent of the assumed comparative advantage

ratio with respect to the shipment/price relation. More specifically, consumer satisfaction remains

essentially unaffected, as depicted by Figure (14), while average combined order size and shipment

cost reductions grow mildly the more competitive e-retailer becomes - Figure (15) and Figure (16),

respectively. Both of these patterns follow intuitively from the model specification. We observe

no stark changes or unpredicted drops/hikes with the change of this ratio.

[Figures (14), (15) and (16) about here.]

This finding is actually a very strong confirmation of the chosen parametrisation. Namely,

an argument raised against the simulation results might have been put, that customers only buy

on-line, because we have artificially exaggerated the comparative pricing edge by the e-retailers.

This ”inflated” market base - in turn - created room for irrationally high gains from combined

delivery service and the resulting shipment cost reductions. In fact, the main driving force behind

willingness to buy on-line - consumer satisfaction - is extremely stable over the alternative spec-

ifications. Results of combined order size and shipment cost are naturally susceptible to CDS I

and CDS II inclusion, but they are stable over the warehouse management systems. This suggests

that potential benefits for e-retailers to abuse consumers’ trust in the declared delivery times are

not outweighed by the disappointment ”punishment”.

6.4 The effects on welfare

Last, but not least, one needs to analyse if combined delivery service is indeed welfare improving.

In order to guarantee long-term profitability of this undertaking, e-retailers would need to be

assured that over the longer perspective consumers observe gains in terms of satisfaction. Average

25



satisfaction - as reported above - is only a synthetic measure. Consequently, it could actually

occur that e-retailers loose some clients, while some of them observe explosively high utility levels.

To inquire how is general welfare affected by combined delivery service, we have analysed the

distribution of consumer satisfactions under all scenarios38. This is depicted by Figure (17).

[Figure (17) about here.]

Four panels represent distributions (kernel density estimates) for varied scenarios in this model.

Naturally, the case of no combined delivery service overlaps perfectly with CDS1 under ”commit-

ment” warehouse management system (top left panel). Consistently, scenarios allowing CDS are

shifted to the right with better (higher satisfaction) outcomes more frequent. This implies directly,

that consumers - as a whole - are better off upon the introduction of combined delivery service.

Consequently, at least weak Pareto improvement can be proven - e-retailers increase their profits

while customers as a group are at the very least in a comparable situation.

6.5 Business case

As demonstrated by the sensitivity analysis, our results do not seem to be driven in any way

by the choice of the crucial parameters. This property is especially important from the business

perspective. Namely, our conclusions of considerable economic gains due to the shipment cost

reductions (especially in the scenario allowing transfers back to the customers) are robust to the

potential specificities of particular markets. Putting some real-world numbers allows to obtain a

business-wise conclusion from the model.

Namely, consider that over w weeks (5w working days) there are 3 orders made from a certain

area with separate shipment costs c1, c2 and c3, which enable some form of combined delivery

(sufficiently close period of time between orders). For such a setting, there are five possible

configurations of the orders. Assuming that the purchases are independent events, probabilities of

every possible combination (each separately, all together and three pairs) one can easily compute

their probabilities. Computing the theoretical expected value of savings from combining shipments

yields:

EV (CDS) =
10w − 1

25w2
(c1 + c2 + c3)− 5w − 1

25w2
(f (c1 + c2)− f (c2 + c3) + f (c1 + c3)) (12)

− 1
25w2

f (c1 + c2 + c3) ,

where the exact value of expected savings depends on the cost function f(.) as well as the ratio

of respective costs c1 : c2 : c3. For a square root function of the sum of shipment cost, i.e.
38In principle, to prove strict Pareto improvement, instead of consumer satisfaction distribution, one should focus

on the distribution of the difference between satisfaction under no CDS scenario and all eight others. However, in

our setting income arrivals, prices and purchases are governed by a stochastic scenario, which implies that each time

a simulation is run, ”a consumer” is not the same as in the previous analysis. Therefore, calculating the difference

is virtually impossible.
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f(c1 + c2 + ... + cn) <
√
c1 + c2 + ...+ cn and with c1 = 1 L; c2 = 2 L and c3 = 3 L one obtains

an expected shipment cost reduction of 11.24%. If one considers that e-retailers operate on profit

margins of approximately 3-6%, where shipment costs provide on average up to 10% of price paid

by the consumers, such a reduction in expenses may serve to actually double the eventual profit

margin ex post or to halve the mark-up forced on consumers ex ante.

The applicability of suggested combined delivery schemes is actually quite probable. Naturally,

none of the delivery service providers would be interested in implementing (on e-retailers behalf)

combined delivery service, because exactly his profits (resulting from economies of scale) are ripped

off. However, e-retailers may use publicly available ”access points” (like Boots in the UK, post

offices, drug stores networks, even traditional retailers operating under the same brand name, e.g.

Barnes&Nobles or Borders). In many countries, purchases from e-retailers are delivered to the

closest post-offices (eg. Germany, Poland), while in some others one already observes attempts

to lower shipment costs by making it possible to the customers to pick up ordered items from

relatively frequently visited sites. With the decrease in product prices, this is likly to become an

increasingly important area of comparative advantage with reference to traditional retailers and

e-competitors. We believe one is likely to observe more of such initiatives emerging.

7 Other extensions and future work

In the previous sections we have analysed two interesting but relatively simple combined delivery

service schemes. However, one can think of a whole spectrum of algorithms to pool orders, com-

prising even treachery by the retailer in waiting time information disclosure. One such examples

would be CDS with surplus and information sharing, where buyers are informed about the CDS

system even before they make a decision to purchase a good and they are offered the surplus from

CDS as a form of compensation in the case of prolonging the delivery period. In the short-term

this CDS strategy is not directly profitable to the e-seller, but in the long-term can bring more

profits from increased demand which follows from two main sources: (i) higher propensity to buy

in the e-marketplace and (ii) lowering of the effective prices.

While making a decision to make a purchase the client is offered to participate in CDS III by

choosing one of the options from the set Ω:

Ω =
{

(0, 0, 1)
(
µ̃1, d̃1, r̃1

) (
µ̃2, d̃2, r̃2

)
. . .

(
µ̃k, d̃k, r̃k

) }
(13)

where µ̃i are discounts offered against delays d̃i and r̃i indicate the probability that the offered

discount is actually achieved for i = 1, 2, ...k, i.e. the odds that an order will be pooled together.

If r̃i than all the risk is born by the e-retailer and are not visible to the client. Conversely,

a mechanism where the risk is announced by the e-retailer and born by the customer is also

possible, as well as all the intermediate solutions.

Whatever risk sharing rule is introduced, orders are subsequently pulled according to CDS II,
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subject to the consent of customers. Note, that contrary to the case of CDS I and CDS II, in CDS

III, even under the ”commitment” scenario, delays are possible in principle, but they are not going

to deteriorate consumers’ satisfaction as delays are now consulted with the customer. In all forms

of CDS III it is crucial to appropriately evaluate Ω elements, i.e., correctly predict the probability

of success, which obviously can follow only from the registers of actual sales. Evidently, the

negotiations mechanism requires certain effort at the side of consumers. Nonetheless, this form

of combined delivery service mechanism could be particularly valuable in B2B e-marketplaces,

where customers do exercise the communication effort on an everyday basis while risk sharing and

information disclosure are common characteristics of relations even without CDS.

The exogenous coalitions formed by the e-retailer can also be supplemented with the endoge-

nous coalitions emerging between the customers. There are, however, difficulties in designing an

efficient and user friendly protocol of shipment endogenous coalition formation. Note that whereas

shipment savings can be considerable for the e-retailer, they are certainly less important from the

individual point of view.

The results of this paper are undoubtedly influenced by the form of the utility function imposed.

Notably, the parametrization of α, β and γ implicitly defines how many of the customers are

interested in the e-purchases at all, how many of them are willing to switch subject to the particular

offer, etc. Furthermore, the quadratic function influences the size of the discount savings. It can

be argued that the linear quadratic form of the (dis)utility function punishes small delays of goods

with a very long delivery time too greatly. Hence, it could be interesting to consider more carefully

the specific characteristic of time in the utility function. Observing the sensitivity of results to

parametrization of the utility function as well as to the functional form of the curve seems crucial

to confirm the generality of this paper findings.

Finally, as was already mentioned in section 3.4, in this setting customers are not Bayesian

in the sense that they have explicit expectations formation mechanism. In the case of a delivery

delay, their opinion about the e-retailer is influenced, thus influencing the customer’s future choice

between an e-marketplace retailer and a high street shop. However, they are not in any sense

evaluating the information about delivery date provided by the e-retailer. In this sense, they

unambiguously trust e-retailer, while the mechanism of consumer satisfaction is more of a retalia-

tion scheme than forward looking device. Extending the framework to comprise the expectations

component seems a valid direction of future research.

8 Conclusion

Spontaneous coalition formation can be performed by buyers on their own. People exhibiting

common characteristics (e.g. inhabiting one ZIP area) could meet and agree on their needs,

subsequently posting a combined order on the e-marketplace. Obviously, they would not notify

the e-retailer about the coalition they have formed and they alone would enjoy the benefits of any
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volume discount as well as any shipment discount, if a combined delivery service was available.

This scenario, however, involves a coordination effort, thus imposing a necessary cost, a cost

that is not subadditive in a sense that all coalition members need to bear it irrespectively of the

number of buyers already forming a coalition. Moreover, unlike in some of the coalition formation

approaches, this cost cannot be overcome by the means of silent participation strategy.39 One

could argue, that these costs are still sufficiently high to prevent the emergence of endogenous

coalitions in our everyday life, thereby explaining why one rarely finds them in reality.

Although a convincing argument, this paper provides an alternative explanation. So far in the

literature it was assumed that this cost is overweight by the coalition members’ ”fee” in favour of

the most active agent bundling the orders together. Consequently, a more active agent is nothing

but a shop - one more intermediary facilitating the flow of goods. This paper argues that an

exogenous coalition formation mechanism can be implemented with the retailer taking the role of

the coordinating agent, bundling orders from similar locations in order to benefit from a shipment

discount operating still on his attributive volume discount.

Collecting purchases from different locations, an e-retailer is in possession of a unique advantage

vis-a-vis potential coalition members, namely he knows already what purchase orders have already

been placed. This allows him in principle to offer a combined delivery service to buyers that came

later with their purchase orders, thus overcoming the informational cost. Importantly, coordination

issue can pose an obstacle to coalition formation also in another aspect. Notably, some of the

potential coalition members may have delivery times considerably shorter than some others, thus

threatening the stability of a coalition. Therefore, optimal stock levels are affected adversely by the

introduction of CDS; for a retailer with lower stock levels coalitions can be formed less frequently

than for those with higher availability of items ceteris paribus.

This paper demonstrates that a combined delivery service can constitute an exogenous coalition

formation mechanism, while the rentability of this solution depends on the preferences of the

consumers as well as - crucially - on the relation of shipment costs to the price of goods purchased.

The main findings of this paper are that shipment costs can be reduced within the range of as much

as 10-20% (under the assumed parametrisation). Even the application of simple combined delivery

shipment (CDS) algorithms can thus significantly boost the rentability in the e-marketplace as

well as induce customers to resort to this form of shopping. Consequently, value can be created

economy-wide because resources are released from inefficient uses, with Pareto improvements.

Our results suggest - according to a shorthand intuition - that in a perfect world without

delivery defaults introducing a combined delivery service brings nothing but a Pareto improve-

ment. However, the results are somewhat stronger, demonstrating that in an imperfect world

with delivery defaults, introducing CDS II can actually help to overcome these problems on an
39If a buyer does not express an interest in a good and does not specify preferred delivery dates as well as shipment

costs, no coalition can be formed. Hence, there can be no free-riding in terms of coordinating effort and, unless each

buyer takes an active role, a comprehensive coalition cannot be successfully formed. This is not to say, however,

that the coordination cost should be homogenous for all buyers.
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aggregate scale. Thus, these findings are not susceptible to possible weaknesses of the warehouse

management systems. With combined deliveries, any delay may be spread to other customers,

thus decreasing their satisfaction from e-purchasing. Simulations show that despite this contagion

effect, CDS is still mutually beneficial. However, in this case CDS does not immediately lead to a

Pareto improvement, because some clients are worse off due to the contagion effect. Nonetheless,

introducing an incentive to the e-retailer to incorporate a longer term perspective in his optimiza-

tion problem, going beyond short term profit maximization, guarantees that on the aggregate scale

consumers benefit from a combined delivery service and so does the e-retailer.

30



References

Barnes-Schuster, D. and Bassok, Y.: 1997, Direct Shipping and the Dynamic Single-

depot/Multiretailer Inventory System, European Journal of Operational Research 101, 509–

518.

Bennett, E.: 1985, Endogenous vs. Exogenous Coalition Formation. available on-line at website

of ISMEA, http://www.ismea.org/ISMEA/eapp.index-2.html.

Bloch, F.: 1996, Non-cooperative Models of Coalition Formation in Games With Spillovers, New

Directions in the Economic Theory of the Environment, Cambridge University Press.

Bruhn, M. and Grund, M.: 2000, Theory, Development and Implementation of National Customer

Satisfaction Indices: The Swiss Index of Customer Satisfaction (SWICS), Total Quality Man-

agement 11(7), 1017–1028.

Brynjolfsson, E. and Smith, M.: 2000, Frictionless Commerce? A Comparison of Internet and

Conventional Retailers, Management Science 46(6), 563–585.

Brynjolfsson, E. and Smith, M.: 2005, Models of Multi-Category Choice Behavior, Marketing

Letters 16(3/4), 239–254.

Fornell, C., Johnson, M., Anderson, E., Cha, J. and Bryant, B.: 1996, The American Customer

Satisfaction Index: Nature, Purpose, and Findings, Journal of Marketing 60, 7–18.

Gamson, W.: 1961, A Theory of Coalition Formation, American Sociological Review 26(3), 373–

382.

Hackl, P., Scharitzer, D. and Zuba, R.: 2000, Customer Satisfaction in the Austrian Food Retail

Market, Total Quality Management 11(7), 99–1006.

He, L. and Ioerger, T.: 2000, Combining Bundle Search With Buyer Coalition Formation in Elec-

tronic Markets: A Distributed Approach Through Explicit Negotiation, Electronic Commerce

Research and Applications 4(4), 329–344.

Holahan, W.: 1988, Getting Tough on Crime: Exercises in Unusual Indifference Curves, Journal

of Economic Education 1(29).

Hsu, S.: 2007, Developing an Index for Online Customer Satisfaction: Adaptation of American

Customer Satisfaction Index Expert Systems with Applications. in press, corrected proff,

available online July 2007.

Khouja, M.: 2001, The Evaluation of Drop Shipping Option for E-commerce Retailers, Computers

and Industrial Engineering 2(41), 109–126.

31



Li, C., Chawala, S., Rajan, U. and Sycara, K.: 2003, Mechanisms for Coalition Formation and

Cost Sharing in an Electronic Marketplace. Report CMU-RI-TR-03-10.

Li, C. and Sycara, K.: 2002, Algorithm for Combinatorial Coalition Formation and Payoff Division

in an Electronic Marketplace.

Martensen, A., Gronholdt, L. and Kristensen, K.: 2000, The Drivers of Customer Satisfaction and

Loyalty: Cross-Industry Findings from Denmark, Total Quality Management 11, 544–553.

Mitra, S. and Chatterjee, A.: 2004, Leveraging Information in Multi-echelon Inventory Systems,

European Journal of Operational Research 152, 263–280.

Moulin, H.: 1988, Axioms of Cooperative Decision Making, Cambridge University Press.

Moulin, H.: 1995, Cooperative Microeconomics: A Game-Theoretic Introduction, Princeton Uni-

versity Press.

Osborne, M. and Rubinstein, A.: 1999, A Course in Game Theory, MIT Press.

Pan, X., Ratchford, B. and Shankar, V.: 2002, Can Price Dispersion in Online Markets Be Ex-

plained by Differences in E-tailer Service Quality?, Academy of Marketing Science 4, 433–445.

Reibstein, D.: 2002, What Attracts Customers to Online Stores, and What Keeps Them Coming

Back?, Academy of Management Journal 30(4), 465–473.

Reichheld, F. and Schefter, P.: 2000, E-loyalty: Your Secret Weapon on the Web, Harvard Business

Review 78(4), 105–113.

Ribbink, D., Liljander, A. and Streukens, S.: 2004, Comfort Your Online Customer: Quality,

Trust and Loyalty on the internet, Managing service quality 14(6), 446–456.

Robinson, L.: 2000, Are You A Marketing Victor Or Victim? E-commerce opens a new world of

possibilities for producers... Texas Agriculture, Texas Farm Bureau.

Santos, J.: 2003, E-service Quality: A Model of Virtual Service Quality Dimensions, Managing

service quality 13(3), 233–246.

Shehory, O. and Kraus, S.: 1996, Formation of Overlapping Coalitions and Precedence-ordered

Task-execution Among Autonomous Agents.

Tsvetovat, M., Sycara, K., Chen, Y. and Ying, J.: 2000, Customer Coalitions in the Electronic

Marketplace.

Yamamoto, J. and Sycara, K.: 2001, A Stable and Efficient Buyer Coalition Formation Scheme

for E-Marketplaces.

32



Zeithaml, V., Parasuraman, A. and Malhotra, A.: 2002, Service Quality Delivery Through Web

Sites: A Critical Review of Extant Knowledge, Academy of Marketing Science 30(4), 362–375.

33



Figure 1: Consumer satisfaction depending on the actual arrival date.
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Table 1: Notation of parameters and functions
Notation Description

α, β, γ Parameters of the utility function

π Retailer profits

p = p̂+ s(t) Total price(product price p̂ and shipment cost s(t))

d = w + t Total delivery time (waiting time w and transport time t)

m ≡ [1, 2, . . . ,m, . . . , m̄]T Types of products available

p̂e/hs (t) ≡ [p̂e/hs (1, t) , ..., p̂e/hs (m̄, t)]T Vector of product prices (e for e-retailer, hs for high street shop)

R ≡ {1, 2, . . . , r̄} Vector of locations

N ≡ {1, 2, . . . , n, . . . , n̄} Vector of consumers

jn ∈
〈
j, j
〉
, j ≤ j Per period of income of consumer assigned randomly

θ (nm) =
[
m, pm, t̂+ dn

(
m, t̂

)]
Order of consumer n purchasing good m from e-retailer at time t̂

stfn (t) Consumer Satisfaction

WMS1 Warehouse Management System under ”commitment” scenario

WMS2 Warehouse Management System under ”doomed to default” scenario

CDS I Combined Delivery Service (same day orders)

CDS II Combined Delivery Service (intervals for orders combining)

CDS (t) Combined Delivery Service with transfers to customers
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Table 2: Simulation results under ”commitment” scenario

Simulated variables (1) (2) (3) (4) (5)

No CDS CDS I CDS II CDS I (t) CDS II (t)

High street purchases 18 143 18 143 17 974 16 894 13 282

% of high street purchases 52.7% 52.7% 51.9% 48.3% 36.8%

E-purchases 16 432 16 432 16 628 18 053 22 791

% of E-purchases 47.3% 47.3% 48.1% 51.7% 63.2%

Total sales 407 320£ 407 320£ 412 116£ 444 074£ 584 723£

Costs of sales 348 817£ 348 817£ 353 060£ 381 652£ 481 026£

No. of coalitions (a) 0 1383 4498 1661 6195

No. of orders in coalitions (a) 0 2875 10413 3472 16 369

Share of orders in coalitions 0 17.50% 62.62% 19.53% 71.82%

Average size of a coalition 0 2.08 2.35 2.09 2.45

Costs of shipment (b) 39 151£ 37 242£ 32 139£ 40 644£ 42 270£

Average costs of shipment (b) 2.40£ 2.26£ 1.93£ 2.25£ 1.85£

Average satisfaction 1.0213 1.0213 1.0254 1.0188 1.0212

Notes:

Simulated along the specified parametrisation. For columns (4) and (5) the notation of (t) corresponds

to a transfer scenario calculated basing on the assumption that the expected savings are ex ante reduced

from the prices proportionally to revenues. (a) Only non-trivial coalitions are reported.

(b) Total cost of shipment, including single shipments (i.e. trivial coalitions).
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Table 3: Simulation results under ”doomed to default” scenario

Simulated variables (1) (2) (3) (4) (5)

Benchmark CDS I CDS II CDS I (t) CDS II (t)

High street purchases 19 658 19 730 19 027 18 255 15 359

% of high street purchases 57.30% 57.54% 55.26% 52.56% 43.16%

E-purchases 14 651 14 651 15 402 16 475 20 231

% of E-purchases 42.70% 42.46% 44.74% 47.44% 56.84%

Total sales 364 206£ 362 228£ 382 329£ 406 916£ 491 838£

Costs of sales 310 678£ 309 130£ 326 991£ 349 130£ 426 295£

No. of coalitions (a) 0 1096 3980 1412 5816

No. of orders in coalitions (a) 0 2 253 9 090 2 928 13 870

Share of orders in coalitions 0 15.47% 59.02 17.78% 68.65%

Average size of a coalition 0 2.06 2.28 2.07 2.38

Costs of shipment (b) 34 809£ 33 119£ 30 201£ 37 231£ 38 005£

Average costs of shipment (b) 2.40£ 2.30£ 1.99£ 2.28£ 1.92£

Average satisfaction 0,9957 0,9912 1,0116 0,9972 1,0169

Notes:

Simulated along the specified parametrisation. For columns (4) and (5) the notation of (t) corresponds

to a transfer scenario calculated basing on the assumption that the expected savings are ex ante reduced

from the prices proportionally to revenues. (a) Only non-trivial coalitions are reported.

(b) Total cost of shipment, including single shipments (i.e. trivial coalitions).
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Figure 2: Model structure
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Figure 3: Example of utility maps for α = 10, β = 10. Values of γ specified to -3 in the left panel

and 3 in the right panel.
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Figure 4: Stocks depending on the chosen warehouse management system. Left panel demonstrates

the ”commitment” scenario while right panel depicts the ”doomed to default” one.
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Figure 5: The surplus created by CDS in a multiplayer setting - a simulation.
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Figure 6: The order merging mechanism
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Figure 7: The percent of e-purchases depending on the values of utility function parameters.
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Figure 8: Sensitivity analysis - population density and consumer satisfaction.

Figure 9: Sensitivity analysis - population density and shipment cost reductions.

Figure 10: Sensitivity analysis - population density and average size of combined order.
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Figure 11: Sensitivity analysis - shipment time and consumer satisfaction.

Figure 12: Sensitivity analysis - shipment time and shipment cost reductions.

Figure 13: Sensitivity analysis - shipment time and average size of combined order.
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Figure 14: Sensitivity analysis - comparative advantage and consumer satisfaction.

Figure 15: Sensitivity analysis - comparative advantage and shipment cost reductions.

Figure 16: Sensitivity analysis - comparative advantage and average size of combined order
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Figure 17: Consumer satisfaction distributions under varied scenarios (kernel density estimates).
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