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CHAPTER 6

Social choice and game theory : Recent results with
a topological approach

G. CHICHILNISKY*
University ofEssex and Columbia University

1 . Introduction

This chapter presents a summary of recent results obtained in game and social
choice theories, and highlights the application and the development of tools in
algebraic topology . The purpose is expository : no attempt is made to provide
complete proofs, for which references are given, nor to review the previous work
in this area, which covers a significant subset of the economic literature .

The aim is to provide an oriented guide to recent results, through economic
examples with geometric interpretations, and to indicate possibly fruitful avenues
of research .

The use of topological tools has a long tradition in economic analysis, which
goes back to the work of Von Neumann on balanced economic growth of 1937
and 1945 . He proved a generalization of Brouwer's fixed point theorem that was
the basis of Kakutani's theorem . In game theory and in general equilibrium mar-
ket analysis, fixed point methods are the topological methods most frequently
utilized to show existence of solutions . As a matter of fact, fixed point theorems
are the largest part of applications of topology to economics as a whole . Instead
of topological methods, social choice theory has traditionally been formulated in a
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combinatorial fashion, following the first formal works of Arrow (1951) and
Black (1948) in this area .

However, we shall now show that many problems of game and social choice
theories, when properly formulated, exhibit an intrinsic topological structure
that may be fruitfully examined with algebraic topology tools that go beyond
fixed point theorems, such as homotopy and cohomology theories . This allows
us to tap a wealth of existing topological techniques, as well as to develop new
ones, to resolve problems in social choice and game theories .

This chapter studies certain social choice paradoxes and their resolution, the
relation of a fixed point theorem with the social choice paradox, the equivalence
of the Pareto condition and the existence of a dictator, majority rules, aggrega-
tion in large economies, and the aggregation of Von Neumann-Morgenstern
utilities for choices under uncertainty .

Within game theory, we summarize results on the manipulation ofgames, the
existence of Nash equilibrium of certain non-convex games and the fairness of
these games, and the existence and characterization of strategy-proof games, a
problem that appears in the literature on economies with public goods .

2 .

	

Social choice

Social choice theory is concerned with providing a rationale for collective deci-
sions when individuals have diverse opinions . Voting is an obvious way in which
societies aggregate individual preferences into collective preferences . It has been
known for a long time that majority voting may be in contradiction with certain
basic criteria of rationality of preferences, such as the transitivity of the social
choice ; this phenomenon is usually called the "Condorcet" effect ; Condorcet
first formalized it in 1785 in a book on the theory of elections . The general theory
of elections became a fertile field of research following the work of Black in
1948 and Arrow in 1951 . Arrow stated formally a set of apparently reasonable
criteria required for the aggregation of individual preferences, and proved that
they are inconsistent .

One way of formalizing the problem is as follows : a voting procedure typically
takes into account only the relative value that the individuals assign to different
choices (i .e . ordinal preferences), rather than the intensity with which they pre-
fer one choice to another (e .g . preferences derived from utilities) . This is one
source of the social choice paradox, because, as we shall see, spaces of ordinal
preference are rather different from spaces of utility functions . Utility functions
are real-valued functions and as such can be aggregated or summed . Spaces of
utility functions are linear, and, in particular, topologically trivial or contrac-
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tible .' Instead, spaces of ordinal utilities are not linear, they cannot be deformed
into linear spaces, and furthermore they are not topologically trivial . This will
be seen to be the source of the social choice paradox because contractible spaces,
and only them, admit appropriate aggregation rules (see theorem 10) .

We now need some definitions .
The social choice problems studied here are similar to procedures of selec-

tion of a vector of public goods, and therefore lend themselves naturally to repre-
sentation in Euclidean space . Let X be a space of alternatives or choices, con-
tained in the positive orthant ofEuclidean spaceR" , i .e . Rn+ . Assume X is a cube
in Rn+ . One can also consider more general cases ; however, since the results are
topological, they will be automatically valid for continuous deformations of all
objects under consideration .

We use here the notation ofChichilnisky (1980d) throughout, and the reader
is referred to it . A preference p is a C' vector field over the space of alternatives,
which is locally integrable, see Debreu (1972) . This means that to each alterna-
tive x one attaches a vector p(x)ER" (in a continuously differentiable fashion)
which indicates a gradient or the direction of the largest increase of utility, i .e .
the normal to an indifference surface of an utility . Since we are considering here
ordinal preferences, it is the direction rather than the length of the vectors that
matters . Therefore, we normalize the vectors at each point to be of length 1, i .e .
II p(x) II = 1 dx in X (see fig . 6 .1) . P represents the space of preferences over X.

Figure 6 .1 .

	

Apreference over Rz : p (x) is the gradient vector at a choice x.

'

	

A topological space X is topologically trivial or contractible when it admits a con-
tinuous deformation through itself into one of its points . It is therefore topologically equi-
valent to a point. Formally, X is contractible if there exists a continuous map f : X x [0,11
-.X such that f (x, 0) =xbx in X, and f(x, 1) =x., all x in X, some xo in X.
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With k individuals, a social choice rule 0 is thus a map that associates a collective
preference to each k-tuple of individual preferences, i .e .

0 : Pk , P.

Pk is called the space of profiles of individual preferences . The continuity of
0 is defined according to the usual topology for vector fields, implying that
proximity of preferences in P is equivalent to the proximity of their indifference
surfaces . Anonymity is defined by the condition 0 (p, , .- PO = 0 (Pn, , -- Pnk)>
where n is any permutation ofthe set of integers { 1, . . ., k} . Respect ofunanimity
means that, whenever all the individuals have identical preference (for all possible
choices), then the outcome has the same preference as well, i .e .

0=(P, . ..,P)=P,

	

'dp in P .

0 is Pareto if the outcome

	

(p, , . . ., Pk) prefers choice x to y whenever all prefer-
ences in the profile (P, , . . ., Pk) prefer x to y . Note that respect of unanimity is
a much weaker condition than Pareto, since it is only binding when all individuals
have identical preferences for all choices . 0 is dictatorial if 0 (P, , . . ., Pk) -Pd for
some d E (1, . . ., k}, for all profiles (Pl, . . ., Pk) in Pk . Note that anonymity is a
stronger condition than non-dictatorship .

In order to simplify the presentation, we now consider a particular case :
preferences are linear, i .e . they are gradient fields of linear utilities and there are
two voters . By an appropriate choice of origin, as explained in Chichilnisky

B

A

B

Figure 6 .2 .

	

The space of profiles of linear preferences on R' , with two voters .
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(1979b), in this particular case the space of preferences P = S' , the one-dimen-
sional circle in R 2 . The space of profiles of two voters is thus

called also the two-dimensional torus (see fig . 6 .2) .
In what follows D will represent the unit disk, D = {(x,y : x2 +y2 6 1)}, and

aD its boundary . The circle P x P = S' x S' is equivalent to a square in which
the points on opposite sides have been identified, as in the right-hand side of
fig . 6 .2 . A is the set {(p, po ), pE S' }, and B = {(po, p), p E S' } . The boundary of
the triangle T is the union of the diagonal A = {(PI, P2): Pi = P2 } with A and B,
i .e . a T = A U A U B . This can also be represented by three circles joined at one
common point, as in fig . 6 .3 .

Figure 6.3

We need a definition from algebraic topology . The degree of a continuous map
f: S' -* S' , denoted deg (f), can be described as the number of times f(S') "cov-
ers" S' with the same orientation . For instance, if f is the identity map on S' ,
then deg (f) = 1 ; if f(p) = 2p (p in radians), then deg (f) = 2 ; iff(S') does not
cover S' then deg (f) = 0 . If a functionf changes orientation (e .g . f(x) = -x),
then deg (f) is negative . See Spanier (1966) for a complete definition of "degree" .
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2.1 .

	

Social choice paradoxes and fixed points theorems

The following theorem is valid for all preferences in P (not necessarily linear), any
finite number of voters, and any finite dimensional space of choices ; the proof of
the general case is in Chichilnisky (1980d) :

Theorem 1 .

	

There is no continuous, anonymous social choice rule

that respects unanimity .

In the particular case considered here, a simple geometrical proof can be given .
Let A be the diagonal . Then A is equivalent to the circle S' , and we can define
the degree of 0 on A, O/0 : A -+S' . If ¢ respects unanimity, then 0 (p, p) = p b'p,
and thus

deg (O/ 0) = 1 .

We can also define the degree of the restriction of 0 on A and B, since both these
sets are equivalent to circles . Anonymity of0 implies

deg (0/A) = deg (th/B) .

	

(2)

Since the circle A can be continuously deformed within S' x S' into the union
A U B (see fig . 6 .3) it follows that

deg (O/0) = deg 0/(A UB).

On the other hand, the degree of ¢ on A U B is the sum of the degree of0 on A
and on B:

deg 0/(A U B) = deg (0/A) + deg (0/B).

	

(4)

From (1)-(4) we obtain a contradiction because these equations imply that
1 is an even number . Thus, no continuous rule respecting unanimity can be anony-
mous .

Remark .

	

The above result can be extended to preferences that admit satiation ;
see, for example, Chichilnisky (1982a) . It should be pointed out that the linear



preference whose gradient is zero (which is not considered here as a possible
social outcome) is not merely a preference admitting satiation, but rather the
preference which is indifferent among all possible choices . Clearly, such a social
choice outcome would leave the social choice problem unresolved .

We now discuss briefly the connection between the paradox and fixed point
theorems . The following result is proven in Chichilnisky (1979b) .

Theorem 2 .

	

The existence of a continuous anonymous social rule respecting
unanimity (as in theorem 1) is equivalent to the existence of a continuous func-
tion from the disk D into itself, without any fixed point .

The idea underlying this result is simple . One proves that the paradox of theo-
rem 1 is equivalent to that of extending a continuous function g defined on the
boundary of the disk aD, g : aD -* aD, into another function f from all of the
disk D into aD, f : D -* 3D. fis called an extension of g because it coincides with
g in their common domain, i .e . the following diagram commutes :

inclusion

D

g1A(P,P)=P,

	

VP-=S' ,

g1A = Po

	

and

	

g1B --_ po,
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The equivalence between the paradox and the extension problem of (5) can
be explained as follows . If T is the triangle in S 1 x S t indicated in fig . 6 .3, its in-
terior t is equivalent to the interior of disk 6, and the frontier aD corresponds
to A U A U B . Note that on the set T, the conditions on the rule 0 are only re-
strictions of the behaviour of 0 on A, on A and on B : anonymity requires that
¢/A = ¢/B, and unanimity is 0/A = id A.

One sees immediately that a continuous anonymous map respecting unanimity
always exists on a T ; for example :

where A fl A (1 B = (po , p o ) . Therefore the paradox could be solved if such a
function g : a T -* S 1 can be extended to anotherf: T -> S 1

. Since a T - aD and
S 1

- aD, the problem is equivalent to the extension of g : aD -> aD into f : D -+
aD, as in diagram of (5) . But such an extension exists if and only if deg (g/aD)
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= 0 . Since this latter statement is equivalent to Brouwer's fixed point theorem,
see Chichilnisky (1979b), this explains the connection between a fixed point
theorem and the paradox .

2.2 .

	

Topological equivalence of the Pareto condition and the existence
ofa dictator

Theorems 1 and 2 show that the paradox appears because the seemingly natural
properties of anonymity and respect of unanimity are in contradiction with each
other . These properties are obviously related, but are different, from two axioms
that are the basis of Arrow's theorem : non-dictatorship and the Pareto condition .
However, the two sets of conditions (Arrow's and ours) are not comparable, be-
cause Pareto is stronger than respect of unanimity, while on the other hand
anonymity is stronger than non-dictatorship . In addition, Arrow imposes another,
somewhat controversial, axiom : the independence from irrelevant alternatives,
while here continuity is required . A natural question is whether, despite the dif-
ferences, Arrow's paradox has also a topological basis .

We now show that the Pareto condition is in fact topologically equivalent to
the existence of a dictator, and thus establish the topological basis of Arrow's
theorem . This also establishes that the controversial "independence" axiom is
not needed intrinsically for his paradox, and can be understood as a device to re-
duce the problem to the study of a finite number of choices (indeed, three choices
as in the Condorcet paradox) .
A comment about the domain of preferences may be useful here . While Ar-

row's paradox appears to be valid in principle with monotone preferences (while
our theorem requires that gradients may vary in all directions) in fact this is not
so . This is because the axiom of independence in Arrow's work reduces effec-
tively the problem to preferences over three choices only . Over these three choices,
say a, b, and c, in order to obtain his paradox, Arrow must allow for "Condor-
cet triples", i .e . three preferences ranking these choices as (a, b, c), (c, a, b), and
(b, c, a), respectively . Obviously, no reasonable definition of monotonicity can
be given that makes such Condorcet triples into a set of monotone preferences .
Therefore, Arrow's theorem requires lack of monotonicity as well .

In what follows the results are a special case of the results in Chichilnisky
(1982b) that prove the topological equivalence of the Pareto condition and the
existence of a dictator, for any (finite) dimension of the choice space and any
number ofvoters, using algebraic topology tools .

The following is a proof for a special case, which admits a geometric interpre-
tation . A rule 0 is said to be topologically equivalent to another q5when there
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exists a continuous deformation of 0 into ~, i .e . a continuous function

II : (PxP)x[0,1]-.P,

such that

11 (PI

	

P2 ,0) =0 (PI

	

P2 ),

	

VPi,P2

11 (PI P2,1)=~(Pl,P2),

	

VPJ,P2

We now examine geometrically the Pareto condition . If p l and P2 are two pref-
erences in P, the set of choices that both p i and P2 prefer to x is the "dual cone"

E= {q : (q-Pl)%0 and

	

(q - P2)> 0} .

The Pareto condition requires that O(pi , p2 ) prefers also all such choices to x, i .e .

O(P1,P2)E{q : (q,r)>O,drEE} .

in PxP,

in PxP.

This can only happen if 0 (Pi , P2 ) is in the "dual" of the "dual cone" E, i .e . the
cone generated by (pi , p2) denoted C(p l , P2) (see fig . 6 .4) .
We can also show that if 0 is Pareto, then deg (¢1A) and deg (01B) must be

positive and at most 1 . This is because asp varies over S' , the outcome O(po, p)
must be in the cone C(po , p) . In particular, 0(po, p) cannot cover all of S'
unless p has covered it . The proofofthe next theorem will also show that a Pareto
rule 0 cannot have degree one simultaneously on A and on B. This is because a

Figure 6 .4 .

	

The set shaded in circular lines is the dual cone E corresponding to (P, , P, ) .
The double shaded set is the cone generated by (p, , p,), C(p, , p,).
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Pareto rule is shown in the next theorem to be topologically equivalent to a dic-
tatorial rule, and the degree of a map only depends on its topological equivalence
class . Thus, since the degree of a dictatorial (i .e . a projection) map 11 : S' x S' -r
S' is 1 on one of the sets A or B, and 0 on the other, the same must be true of a
Pareto rule .

Theorem 3 .

	

If 0: P x P -+ P is Pareto, 0 is topologically equivalent to a dictato-
rial rule .

Proof.

	

Let p, and -p, be two diametrically opposed vectors in S' . The Pareto
condition and the continuity of 0 together imply that either q5 (p l , - pi) = pl ,
or else 0 (p I , - p, ) = - p, . Without loss of generality, assume 0 = (p, , -p, ) =
pl . By continuity, we then have 0 (P2, - P2) = P2 for all P2 in S' . Moreover,
O(p l , q) must be different from -p, for all q in S' with q # -p, , since 0(p, ,
q) must belong to the cone C(p,, q) . Thus, for all p, E S' , O(p,, q) * -p, , dq
in S' . Let iT : P x P x [0,11 -+P be defined by

and

7r(PI,P2, t)=

Tr(P1,P2,0)=95 (Pi ,P2)

7 (Pi,P., 1)=Pi,

t(P,)+(1-t)O(P1,P2)
11t(p,)+(1 -t)0(P,,P2) II

In view of the above remarks, the denominator of this expression never vanishes,
and therefore 7r is a continuous map . In addition :

so that 7r defines a continuous deformation of 0 into a dictatorial rule with the
first voter as a dictator in this case . This proves theorem 3 .

The result just proven is a special case of a general theorem proven in Chichil-
nisky (1982b), where it is shown that any Pareto rule, for any number k > 2 of
voters and any dimension n > 2 of the space of choices, corresponds to a projec-
tion, i .e . a dictatorial rule . For n > 2 an extra condition of non-negative associa-
tion is required .

Figure 6.5 gives an example of a social choice rule defined for two agents,
with linear preferences and two-dimensional choices, ¢ : S' x S' -+ S' . The curve
drawn in the left-hand figure is the set {¢-' (p)}, the inverse image under ¢ of
an outcome p in S 1 . Under the assumption of smoothness and regularity, JO -1



(j5)} is a one-dimensional manifold, by the global version of the implicit function
theorem . Note that each point p in S' is attained exactly twice (with the same
orientation) as a value of the map 0 restricted to either set A or B . Therefore de-
gree O/A = 2, and thus 0 cannot be Pareto in view of the above ; of course, 0 can-
not be deformed into a dictatorial rule either .

2.3.

	

Decisive majority rules

A social choice rule is said to satisfy a decisive majority condition if in certain
particular cases the outcome chosen coincides with that of the majority, namely
in those cases when the voters can be divided into two groups, within each graph
voters have identical preferences, and across groups they have opposite prefer-
ences . Formally, 0 is a decisive majority rule if for all profile (p l , p2, . . ., Pk) such
that pi = p or pi = - p, V i = 1, . . .,k, then

0= (pi IP2, . . .,p�)=p

if the number of voters with preference p exceed those with preference -p.
A majority rule clearly satisfies a decisive majority condition, but the converse

is obviously not true . This is because the decisive majority condition is only bind-
ing in the particular case in which the voters can be divided into two totally in-
ternally homogeneous groups for all possible choices, and the two groups are com-
pletely opposed to each other, also for all possible choices . Therefore, a decisive
majority condition is much weaker than a majority condition .

Social choice and game theory
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Figure 6.5
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In our next result we explore the structural stability of decisive majority rules .
The overall continuity of a rule q5 can be interpreted as structural stability, be-
cause it requires that a small variation (or observational error) of the data of the
problem (individual preferences) does not produce drastic changes in the outcome .
Since preferences are functions from the choice space with values of R" (vector
fields), continuity of 0 corresponds to the notion of structural stability ofmaps
on function spaces used frequently in mathematical physics and biology ; with an
appropriate topology, it corresponds also to the notion of Liapunov stability used
frequently in economics . The following theorem is proved in Chichilnisky (1981) :

Theorem 4.

	

Any rule satisfying the decisive majority condition is structurally
unstable .

The following is an immediate corollary :

Corollary 5 .

	

Majority rules are structurally unstable .

2.4. Intensity ofpreference and Von Neumann-Morgenstern utilities

The preferences considered until now have been ordinal, and the intensity of
preferences was not recorded . Such preferences rank choices in a given order, but
do not measure the difference in the intensity of preferences between, for ex-
ample, choices a and b, and between c and another choice d. a may be preferred
to b and c to d, but one may want to consider whether a is preferred to b more
than c is preferred to d.

This is precisely formalized in the notion of cardinal preferences . Cardinal
preferences are given by utility representations which are invariant under, and
only under, linear positive transformations . By comparison, the invariance re-
quired of ordinal preferences is far greater, involving all monotonic transforma-
tion (not just linear ones) . In the case of choice under uncertainty it is shown in
Chichilnisky (1980b) that with this definition, cardinal preferences coincide with
Von Neumann-Morgenstem utilities . The result obtained for the aggregation of
cardinal preferences are thus applied directly to the aggregation of Von Neumann
-Morgenstern utilities .

In contrast to all the previous results, we now consider discrete sets of choices,
either finite or numerable . In the finite case the choice space is therefore X =
ix I , . . ., x"}, and we have shown in Chichilnisky (1980b) that the set of (non-
zero) cardinal preferences can be represented by



Each pi describes the utility value of choice xi . In addition, we also consider the
null preference, which is indifferent among all choices, represented by the vector

{0} = (0, . . ., 0) .

Social choice and game theory
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R = {(p, , . . ., p,)(=- R" + : 0 <pt S 1 Vi ; pi = 0 and pk = I for some j, k} .

The space of all cardinal preferences is therefore

Q = R u {0} .

This space has two connected components R and {0} . A similar definition can
be given for the case where there are infinite (countably many) choices . In this
case the space of cardinal preferences is a subspace of Banach space of infinite se-
quences (Chichilnisky, 1980b) .

In what follows we consider rules for aggregation of cardinal preferences : with
k voters, they are functions of the form

q5 : Q
k -> Q.

The social preference which is indifferent among all choices, i .e . {0}, is a per-
missible outcome .

Theorem 6.

	

If the space X of choices is finite, then there exists no continuous
aggregation rule for cardinal preferences 0: Qk -> Q that respects unanimity and
anonymity . This result is also valid for the aggregation of Von Neumann-Mor-
genstern utility functions .

This result is proved in Chichilnisky (1980b) through the study of the topo-
logical structure of spaces of cardinal preferences and spaces of Von Neumann-
Morgenstern utilities . In particular, the following lemma is obtained .

Lemma 7 .

	

With a finite set of alternatives, the space of Von Neumann-Morgen-
stern utilities is not contractible .

It turns out that the topology of the spaces of cardinal preferences changes
drastically with infinitely many alternatives . In this case the spaces of cardi-
nal preferences become topologically trivial or contractible, and we have the fol-
lowing :
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Theorem 8 .

	

With an infinite (countable) number of alternatives, there exists a
continuous anonymous aggregation rule for cardinal preferences 0 : Q k -+ Q re-
specting unanimity, and it is a deformation of a Bergson-Samuelson welfare func-
tion . However, this function is the limit of dictatorial rules on finite subsets of
choices . The same result applies to the aggregation of Von Neumann-Morgen-
stern utilities with countably many alternatives . (See Chichilnisky, 1980b .)

The above results show the difference between spaces of cardinal and ordinal
preferences . For ordinal preferences, we obtained non-existence results when the
choice space X is infinite, such as the cube in Euclidean space of the previous
sections . With cardinal preferences, and Von Neumann-Morgenstern utilities,
we obtain instead non-existence results with finitely many choices, and existence
results with infinitely many choices . One reason for this difference is that spaces
of ordinal preferences are finite dimensional even when the choices are infinitely
many; by contrast, cardinal preferencesand Von Neumann-Morgenstern utilities
define infinite dimensional spaces whenever the set of choices is infinite . The fol-
lowing subsection will explore another characteristic of infinity, namely the case
of large economies or economies with infinite populations . Recall that all the re-
sults until now have referred to finitely many voters only . The following results
study finite dimensional choice spaces but infinitely large populations .

2.5.

	

Social choice in large economies

As seen above, infinite dimensionality produces significant differences in the re-
sults . The reason is that the topology of infinite dimensional spaces is rather dif-
ferent from that of Euclidean spaces . A particular characteristic that affects our
results is that while in Euclidean spaces the circle S' and in general any (hollow)
sphere is not contractible or topologically trivial, in infinite dimensional Banach
spaces show hollow spheres are contractible (see, for example, Kuiper, 1971) .

Theorem 8 .

	

Let P°° = X°= 1 P be the space of profiles of a countable number of
agents and P the space of ordinal preferences defined on n-dimensional Euclidean
choice space . Then the rule 0 (pi , . . ., Pk, . . .) = "Mk-- pk is continuous, Pareto,
and non-dictatorial (see Chichilnisky and Heal, 1979b) .

A note on the concept of limit : if the sequence of vectors {p ;(x)} has a stan-
dard limit in Euclidean space for all choices x, then the outcome of the rule coin-
cides with this limit . Otherwise, the limit is defined by means of a free ultrafil-
ter of the integers {l, 2, . . ., k, . . .} . (See definition in Chichilnisky and Heal,
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1979b.) It can be seen that the rule 0 is well defined, and continuous with re-
spect to the standard product topology ofP°° . It is worth noting that the litera-
ture in this area succeeded previously in proving the existence of Pareto, non-dic-
tatorial rules (see, for example, Brown, 1974), but not the existence of such con-
tinuous rules . An example is provided in fig . 6 .6 . In this figure, p (x) = lim e pi (x)
is by definition the image o ofthe sequence ofvectors {p l (x),pz (x), . . .,p, (x), . . .},

Figure 6.6

as in theorem 8 above . In contrast, in Brown (1974) the "winning coalitions"
that decide the outcome are the subsets of a free ultrafilter F of the integers N.
If F is the free ultrafilter over N consisting of the complements of finite subsets
of N, then the collective preference according to Brown (1974) prefers y strictly
to x while lim a pi (x) (our definition) is indifferent between y and x . Note that
the rules of Brown (1974) are in effect discontinuous, because they prefer x
strictly to any point z in the circle to the right ofy, while they prefer strictly any
point z' to the left ofy in the circle, and y, to x .

2.6 . Necessary and sufficient conditions for a resolution ofthe social choice
paradox

The results discussed above show that without restrictions on preferences it is
impossible to eliminate the aggregation paradox . A traditional approach has been
to study conditions to eliminate the paradox, these being given as restrictions on
the domain of individual preferences . The first such conditions were given by
Black (1948) who introduced the notion of "single peakedness", meaning that
one can order the (finite) set of choices in a line in such a way that each agent
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has a unique alternative who he or she prefers best (called peak), and that to the
right and to the left of this alternative choices become progressively less desirable
as they are further away from the peak . This remains the only sufficient condi-
tion which is generally accepted and utilized to solve the paradox (see also Sen,
1970) .

In another paper Chichilnisky and Heal (1979a) found that there exists a do-
main restriction which is both necessary and sufficient to eliminate the paradox
of theorem 1, and this is that the space of preferences be contractible or topo-
logically trivial . This condition is equivalent to "topological" unanimity of pref-
erences since, as we saw, a preference space is contractible if it can be continu-
ously deformed through itself into one of its points . The relationships between
this condition and Black's single peakedness are studied in Chichilnisky (1980c) .
In another chapter in this volume (Chapter 7, to which the reader is referred)
contractibility is discussed in some detail .

It should be noted that the following result on the existence of an aggrega-
tion rule 0 : Rk -+R, is for any domain R, and R need not be a sphere of pref-
erences of the sort discussed here . For instance, R could be a set of agendas, or of
agendas and preferences over these agendas, without any requirement of the con-
sistency of an individual's preference over different agendas . Alternatively, R
could be any space of parameters describing individual characteristics ; if these
are preferences, one can also include the total indifference (as in theorems 6 and
7) as well as incomplete preferences on a Euclidean choice space .

Theorem 10 .

	

Let R be a manifold representing individual characteristics . Then
a continuous rule 0 : Rk -+R that respects anonymity and unanimity exists if
and only ifR is contractible .

For a proof see Chichilnisky and Heal (1979a) . It is of interest to note that
if such a rule exists, then it is topologically equivalent to a Bergsonian welfare
function :

Theorem 11 .

	

If the dimension of R exceeds 5, and the boundary aR is simply
connected,' then any continuous rule 0 : Rk -* R which is anonymous and re-
spects unanimity is topologically equivalent to the rule

1 k

~(PI , . ..,Pk)- k ;~ Pk .

This result follows from theorem 10 . This is because if such a ¢ exists, thenR

Z

	

Le . the first homotopy group a, (aR) is zero ; see Spanier (1966) for a description of
homotopy groups .
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must be contractible, and when R is contractible any map ¢ : R k --). R will be a
deformation of a convex addition rule, because by the proof of the Poincare
conjecture (under the conditions) R is deformable into a convex set .

Finally we mention the following :

Theorem 12 .

	

A continuous deformation of the (restricted) space of preferences
R satisfies the "single peakedness" condition if and only if R is contractible, i .e .
if and only if a continuous anonymous rule 0 : R k -*R respecting unanimity
exists .

For a proof, see Chichilnisky (1980c) .

3 . Game theory

The basic mathematical structure of game theory is rather similar to that of so-
cial choice theory . A game consists of two objects : a map that associates an out-
come to each k-tuple of individual strategies, denoted

g : Sk -- A,

where S is the space of messages or strategies and A the space ofoutcomes ; and
of a k-tuple of individual preferences over outcomes. The basic properties of
such a game form g are the subject of game theory, much the same way that the
study of the aggregation maps ¢ : Pk -* P are those of social theory . In both cases
one is concerned with maps from a product space to another space .

An initial difference between these two fields arises from the fact that the
players of the game are aware of the game form g, and therefore choose their
messages in S strategically . In social choice theory, instead, the properties of the
map 0 are the concern of the planner only (individuals are assumed simply to an-
nounce their preferences) and the relevant properties of a social choice rule ¢
are those of justice . In game theory, instead, the properties of a game form g are
of direct interest to the players, and they choose their strategies in order to maxi-
mize the value of the outcome, according to their own preferences .

A direct link between the two problems arises with the issue of manipulability
of social choice rules . In this case the agents are assumed to know the aggrega-
tion rule 0, and to choose strategically the preference they announce to the plan-
ner in order to influence the outcome in their favour . For instance, with an ade-

'

	

The function g is called a gameform .
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quate definition of distance between preferences, the goal of the manipulation
of messages would be to obtain a collective preference as close as possible to
one's own . This section studies such problems . A large body of literature exists
in this area and is not reviewed here . For references see, for example, Chichilnisky
(1982c) and Chichilnisky and Heal (1982), and the original work of Vickrey
(1960), Gibbard (1973) and Satterthwaite (1975) .

An obvious technical difference between social choice and game theories is
that the space of outcomes A can be rather different from the space of messages .
Since an aggregation rule is a map 0 : Pk -+P, while a game form is g : Sk -* A,
where in general A =/-- S, the two problems have a somewhat different structure .
This difference does not appear to be a fundamental one, because the properties
of a map defined on the k-product of a space with itself with values in the same
space, are related to the property of the product space into other spaces that are
significantly simpler, such as outcome spaces generally are .
A second difference appears because of the equilibrium concepts of game

theory . This displaces the topology structure of the problem, towards the geo-
metry or differential topology, since notions of equilibrium are generally based
on maximization .

Manipulation ofgames

As will be seen in what follows, the manipulation of a social choice rule, or more
generally of a game, is in many cases a topological problem, while the existence
and properties of an equilibrium are better studied instead by geometric or dif-
ferentiable means . Under certain conditions, however, the topological analysis
will serve also to establish the existence and properties of the equilibrium of a
game . In particular, the following theorem will show that certain games have a
Nash equilibrium only if they are "unfair" in the sense that they can be manipu-
lated by one player more than by others and this is a topological property . Thus
"more cooperative" solutions than Nash equilibrium are needed in order to se-
cure the equity of games .

Within the games studied below, the players' strategies consist of announcing
a preference, and the outcomes are aggregate preferences . The player wishes,
ideally, to attain an outcome as close as possible to his or her true preference, so
that preference over outcomes are given by distance functions .

If one considers more general outcome spaces, the results can be extended by
noting, for instance, that a social choice in R" may be obtained from the maximi-
zation of social preferences on R' . Therefore, one can construct games h where
outcomes are arbitrary vectors in R" deriving them from the games g constructed
here by the rule



or

h=Mog,

h=Pk FPM A,

where M denotes the maximization operator .
The following result is proven in Chichilnisky (1979a) utilizing homotopy

theory :

Theorem 13 .

	

Ifg: Pk -> P is a continuous game respecting unanimity, then it is
either dictatorial, or else there exists a player that can obtain any outcome he or
she desires by announcing a false preference . In addition, if g is Pareto such a
manipulative player is unique .

Formally, we say that a player (say the first) is a strong manipulator if VpiE P,
and all P2 EP, 3p1 = p, (P2 ) such that

0(P1,P2)=Pi-

Theorem 13 establishes therefore the existence of a strong manipulator for con-
tinuous games which respect unanimity .

Proof of theorem 13 in a special case .

	

Consider now, as before, the special case
where there are two players with linear preferences, so that

g : Sl x Sl -* S1 .

As seen in theorem 1, ifg respects unanimity,

deg (g/ 0) = 1 .
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Since deg (g/ (A U B) = deg (g/0) = 1, and deg g/(A U B) = deg g/A + deg g/B,
it follows that either deg (g/A) * 0, or deg (g/B) =* 0 . Assume, without loss of
generality, that deg (g/A) =* 0 . Then the first player is a strong manipulator, be-
cause the image of A under g, g/A (A), must cover S 1 , otherwise deg (g/A)
would be zero . This means that when the second player states po , there exists
some pl = p1 (po) such that



98

	

Social choice and welfare

for any pi in S' . Since it can be seen that deg (g/A) * 0 implies that deg (g/A')
* 0 for any set A' = {(p, q) : q = qo , pES' }, then the first part of the theorem is
proven . To prove the second part, note that when g is Pareto, as seen above, then

and

QO

0<deg(g/A)< 1

0 < deg (g/ B) < 1 ;

therefore deg (g/A) + deg (g/B) = 1 implies the existence of a unique manipu-
lator . When g is not dictatorial, then the manipulator must lie .

One can now introduce the notion of equity in such a game . Assume g : (S')'
S' is equitable, or fair when either both players can manipulate the game, or

when neither of them can . An example of a game which has one strong manipu-
lator is shown in fig . 6 .7 .

9

Figure 6 .7 . The curves in the left-hand diagram indicate three different hypersurfaces of
the gameg: S' x S' -. S' . Since by unanimity deg g%0 = 1, then for anyq in S', 0-'(q) n A
q. Note that for all q and any q., there is a p such thatg(p, qo) = q.

Figure 6.8 .

	

The union of the curves in the left-hand diagram represents one hypersurface
of the game. This game has two manipulators : for any qo there is a p, such that g(p, , po )
= q, and a p, such that g(qo , p=) =q-
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The game in fig . 6 .7 is clearly not dictatorial . An example of a game with two
manipulators is shown in fig . 6 .8 .

Clearly, a game with two strong manipulators cannot have a Nash equilibrium
when the two players have different "true" preferences, since each player can
attain the most desirable outcome by an appropriate choice of strategy once the
other player's announcement is known . The following theorem establishes the
relationship between existence of Nash equilibria and fairness of games .

Theorem 14 .

	

A continuous game g that satisfies unanimity has a Nash equilib-
rium only if it is unfair .

This is established by an application of theorem 13 . The game is fair when
there are no manipulators, or when both players can manipulate the game . The
first case is eliminated by theorem 13 . In the second case there is no Nash equilib-
rium . Unfairness is therefore necessary for the existence of a Nash equilibrium .

We conclude this section with recent results on the existence and characteriza-
tion of non-manipulable games . Clearly, if one wishes to preserve respect of una-
nimity, in order to prevent manipulability one must restrict the domain of in-
dividual preferences . This is the same procedure that was followed in the first
part of this paper to find solutions to the social choice paradox .

The following results will therefore study games with arbitrary strategy and
outcome spaces ; these need not be preference spaces .

The spaces considered here are smooth manifolds X, of dimension at least 5,
and with simply connected boundaries (i .e . the first homotopy group II I(ax) = 0) .
A straightforward game is one in which the announcement of an agent's true
characteristic is a dominant strategy for each player . We consider here games
which are onto, i .e . the image of g : Xk -+ X covers X.

Theorem 15 . A continuous straightforward game g : Xk -+ X respecting anony-
mity exists if and only if X is contractible .

For a proof see Chichilnisky (1982c) . This last theorem shows the close link
between the conditions needed to solve the social choice paradox (theorem 10)
and those needed for the existence of straightforward games : the necessary and
sufficient condition in both cases is contractibility, or topological triviality . Ag-
gregation problems and manipulable games exist in those cases where the relevant
spaces (of preferences, or strategies and outcomes, respectively) are topologically
complex .

Consider now the case where choices are vectors in R", messages are single
peaked preferences, of the form shown in fig . 6.9, given by the distance function
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Figure 6.9 .

	

A single peaked preference on R z : the curves indicate the indifference surfaces .

k
d(x,Y)= E ai (xi -Yi)

z ,

	

ai >0,

	

Vi=1, . . ., n,
~=t

where Y denotes the "bliss" point . Outcomes are vectors in Rn as well . The space
of messages in denoted M, and the space of outcomesA .
A function g : (Rn)ic

-> Rn is said to be locally simple if it is continuous and
separable, i .e .

g(rl , . . .,rn,ri, . . .,rn, . . .,ri, . . . . rn)

=gi

	

rn),8z (ri, . . .,rn), . . .,gk (ri, . . .,rn),

and for almost all (x 1 , . . ., x k ) E (R n )k , g is either constant, or dictatorial (i .e . a
projection) on some neighbourhood of (x l , ".,xk) in (Rn)k .

The following is a characterization of all straightforward games in this context .

Theorem 16 . g : Mk -* A is a straightforward game if and only if the function g
is locally simple . For a proof see Chichilnisky and Heal (1982) .

Remark .

	

Note that theorem 15 implies, in particular, that whenever g is straight-
forward, then g is continuous .
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For such straightforward games continuity is therefore a result rather than a
condition .

A final result gives conditions for a game to be Nash implementable, i .e . for
the truthful revelation of characteristics, when each player plays a Nash equilib-
rium strategy . Since straightforward games require a more stringent equilibrium
concept, i .e . that truthful revelation is a dominant strategy . It may appear that one
could obtain larger classes of Nash implementable than straightforward games ;
the following result shows that, at least for separable games, this is not the case :

Theorem 17 . A separable regular game g : Mk -* A is Nash implementable only
if g is locally simple . For a proof see Chichilnisky and Heal (1981) .

Remark .

	

The regularity condition requires that g be smooth, and a transversality
condition which is generally satisfied . See Chichilnisky and Heal (1981) .
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