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Abstract

This paper develops asymptotic optimality theory for statistical treatment rules in smooth
parametric and semiparametric models. Manski (2000, 2002, 2004) and Dehejia (2005) have
argued that the problem of choosing treatments to maximize social welfare is distinct from the
point estimation and hypothesis testing problems usually considered in the treatment effects
literature, and advocate formal analysis of decision procedures that map empirical data into
treatment choices. We develop large-sample approximations to statistical treatment assignment
problems in both randomized experiments and observational data settings in which treatment
effects are identified. We derive a local asymptotic minmax regret bound on social welfare,
and a local asymptotic risk bound for a two-point loss function. We show that certain natural
treatment assignment rules attain these bounds.
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1 Introduction

One major goal of treatment evaluation in the social and medical sciences is to provide guidance
on how to assign individuals to treatments. For example, a number of studies have examined the
problem of “profiling” individuals to identify those likely to benefit from a social program; see for
example Worden (1993), O’Leary, Decker, and Wandner (1998), Berger, Black, and Smith (2001),
Black, Smith, Berger, and Noel (2003), and O’Leary, Decker, and Wandner (2005). Similarly, in
evaluating medical therapies, it may be important to provide guidelines on how to assign treatment
based on patient characteristics. In this paper, we develop an asymptotic optimality theory to
guide comparison of such statistical treatment assignment rules, and show how to construct optimal
procedures based on semiparametrically efficient estimates of treatment parameters.

Some of the early work on hypothesis testing adopted the Wald statistical decision theory
framework, viewing tests as formal procedures for making decisions about treatments based on
past data. For example, Karlin and Rubin (1956) show that for models satisfying a monotone
likelihood ratio property, the class of one-sided tests is essentially complete for a range of loss
functions associated with treatment assignment problems. However, much of the later work on
hypothesis testing has not considered the risk properties of tests viewed as treatment assignment
procedures. Manski (2000, 2002, 2004) and Dehejia (2005) point out that the problem of assigning
individuals to treatments, based on empirical data, is distinct from the problem of estimating the
treatment effect efficiently, or testing hypotheses about a treatment effect at a prespecified size.
They advocate returning to a decision-theoretic framework, and specifying a loss function that
quantifies the consequences of choosing different treatments under different states of nature. Manski
focuses on calculating minmax and minmax regret risk for certain natural rules in randomized
experiments, while Dehejia develops a Bayesian procedure for assigning individuals to job training
programs based on data from a social experiment in California.

Finite-sample optimal treatment rules can be derived only for certain restricted classes of sta-
tistical models. The Karlin-Rubin theory applies to parametric settings satisfying the monotone
likelihood ratio property, and Bayesian methods require a tractable likelihood function. Recently,
Schlag (2006) and Stoye (2006) have obtained finite-sample minmax results for randomized ex-
periments with a discrete covariate and a bounded continuous outcome. Despite these important
results, it is difficult to obtain exact optimality results in many empirically relevant settings, in the
same way that it is difficult to obtain exact optimal estimators or hypothesis tests. In this paper,
we consider large-sample approximations to parametric and semiparametric statistical treatment
assignment problems, and provide a general asymptotic theory for optimal treatment assignment.
The data could come from a randomized experiment or an observational data source, and we allow
for unrestricted outcome and covariate distributions (including continuously distributed covariates).
The key requirement is that the treatment effect be point-identified and satisfy a local asymptotic
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normality condition.
We consider three loss functions that arise naturally within the treatment assignment setting:

a two-point loss function; a “social welfare” loss function; and a regret version of the social welfare
loss. We reparametrize the models so that the problem of determining whether to assign the treat-
ment does not become trivial as the sample size increases, and then we focus on obtaining statistical
decision rules that are approximately minmax in these local neighborhoods.1 The parameter local-
ization we employ is the same one commonly used in hypothesis testing theory, and our asymptotic
optimality theory for treatment assignment rules extends classic work on asymptotics for hypothesis
tests. In particular, we build upon the uniformly most powerful property of certain semiparametric
tests developed by Choi, Hall, and Schick (1996), to develop complete class and risk optimality
results in semiparametric limit experiments. The notion of a limit experiment is central to Le
Cam’s asymptotic extension of the Wald (1950) theory of statistical decision functions.2 The key
idea is to obtain an asymptotic approximation to the entire statistical decision problem, not just a
particular decision rule. Often, the approximate decision problem is considerably simpler, and can
be solved exactly. Then, one finds a sequence of rules in the original problem that asymptotically
matches the optimal rule in the limiting version of the decision problem.

We begin by studying regular parametric models, and show that the treatment assignment
problem is asymptotically equivalent to a simpler problem, in which one observes a single draw
from a multivariate normal distribution with unknown mean and known variance matrix, and must
decide whether a linear combination of the elements of the mean vector is greater than zero. Not
surprisingly, there is a close connection between the treatment assignment problem and a one-
sided hypothesis testing problem. In the limiting version of the treatment assignment problem, we
“slice” the parameter space into one-dimensional subspaces, and use the essential complete class
theorem of Karlin and Rubin (1956) to obtain exact minmax bounds and the minmax rules. It
turns out that the same rule is minmax over all subspaces, leading to a minmax result over the
entire parameter space. Finally, we use these exact results in the simple multivariate normal case
to provide asymptotic minmax bounds, and sequences of decision rules that achieve these bounds,
in the original sequence of decision problems. For a symmetric version of the two-point loss,
and for the minmax regret criterion, a simple rule based on an asymptotically efficient parameter
estimator (such as the maximum likelihood estimator) is asymptotically minmax. Although this
rule has a very natural form, it implies less conservative decision making than hypothesis testing
at conventional significance levels.

We then extend the results for parametric models to a semiparametric setting, where the welfare
gain of the treatment can be expressed as a regular functional of the unknown distribution. In this

1It is important to note that the local asymptotic minmax criterion is distinct from global minmax, because it
only considers worst-case performance in a “small” neighborhood of parameter values. For example, local asymptotic
minmax rules do not necessarily correspond to limits of global minmax rules.

2For expositions of the Le Cam theory, see Le Cam (1986), Van der Vaart (1991a), and Van der Vaart (1998).
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case, the limit experiment can be expressed as an observation of a countable sequence of normal
random variables. As in the parametric case, we solve the problem along certain one-dimensional
subspaces, and then show that the same rule is optimal for all such subspaces. Optimal rules can
be constructed from semiparametrically efficient point estimators of the welfare gain functional.
As an example, we consider Manski’s conditional empirical success rules, and show that they are
asymptotically minmax regret rules when the model for outcomes is essentially unrestricted.

In the next section, we set up the basic statistical treatment assignment problem. In Section
3, we adopt a local parameter approach, and show the limiting Gaussian form of the treatment
assignment problem. In Section 4, we solve the approximate treatment assignment problem ac-
cording to the minmax criterion, and then apply the solution to obtain asymptotic minmax bounds
on risk and asymptotic minmax rules in the original sequence of decision problems. Section 5 then
develops the semiparametric version of the argument.

2 Statistical Treatment Assignment Problem

2.1 Known Outcome Distributions

Following Manski (2000, 2002, 2004), we consider a social planner, who assigns individuals to
different treatments based on their observed background variables. Suppose that a randomly drawn
individual has covariates denoted by a random variable X on a space X, with marginal distribution
FX . The set of possible treatment values is T = {0, 1}. The planner observes X = x, and assigns
the individual to treatment 1 according to a treatment rule

δ(x) = Pr(T = 1|X = x).

Let Y0 and Y1 denote potential outcomes for the individual, and let their distribution functions
conditional on X = x be denoted F0(·|x) and F1(·|x) respectively. Given a rule δ, the outcome
distribution conditional on X = x is

Fδ(·|x) = δ(x)F1(·|x) + (1− δ(x))F0(·|x).

For a given outcome distribution F , let the social welfare be a functional W (F ). We define

W0(x) = W (F0(·|x)), W1(x) = W (F1(·|x)).

A special case is the utilitarian social welfare function

W (F ) =
∫

w(y)dF (y),
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where w : R → R is a strictly increasing, concave function. Then

W0(x) =
∫

w(y)dF0(y|x), W1(x) =
∫

w(y)dF1(y|x).

Suppose that F0 and F1 are known. Then, the optimal rule would have, for Fx-almost all x,

δ∗(x) =

{
1 if W0(x) < W1(x)
0 if W0(x) > W1(x)

(For x such that W0(x) = W1(x), any value of δ∗(x) is optimal.)

2.2 Unknown Outcome Distributions

If F0 and F1 are not known, the optimal rule described above is not feasible. Suppose that F0

and F1 can be characterized by a parameter θ ∈ Θ, where the parameter space could be finite-
dimensional or infinite-dimensional, and let w0(x, θ) and w1(x, θ) denote the values for W0(x) and
W1(x) when F0 and F1 follow θ. It will be convenient to work with the welfare contrast

g(x, θ) := w1(x, θ)− w0(x, θ).

We assume that w0 and g are continuously differentiable in θ for FX -almost all x.3

Suppose we have some data that are informative about θ. For example, we might have run a
randomized experiment in the past that is informative about the treatment effect. Or, we could
have an observational data set that identifies the relevant treatment effects. We can express this
as Zn ∼ Pn

θ , where {Pn
θ , θ ∈ Θ} is a collection of probability measures on some space Zn. Here, we

interpret n as the sample size, and we will consider below a sequence of experiments En = {Pn
θ , θ ∈

Θ} as the sample size grows.

Example 1 Dehejia (2005) uses data from a randomized evaluation comparing the Greater Av-
enues for Independence (GAIN) program to the standard AFDC program for welfare recipients in
Alameda County, California. The two possible treatments are the GAIN program (T = 1) and
the standard AFDC program (T = 0). The outcome of interest is individual earnings in various
quarters after the program. Since many welfare recipients had zero earnings, Dehejia used a Tobit
model. A simplified version of Dehejia’s model is:

Yi = max{0, α′1Xi + α2Ti + α′3Xi · Ti + εi},

where the εi are IID N(0, σ2). Dehejia estimated this model using the n experimental subjects,
3For a discussion of the relationship between the net social welfare and traditional measures of effects of treatments,

such as the average treatment effect, see Dehejia (2003).
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and then produced predictive distributions for a hypothetical (n + 1)th subject to assess different
treatment assignment rules.

In our notation, the parameter vector is θ = (α1, α2, α3, σ), and the data informative about θ

are
Zn = {(Ti, Xi, Yi) : i = 1, . . . , n}.

For a simple utilitarian social welfare measure that takes the average earnings of individuals, we
would have

w0(x, θ) = Eθ[Yn+1|Xn+1 = x, Tn+1 = 0];

w1(x, θ) = Eθ[Yn+1|Xn+1 = x, Tn+1 = 1];

g(x, θ) = Eθ[Yn+1|Xn+1 = x, Tn+1 = 1]− Eθ[Yn+1|Xn+1 = x, Tn+1 = 0].

�

A randomized statistical treatment rule is a mapping δ : X×Zn → [0, 1]. We interpret it as the
probability of assigning a (future) individual with covariate X = x to treatment, given past data
Zn = z:

δ(x, z) = Pr(T = 1|X = x,Zn = z).

In order to implement the Wald statistical decision theory approach, we need to specify a loss
function connecting actions to consequences. We consider three loss functions. The first is taken
from standard hypothesis testing theory, and penalizes making the wrong choice by an amount that
depends only on whether the optimal assignment is treatment or control:
Loss A:

LA(δ, θ, x) =

{
K0 · (1− δ) if g(x, θ) > 0
K1 · δ if g(x, θ) ≤ 0

K0 > 0, K1 > 0

The next loss function corresponds to maximizing expected social welfare. Since δW1(x)+ (1−
δ)W0(x) is social welfare, we use its negative as loss:
Loss B:

LB(δ, θ, x) = −[δW1(x) + (1− δ)W0(x)]

= −W0(x)− δ[W1(x)−W0(x)]

= −w0(x, θ)− δ · g(x, θ).

Unfortunately, when combined with the minmax criterion introduced below, loss B typically leads
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to degenerate minmax solutions. This degeneracy arises because the loss may be unbounded in
some region of the parameter space for each rule. This problem was pointed out by Savage (1951)
and motivated his introduction of the minmax regret criterion, which compares the welfare loss to
the welfare loss of the infeasible optimal rule. In the remainder of the paper, we focus on Loss A
and Loss C; for a discussion of Loss B, see Appendix B.

The minmax regret criterion can be implemented by modifying the loss function. Recall that
the infeasible optimal treatment rule is δ∗(x) = 1(g(x, θ) > 0). The regret is the welfare loss of a
rule, compared with the welfare loss of the infeasible optimal rule:
Loss C:

LC(δ, θ, x) = LB(δ, θ, x)− LB(δ∗, θ, x)

= g(x, θ)[1(g(x, θ) > 0)− δ].

Note that losses A and C do not depend on w0(x, θ), so that only the welfare contrast g(x, θ) is
relevant for the decision problem.

The risk of a rule δ(x, z) under loss L and given θ, is

R(δ, θ) = EL(δ(X, Z), θ,X)

=
∫ ∫

L(δ(x, z), θ, x)dPn
θ (z)dFX(x)

A minmax decision rule over some class ∆ of decision rules, solves

inf
δ∈∆

sup
θ∈Θ

R(δ, θ).

For the local asymptotic theory to follow, it is more convenient to consider a “pointwise-in-X”
version of the minmax problem:

inf
δ(x,·)∈∆

sup
θ∈Θ

∫
L(δ(x, z), θ, x)dPn

θ (z).

In general, this can lead to different minmax rules than the global minmax problem. In the
remainder of the paper we consider the pointwise decision problem.

3 Regular Parametric Models

We first consider regular parametric models, where the likelihood is smooth in a finite-dimensional
parameter. It will turn out that our approach can then be extended in a natural way to infinite-
dimensional models in Section 5. To develop asymptotic approximations, we adopt a local parametriza-
tion approach, as is standard in the literature on efficiency of estimators and test statistics. We use
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the local asymptotic representation of regular parametric models by a Gaussian shift experiment
to derive a simple approximate characterization of the decision problem.

3.1 Plug-in Rules and Local Parametrization

Suppose that Θ is an open subset of Rk, and that the {Pn
θ , θ ∈ Θ} are dominated by some mea-

sure µn and satisfy conventional regularity conditions. A natural estimator of θ is the maximum
likelihood estimator

θ̂(Zn) = arg max
θ

dPn
θ

dµn
(Zn),

and one possible treatment assignment rule is the “plug-in” rule

δ̂(x,Zn) = 1(g(x, θ̂(Zn)) > 0),

with associated risk

Rx(δ̂, θ) =
∫

L(δ̂(x, z), θ, x)dPn
θ (z)

=
∫

L(1(g(x, θ̂(z)) > 0), θ, x)dPn
θ (z).

Except in certain special cases, the exact distribution of the MLE θ̂ under θ0 cannot be easily
obtained, and as a consequence it is difficult to calculate the risk of a given decision rule, much
less find the rule that minimizes the worst-case risk. Although the exact distribution of the MLE
is rarely known in a useful form, many asymptotic approximation results are available for the MLE
and other estimators. This suggests that for reasonably large sample sizes, we may be able to use
such approximations to study the corresponding decision rules.

First, consider the issue of consistency: As n →∞, the MLE and many other estimators satisfy
θ̂

p−→ θ0. This implies that the rule δ̂ = 1(g(x, θ̂) > 0) will be consistent, in the sense that if
g(x, θ0) > 0, Pr(δ̂ = 1) −→ 1, and if g(x, θ0) < 0, then Pr(δ̂ = 0) −→ 1.

Although this is a useful first step, it does not permit us to distinguish between plug-in rules
based on different consistent estimators, or to consider more general rules that do not have the plug-
in form. We therefore focus on developing local asymptotic approximations to the distributions of
decision rules.

For the MLE, under suitable regularity conditions we have

√
n(θ̂ − θ0)

θ0 N(0, I−1

θ0
),

where we use θ0 to denote convergence in distribution (weak convergence) under θ0, and Iθ0 is the
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Fisher information matrix. By the delta method, we have that

√
n(g(x, θ̂)− g(x, θ0))

θ0 N(0, ġ′I−1
θ0

ġ),

where ġ = ∂
∂θg(x, θ0). Consider an alternative consistent estimator θ̃ with a larger asymptotic

variance:
√

n(θ̃ − θ0)
θ0 N(0, V ),

where V − I−1
θ0

is positive definite. Since θ̃ is “noisier” than the MLE, we might expect that the
plug-in rule δ̃ = 1(g(x, θ̃) > 0) should do worse than δ̂. One way to make this reasoning formal,
is to adopt the local parametrization (Pitman alternative) approach, which is commonly used in
asymptotic analysis of hypothesis tests.4 In our setting, this means considering values for θ such
that g(x, θ) is “close” to 0, so that there is a nontrivial difficulty in distinguishing between the
effects of the two treatments as sample size grows. Specifically, assume that θ0 is such that

g(x, θ0) = 0, (1)

and consider parameter sequences of the form θ0 + h√
n
, for h ∈ Rk. To be clear, Equation (1) is not

the only case of interest in general, but for establishing asymptotic optimality, it is the key case to
focus on. For combinations of (x, θ0) such that g(x, θ0) 6= 0, the treatment that is better at θ0 will
be better for all local alternatives θ0 +h/

√
n asymptotically, and any consistent rule will select the

appropriate treatment in the limit. In this sense, these cases create no difficulties for asymptotic
optimality, and the rules provided below will be asymptotically best for these cases as well.

For the MLE, it can typically be shown that

√
n(θ̂ − θ0 − h/

√
n)

θ0+h/
√

n
 N(0, I−1

θ0
),

where
θ0+h/

√
n

 denotes weak convergence under the sequence of probability measures Pθ0+h/
√

n. We

will sometimes abbreviate this as h
 .

By assumption, for all h ∈ Rk,
√

n(g(x, θ0 +h/
√

n)−g(x, θ0)) → ġ′h. By standard calculations,

Pθ0+h/
√

n(g(x, θ̂) > 0) → 1− Φ

 −ġ′h√
ġ′I−1

θ0
ġ

 = Φ

 ġ′h√
ġ′I−1

θ0
ġ

 .

As an illustration, consider Loss C, the welfare regret loss function. In order to keep the loss
4Alternatively, we could use large-deviations asymptotics, in analogy with Bahadur efficiency of hypothesis tests.

Manski (2003) uses finite-sample large-deviations results to bound the risk properties of certain types of treatment
assignment rules in a binary-outcome randomized experiment. Puhalskii and Spokoiny (1998) develop a large-
deviations version of asymptotic statistical decision theory and apply it to estimation and hypothesis testing.
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from degenerating to 0 as sample size increases, we scale it up by the factor
√

n:

√
n · LC(δ, h, x) = −

√
n · g(x, θ0 + h/

√
n)[1(g(x, θ0 + h/

√
n) > 0)− δ(x, z)].

Then the scaled risk can be written as

√
n ·RC(δ, h, x) = Eh

[√
n · LC(δ(x, Z), h, x)

]
=

√
n · g(x, θ0 + h/

√
n) · [1(g(x, θ0 + h/

√
n) > 0)− Eh(δ(x, Z))]

For the MLE plug-in rule,

√
n ·RC(δ̂, h, x) =

√
n · g(x, θ0 + h/

√
n) · [1(

√
ng(x, θ0 + h/

√
n) > 0)− Ph(g(x, θ̂) > 0)]

→ ġ′h ·

1(ġ′h > 0)− Φ

 ġ′h√
ġ′I−1

θ0
ġ


Now return to the alternative estimator θ̃ and assume

√
n(θ̃ − θ0 − h/

√
n)

θ0+h/
√

n
 N(0, V ),

where V − I−1
θ0

is positive semidefinite, and let δ̃ = 1(g(x, θ̃) > 0). By straightforward calculations,
it can be shown that for all h,

lim
n→∞

√
n ·RC(δ̃, h, x) ≥ lim

n→∞

√
n ·RC(δ̂, h, x).

Thus, δ̂ asymptotically dominates δ̃, and the plug-in rule using the MLE is minmax among plug-in
rules based on estimators which are asymptotically normal and unbiased. Loss A also yields the
same conclusion. However, this result is limited in scope, because it only considers a restricted class
of possible decision rules. For example, a conventional hypothesis testing approach might choose
the treatment when g(x, θ̂) is greater than a strictly positive constant c, rather than 0. In the next
section, we examine the problem of finding asymptotically minmax decision rules without strong
restrictions on the class of possible rules.

3.2 Limits of Experiments

In this section we use the limits of experiments framework (Le Cam 1986) to examine the statis-
tical treatment assignment problem. Although this framework is typically applied to study point
estimation and hypothesis testing, it applies much more broadly, to general statistical decision
problems.

As before, we fix x, and let Θ be an open subset of Rk. Let θ0 ∈ Θ satisfy g(x, θ0) = 0 for a given
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x. Assume that the sequence of experiments En = {Pn
θ , θ ∈ Θ} satisfies local asymptotic normality:

for all sequences hn → h in Rk,

log
dPn

θ0+hn/
√

n

dPn
θ0

= h′∆n −
1
2
h′Iθ0h + oPθ0

(1),

where ∆ θ0 N(0, Iθ0).
5 Further, assume that Iθ0 is nonsingular.

Then, by standard results, the experiments En converge weakly to the experiment

Z ∼ N(h, I−1
θ0

).

By the asymptotic representation theorem, for any sequence of statistical decision rules δn that
possesses limit distributions under every local parameter, there exists a feasible decision rule δ in
the limit experiment such that δn

h
 δ for all h. To characterize the connection with decision

rules in the limit experiment formally, we specialize Theorem 9.4 and Corollary 9.5 of Van der
Vaart (1998), which give asymptotic representations for test procedures. The hypothesis testing
problem is closely related to the treatment assignment problem, but we do not require treatment
procedures to have a prespecified significance level, and instead study their behavior under specific
loss functions. The asymptotic representation theorem for tests does not involve confidence levels
or loss functions, however, so we can apply the result to our treatment assignment procedures:

Proposition 1 Let Θ be an open subset of Rk, with θ0 ∈ Θ such that g(x, θ0) = 0 for a given
x, where g(x, θ) is differentiable at x, θ0. Let the sequence of experiments En = {Pn

θ , θ ∈ Θ}
satisfy local asymptotic normality with nonsingular information matrix Iθ0. Consider a sequence of
treatment assignment rules δn(x, zn) in the experiments En, and let

πn(x, h) = Eh[δn(x,Zn)].

Suppose πn(x, h) → π(x, h) for every h. Then there exists a function δ(x, z) such that

π(x, h) = Eh[δ(x,Z)]

=
∫

δ(x, z)dN(z|h, I−1
θ0

),

where dN(z|h, I−1
θ0

)/dz is the pdf of a multivariate normal distribution with mean h and variance
I−1
θ0

.

5In the case where the P n
θ is the n-fold product measure corresponding to a random sample of size n from Pθ, then

a sufficient condition for local asymptotic normality is differentiability in quadratic mean of the probability measures
{Pθ}.
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Proposition 1 shows that the simple multivariate normal shift experiment can be used to study
the asymptotic behavior of treatment rules in parametric models. In particular, any asymptotic
distribution of a sequence of treatment rules can be expressed as the (exact) distribution of a
treatment rule in a simple Gaussian model with sample size one.

Before we consider the Gaussian limit experiment in detail, it is useful to examine the limiting
behavior of the loss and risks functions, to provide heuristic guidance on the relevant forms of the
loss functions in the limit experiment. Each loss function we consider can be written in the form

L(δ, θ, x) = L(0, θ, x) + δ[L(1, θ, x)− L(0, θ, x)].

This linearity in δ makes it possible to define the asymptotic risk functions to have essentially the
same form as the original risk functions.

For Loss A, K0−K1 loss, and an estimator sequence δn with πn(h, x) → π(x, h), the associated
risk function can be written in terms of the local parameter h as

RA
n (δ, h, x) = Eh

[
LA(δ(Zn), θ0 +

h√
n

, x)
]

= Eh

[
LA(0, θ0 +

h√
n

, x) + δ(Zn)
(

LA(1, θ0 +
h√
n

, x)− LA(0, θ0 +
h√
n

, x)
)]

By differentiability g at θ0,

lim
n→∞

1(g(x, θ0 +
h√
n

> 0)) = 1(ġ′h > 0)

and
lim

n→∞
1(g(x, θ0 +

h√
n

< 0)) = 1(ġ′h < 0).

The case ġ′h = 0 presents a complication for taking limits as above, but since the loss function is
bounded below by 0, we can express a lower bound on limiting risk as

lim inf
n→∞

RA
n (δ, h, x) ≥ K0 · 1(ġ′h > 0) + π(x, h)

[
K1 · 1(ġ′h < 0)−K0 · 1(ġ′h > 0).

]
We will denote the limiting risk function on the right hand side by RA

∞(δ, h, x). This is the risk
function for a modified version of loss A, where we replace g(x, θ0 + h/

√
n) by ġ′h and set loss

to 0 when ġ′h = 0. This suggests that analyzing the Gaussian shift limit experiment, with this
modified version of the risk function, will yield asymptotic minmax bounds for the original treatment
assignment problem.

For Loss C, the net welfare term g(x, θ0 + h√
n
) → g(x, θ0) = 0, so it is natural to renormalize

the risk by a factor of
√

n to keep the limiting risk nondegenerate, as we did in Section 3.1. The
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behavior of the loss at ġ′h = 0 does not create a problem in this case, and by simple calculations
we have

lim
n→∞

√
n · Eh

[
LC

(
δ(Zn), θ0 +

h√
n

, x

)]
= (ġ′h)

[
1(ġ′h > 0)− π(x, h)

]
.

We will denote the risk function on the right as RC
∞(δ, h, x). The forms of the limiting risk functions

are the same as the original ones, except with g(x, θ0+h/
√

n) replaced by ġ′h. Intuitively, if ġ′h > 0,
then for sufficiently large n, the treatment effect g(x, θ0 + h/

√
n) will be positive, and likewise if

ġ′h < 0 the treatment effect will eventually be negative. In light of Proposition 1, this suggests
that we can study a simplified version of the original treatment assignment problem, in which the
only data is a single draw from a multivariate normal distribution with unknown mean, and the
treatment effect of interest is a simple linear function of the mean.

4 Minmax Treatment Rules in Gaussian Shift Experiments, and

Asymptotic Minmax Rules

We have argued that the original sequence of treatment assignment problems can be approximated
by an analogous treatment assignment problem in the simple Gaussian shift model. In this section,
we consider the Gaussian shift experiment, and solve the minmax problem for the different loss
functions. This leads to a local asymptotic minmax theorem for treatment assignment rules.

Suppose that Z ∼ N(h, I−1
θ0

), h ∈ Rk. Let ġ ∈ Rk satisfy ġ′I−1
θ0

ġ > 0. We wish to decide
whether ġ′h is positive or negative. (Here, ġ corresponds to the derivative of the function g(x, θ0)
in the original sequence of experiments, but the results for the multivariate normal shift experiment
simply treat it as a vector of constants.) The action space is A = {0, 1}, and a randomized decision
rule δ(·) maps Rk into [0, 1] with the interpretation that δ(z) = Pr(T = 1|Z = z).

This situation is related to hypothesis testing problems with nuisance parameters. Here, interest
centers on the scalar quantity ġ′h. Our approach is to consider the problem along “slices” of the
parameter space constructed in the following way: fix an h0 such that ġ′h0 = 0, and for any b ∈ R,
define

h1(b, h0) = h0 +
b

ġ′I−1
θ0

ġ
I−1
θ0

ġ.

In each slice, the quantity ġ′h1 = b is of interest. In these one-dimensional subspaces, it is relatively
easy to solve for minmax rules, and it turns out that the same rule is minmax over all the subspaces.

The following result says that rules of the form δc = 1(ġ′Z > c), for c ∈ R, form an essential
complete class on each slice. It simplifies the problem of finding minmax rules and bounds in the
multivariate normal limit experiment, because we can limit our attention to the essential complete
class on each subspace rather than have to search over all possible decision rules.
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Proposition 2 Let the loss L(h, a) satisfy:

[L(h, 1)− L(h, 0)] (ġ′h) < 0

for all h such that ġ′h 6= 0. For any randomized decision rule δ̃(z) and any fixed h0 ∈ Rk, there
exists a rule of the form

δc(z) = 1(ġ′z > c)

which is at least as good as δ̃ on the subspace {h1(b, h0) : b ∈ R}.

Proof: see Appendix A.
�

This result is a special case of the essential complete class theorem of Karlin and Rubin (1956),
which applies to models with a scalar parameter satisfying the monotone likelihood ratio property
(see Schervish 1995, Theorem 4.68, p.244). We present an elementary proof in Appendix A to
highlight the role of the parametrization by b = ġ′h.

We now turn to the minmax problem in the limit experiment. We want to calculate the minmax
risk, and a corresponding minmax rule (in the class {δc}), under the loss functions we are working
with. All of the risk functions are linear in Ehδ, so the following expression will play a key role in
our risk computations,

Eh(δc) = Prh

(
ġ′Z > c

)
= Prh

 ġ′(Z − h)√
ġ′I−1

θ0
ġ

>
c− ġ′h√
ġ′I−1

θ0
ġ

 = 1− Φ

 c− ġ′h√
ġ′I−1

θ0
ġ

 .

For loss A in the limit experiment, the appropriate risk function is:

RA
∞(δ, h, x) = 1(ġ′h > 0)[1− Eh(δ)]K0 + 1(ġ′h < 0)Eh(δ)K1.

where K0,K1 > 0. As we discussed earlier, the limit experiment risk for loss C is:

RC
∞(δ, h, x) = (ġ′h)[1(ġ′h > 0)− Eh(δ)].

If ġ = 0, then RA
∞ = RC

∞ = 0, so all rules are minimax and the bound is given by zero. In this case,
the data are uninformative about the relative welfare of the treatments. The next result considers
the more interesting case with ġ 6= 0.

Proposition 3 Suppose Z
h∼ N(h, I−1

θ ) for h ∈ Rk, and ġ 6= 0. In each case below, the infimum
is taken over all possible randomized decision rules, and δ∗ denotes a rule which attains the given
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bound:
(A) For Loss A,

inf
δ

sup
h

RA
∞(δ(Z, x), h, x) =

K0K1

K0 + K1
,

δ∗1(ġ′Z > c∗), c∗ =
√

ġ′I−1
θ0

ġΦ−1

(
K1

K0 + K1

)
;

(C) For Loss C,

inf
δ

sup
h

RC
∞(δ(Z, x), h, x) = τ∗Φ(τ∗)

√
ġ′I−1

θ0
ġ,

τ∗ = arg max
τ

τΦ(−τ),

δ∗ = 1(ġ′Z > 0).

Proof: see Appendix A.
�

Loss A is well known from hypothesis testing theory, and the same bound is derived in the
scalar normal case in Berger (1985), Section 5.3.2, Example 14. Our proof follows Berger’s analysis
along one-dimensional subspaces, showing that the same rule is optimal for each subspace, and
then argues that the rule is optimal over the entire parameter space. The minmax result for Loss
C appears to be new. As we noted earlier, the corresponding minmax analysis for Loss B (see
Appendix B) leads to excessively conservative rules; thus we focus on the minmax regret approach,
which corresponds to Loss C.

Since the multivariate shift model provides an asymptotic version of the original problem, in the
sense that any sequence of decision rules in the original problem with limit distributions is matched
by a decision rule in the limit experiment, we can use the exact bounds developed in Proposition
3 as asymptotic bounds in the original problem. This observation leads to the following theorem,
which is our main result for smooth parametric models.

Theorem 1 Assume the conditions of Proposition 1, and suppose that δn is any sequence of treat-
ment assignment rules that converge to limit distributions under θ0 + h√

n
for every h ∈ Rk. Then,

for Loss A,

lim inf
n→∞

sup
h∈Rk

Eh

[
LA(δn(Zn), θ0 +

h√
n

, x)
]
≥ K0K1

K0 + K1
,

and the bound is attained by the decision rules

δ∗n = 1(g(x, θ̂) > c∗), c∗ =
(√

ġ′I−1
θ0

ġ

)
Φ−1

(
K1

K0 + K1

)
,
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where θ̂ is an estimator sequence that satisfies
√

n(θ̂ − θ0 − h√
n
) h
 N(0, I−1

θ0
) for every h.

For Loss C,

lim inf
n→∞

sup
h∈Rk

√
n · En

[
LC

(
δn(Zn), θ0 +

h√
n

, x

)]
≥ τ∗Φ(τ∗)

√
ġ′I−1

θ0
ġ,

where τ∗ = arg maxτ τΦ(−τ). The bound is attained by the rule δ∗n = 1(g(x, θ̂) > 0)

Proof: see Appendix A.
�

For Loss A, note that if K0 = K1, then c∗ = 0 so that the optimal rule is the same as for Loss
C. In particular, plugging in the maximum likelihood estimator (or any other efficient estimator,
such as the Bayes estimator), leads to an optimal rule in this local asymptotic minmax risk sense.
Although perhaps not surprising, this rule is distinct from the usual hypothesis testing approach,
which would require that the estimated net effect be above some strictly positive cutoff determined
by the level specified for the test.

5 Semiparametric Models

Empirical studies of treatment effects often use nonparametric or semiparametric specifications, to
allow for more flexibility in the modeling of treatment effects. In this section, we extend the results
from the previous section to models with an infinite-dimensional parameter space. We use the local
score representation of a general semiparametric model, as described in Van der Vaart (1991a).
The limit experiment associated with the semiparametric model is a Gaussian process experiment.
As in the previous section, we argue along one-dimensional slices of the limiting version of the
statistical decision problem, to obtain complete-class results and risk bounds.

Suppose Zn consists of an i.i.d. sample of size n drawn from a probability measure P ∈ P, where
P is the set of probability measures defined by the underlying semiparametric model.6 In some
cases the set P will include all distributions satisfying certain weak conditions (so that the model
is nonparametric); in other cases the form of the semiparametric model may restrict the feasible
distributions in P.

We fix P ∈ P, and, following Van der Vaart (1991a), define a set of paths on P as follows.
For a measurable real function h, suppose Pt,h ∈ P satisfies the differentiability in quadratic mean

6The i.i.d. assumption can be weakened, as long as the limiting log-likelihood ratio process has the same limiting
form.
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condition, ∫ [
1
t

(
dP

1/2
t,h − dP 1/2

)
− 1

2
hdP 1/2

]2

−→ 0 as t ↓ 0 (2)

for t ∈ (0, η), η > 0. Let P(P ) denote the set of maps t → Pt,h satisfying (2). These maps are
called paths, and they represent one-dimensional parametric submodels for P in P. The functions
h provide a parametrization for the set of probability measures we consider. This parametrization
is particularly convenient since, from Equation (2), we can regard h as the score function for the
submodel {Pt,h : t ∈ (0, η)}. Note that (2) implies

∫
hdP = 0 and

∫
h2dP < ∞. Hence, h ∈ L2(P ),

the Hilbert space of square-integrable functions with respect to P .7 Let 〈·, ·〉 and ‖ · ‖ denote
the usual inner product and norm on this space. Then the Fisher information for the submodel
{Pt,h : t ∈ (0, η)} is given by ‖h‖2. Let T (P ) ⊂ L2(P ) denote the set of functions h satisfying (2).
T (P ) is the tangent space, which we will assume is a cone.

The limit experiment for this semiparametric model takes on a convenient form, as shown
by Van der Vaart (1991a). Let h̃1, h̃2, . . . denote an orthonormal basis of a subspace of L2(P )
that contains the closure of lin(T (P )). Any h ∈ T (P ) then satisfies h =

∑∞
j=1〈h, h̃j〉h̃j . Consider a

sequence of independent, normally distributed random variables ∆1,∆2, . . . with ∆j ∼ N(〈h, h̃j〉, 1)
under h ∈ T (P ). We can now construct the stochastic process {∆η =

∑∞
j=1〈η, h̃j〉∆j : η ∈ T (P )}.

This is a Gaussian process with distribution depending on h; under h = 0, the process has mean
zero, and has covariance function E∆η∆η′ = 〈η, η′〉. Let Qh denote the law of this process under
h. Then (2) implies

ln
dP1/

√
n,h

dP

P
 ln

dQh

dQ0
= ∆h −

1
2
‖h‖2.

It follows that the limit experiment corresponding to the semiparametric model consists of observing
the sequence (∆1,∆2, . . .) distributed Qh under h ∈ T (P ).

Again, we use g to denote the difference in social welfare W1(x) − W0(x). For a probability
measure Pt,h, we denote this welfare contrast by g(x, Pt,h). We assume functional differentiability
of g: there exists a continuous linear map ġ : T (P ) → R such that

1
t
(g(x, Pt,h)− g(x, P )) −→ ġ(h) as t ↓ 0 (3)

for every path in P(P ).8 It follows that that

√
n(g(x, P1/

√
n,h)− g(x, P )) → ġ(h).

By the Riesz representation theorem, the functional ġ(·) can be associated with an element ġ ∈
7Formally, the h defined in (2) are elements of L2(P ). We work with equivalence classes of such functions with

respect to the L2 norm, so we can consider h ∈ L2(P ). .
8Van der Vaart (1991b) provides a thorough discussion of this differentiability notion, which is related to Hadamard

differentiability.
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L2(P ) such that ġ(h) = 〈ġ, h〉 for all h ∈ T (P ). Assume ‖ġ‖2 = 〈ġ, ġ〉 > 0.
Note that ∆ġ =

∑∞
j=1〈ġ, h̃j〉∆j . Assuming ġ is continuous, Van der Vaart (1989) shows that

∆ġ is an efficient estimator for ġ(h) in the limit experiment. From ∆ġ ∼ N(0, ‖ġ‖2) under h = 0,
it follows that ‖ġ‖2 provides the semiparametric efficiency bound for estimation of g(P ).

Given the limit experiment and the functional g, an analog to Proposition 1 follows from the
same results in Van der Vaart (1998).

Proposition 1′ Suppose that g(x, P ) = 0 for a given x, where g satisfies (3). Let the sequence
of experiments En = {P1/

√
n,h : h ∈ T (P )} satisfy (2). Consider a sequence of treatment rules

δn(x, zn) in the experiments En, and let πn(x, h) = Eh[δn(x,Zn)]. Suppose πn(x, h) → π(x, h) for
every h. Then there exists a function δ such that π(x, h) = Eh[δ(x,∆1,∆2, . . .)] for (∆1,∆2, . . .)
as defined above.

For our statistical treatment rule problem, the loss functions considered will be the same as
in the parametric case, with g(x, Pt,h) replacing g(x, θ). The limiting risk functions correspond
exactly to the previous expressions. For δn and δ as in Proposition 1′,

lim inf
n→∞

RA
n (δ, h, x) = lim inf

n→∞
Eh

[
LA(δn(x,Zn), P1/

√
n,h, x)

]
≥ K0 · 1(〈ġ, h〉 > 0) + π(x, h) [K1 · 1(〈ġ, h〉 < 0)−K0 · 1(〈ġ, h〉 > 0)]

(= RA
∞(δ, h, x)),

RC
∞(δ, h, x) = lim

n→∞

√
n · Eh

[
LC
(
δn(x,Zn), P1/

√
n,h, x

)]
= 〈ġ, h〉 [1(〈ġ, h〉 > 0)− π(x, h)] .

Next, we develop an analog of Proposition 2, the essential complete class theorem along slices,
for the semiparametric limit experiment. Take h0 ∈ T (P ) such that 〈ġ, h0〉 = 0, and for b ∈ R let

h1(b, h0) = h0 +
b

‖ġ‖2
ġ.

Proposition 2′ Let the loss L(a, Pt,h) satisfy:

[L(1, Pt,h)− L(0, Pt,h)] 〈ġ, h〉 < 0

for all h such that 〈ġ, h〉 6= 0. For any randomized decision rule δ̃(∆1,∆2, . . .) and any fixed
h0 ∈ T (P ), there exists a rule of the form

δc(∆1,∆2, . . .) = 1(∆ġ > c)

which is at least as good as δ̃ on the subspace {h1(b, h0) : b ∈ R}.
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Proof: see Appendix A.
�

Similar to the parametric case, Proposition 2′ can be used to obtain risk bounds and best
treatment assignment rules:

Proposition 3′ Consider treatment rules on (∆1,∆2, . . .), as defined above, for h ∈ T (P ), and
assume ‖ġ‖2 > 0. In each case below, the infimum is taken over all possible randomized decision
rules, and δ∗ denotes a rule which attains the given bound:

(A) For Loss A,

inf
δ

sup
h

RA
∞(δ, h, x) =

K0K1

K0 + K1
,

δ∗ = 1(∆ġ > c∗), c∗ =
√
‖ġ‖2Φ−1

(
K1

K0 + K1

)
;

(C) For Loss C,
inf
δ

sup
h

RC
∞(δ, h, x) = τ∗Φ(τ∗)

√
‖ġ‖2,

τ∗ = arg max
τ

τΦ(−τ),

δ∗ = 1(∆ġ > 0).

Proof: These bounds follow by the same argument given for Proposition 3.
�

Finally, using this result, we can characterize the asymptotically optimal treatment assignment
rules in the semiparametric model:

Theorem 1′ Assume the conditions of Proposition 1′ hold, and let δn be any sequence of treatment
assignment rules that converge to limit distributions under P1/

√
n,h for every h ∈ T (P ). Suppose

that the estimator sequence ĝn(Zn) attains the semiparametric efficiency bound for estimating g(P ).
Then, for Loss A,

lim inf
n→∞

sup
h∈T (P )

Eh

[
LA(δn(x,Zn), P1/

√
n,h, x)

]
≥ K0K1

K0 + K1
,

and the bound is attained by the decision rules

δ∗n = 1(ĝn(Zn) > c∗), c∗ =
(√

‖ġ‖2
)

Φ−1

(
K1

K0 + K1

)
.
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For Loss C,

lim inf
n→∞

sup
h∈T (P )

√
n · Eh

[
LC
(
δn(x,Zn), P1/

√
n,h, x

)]
≥ τ∗Φ(τ∗)

√
‖ġ‖2,

where τ∗ = arg maxτ τΦ(−τ). The bound is attained by the rule δ∗n = 1(ĝn(Zn) > 0).

Proof: By the same argument as for Theorem 1.
�

Thus, a plug-in rule based on a semiparametrically efficient estimator is optimal. This implies
that the conditional empirical success rules studied by Manski (2004) are asymptotically optimal
among all rules when the distribution of outcomes is essentially unrestricted:

Example 2 (Conditional Empirical Success Rules)
Suppose that W0(x) = 0, and that we observe a random sample (Xi, Yi), i = 1, . . . , n, where

Xi has a finitely supported distribution and Yi|Xi has conditional distribution F1(y|x). The social
welfare contrast is the functional

g(x, F1) =
∫

w(y)dF1(y|x).

The conditional distribution function F1 is unknown, and the set of possible CDFs P is the largest
set satisfying

sup
F1∈P

E[|w(Y )|2|X = x] < ∞.

The conditional empirical success rule of Manski (2004) can be expressed as

δ̂n(x) = 1(ĝn(x) > 0),

where
ĝn(x) :=

∑n
i=1 w(Yi) · 1(Xi = x)∑n

i=1 1(Xi = x)
.

The estimator ĝn(x) is an asymptotically efficient estimator of g(x, F1) (Bickel, Klaasen, Ritov,
and Wellner (1993), pp. 67-68). Therefore, δ̂n is asymptotically minmax for regret loss C.

This result extends easily to the case where W0(x) is not known; then ĝn(x) would be a difference
of conditional mean estimates for outcomes under treatments 1 and 0.
�
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6 Conclusion

We have examined asymptotic properties of treatment assignment rules in regular parametric and
semiparametric settings. The limiting version of the decision problem is a treatment assignment
problem involving a single observation from a Gaussian shift model. Using simple extensions of
classic results from the theory of one-sided tests, we obtain exact solutions for minmax rules in
this simple setting. This leads to local asymptotic minmax bounds on risk in the original sequence
of models. Our sharpest results are for the social welfare regret loss (loss C), which has been
emphasized by Manski (2004). We show that a plug-in rule based on an efficient estimator of the
treatment effect, is locally asymptotically minmax. This rule is intuitive, but does lead to less
conservative treatment assignment than typical applications of hypothesis testing, which would
suggest to apply the treatment only if an estimator of the treatment effect was above some strictly
positive cutoff.
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Appendix A: Proofs

Proof of Proposition 2:
The result can be obtained as a corollary of Karlin and Rubin (1956), Theorem 1, but we present
a simple proof that highlights the role of our restriction to subspaces h ∈ {h1(b, h0) : b ∈ R}.

For a decision rule δ, the risk function is

R(h, δ) =
∫

[δ(z)L(h, 1)− (1− δ(z))L(h, 0)] f(z|h)dz

= L(h, 0)− [L(h, 1)− L(h, 0)]
∫

δ(z)f(z|h)dz

So, for any two rules δ1, δ2,

R(h, δ1)−R(h, δ2) = [L(h, 1)− L(h, 0)]
∫

[δ1(z)− δ2(z)] f(z|h)dz (4)

= [L(h, 1)− L(h, 0)] {Eh[δ1(Z)]− Eh[δ2(Z)]} . (5)

Thus the quantity Eh[δ(Z)] is key in comparing risks.
Note that if ġ′h0 6= 0, then for h̃0 = h1(−ġ′h0, h0), ġ′h̃0 = 0. Since {h1(b, h0) : b ∈ R}

= {h1(b, h̃0) : b ∈ R}, we may assume without loss of generality that, in fact, ġ′h0 = 0.
Let δ̃ be an arbitrary treatment assignment rule, and let c satisfy

Eh0 [δc(Z)] = Eh0 [δ̃(Z)].

Note that ġ′Z ∼ N(0, ġ′I−1
θ0

ġ) under h0, so

Eh0 [δc(Z)] = Prh0(ġ
′Z > c)

= 1− Φ

 c√
ġ′I−1

θ0
ġ

 .

It is easy to see that for any δ̃, we can choose a c to satisfy the requirement above.
This part of the proof follows the method in the proof of Van der Vaart (1998), Proposition

15.2. Take some b > 0 and consider the test H0 : h = h0 against H1 : h = h1(b, h0) based on
Z

h∼ N(h, I−1
θ0

). Note that ġ′h1 = b > 0. The likelihood ratio is:

LR =
dN(h1, I

−1
θ0

)

dN(h0, I
−1
θ0

)
= exp

(
b

ġ′I−1
θ0

ġ
ġ′Z − b2

2ġ′I−1
θ0

ġ

)
.

By the Neyman-Pearson lemma, a most powerful test is based on rejecting for large values of ġ′Z.
Since the test δc has been defined to have the same size as δ̃, Eh1(b,h0)[δc(Z)] ≥ Eh1(b,h0)[δ̃(Z)]. This
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argument does not depend on which b > 0 is considered, so Eh1(b,h0)[δc(Z)] ≥ Eh1(b,h0)[δ̃(Z)] for all
b ≥ 0 (δc is more powerful than δ̃ for H0 : h = h0 against H1 : h = h1(b, h0), b > 0).

Next consider the case that b < 0. Note that 1 − δc = 1(ġ′Z ≤ 0) is uniformly most powerful
against 1 − δ̃ for H0 : h = h0 against H1 : h = h1(b, h0), b < 0 by an analogous argument. Hence,
Eh1(b,h0)[1 − δc(Z)] ≥ Eh1(b,h0)[1 − δ̃(Z)] for all b ≤ 0. So Eh1(b,h0)[δc(Z)] ≤ Eh1(b,h0)[δ̃(Z)] for all
b ≤ 0.

By equation (4) and the assumptions on loss, it therefore follows that

R(h, δ̃) ≥ R(h, δc)

for all h ∈ {h1(b, h0) : b ∈ R}.
�

Proof of Proposition 3:

First, we will show that for R = RA
∞ or RC

∞, R(δc, h1(b, h0), x) does not depend on h0. Note that
from the definition of h1(b, h0), h1(b, h0) = h1(b, 0) + h0. Since ġ′h0 = 0, ġ′h1(b, h0) = ġ′h1(b, 0) (=
b). Further, Eh1(b,h0)[ġ′Z] = b = Eh1(b,0)[ġ′Z]. It follows that under h1(b, h0), ġ′Z ∼ N(b, ġ′I−1

θ0
ġ).

That is, the distribution of ġ′Z under h1(b, h0) does not depend on h0. For R = RA
∞ or RC

∞,
R(δc, h, x) depends on h only through two terms: ġ′h and Eh(δc) = Prh(ġ′Z > c). It follows then,
that for any c, b, and x, R(δc, h1(b, h0), x) = R(δc, h1(b, 0), x).

Again let R = RA
∞ or RC

∞. Define δ∗c as the solution to infc supb R(δc, h1(b, 0), x). Below we will
show that such a solution exists for each risk function. Now we have

inf
c

sup
b

R(δc, h1(b, 0), x) = sup
b

R(δ∗c , h1(b, 0), x) = sup
h0

sup
b

R(δ∗c , h1(b, h0), x)

≥ inf
δ

sup
h0

sup
b

R(δ, h1(b, h0), x) ( = inf
δ

sup
h

R(δ, h, x) )

≥ inf
δ

sup
b

R(δ, h1(b, 0), x) = inf
c

sup
b

R(δc, h1(b, 0), x).

The first equality holds by the definition of δ∗c and the second by the lack of dependence of
R(δc, h1(b, h0), x) on h0. The two inequalities follow by infimum properties. The final equality
follows by Proposition 2. From these inequalities, infδ suph R(δ, h, x) = infc supb R(δc, h1(b, 0), x),
so it suffices to consider the latter term in the following computations.
(A) For a rule δc, we want supb RA

∞(δc, h1(b, 0), x). Recall that ġ′h1(b, 0) = b.

sup
b:b>0

RA
∞(δc, h1(b, 0), x) = sup

h:b>0
[1− Eh1(b,0)(δc)]K0 = sup

b:b>0
K0Φ

 c− b√
ġ′I−1

θ0
ġ

 = K0Φ

 c√
ġ′I−1

θ0
ġ


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sup
b:b<0

RA
∞(δc, h1(b, 0), x) = sup

b:b<0
Eh1(b,0)(δc)K1 = sup

b:b<0
K1

1− Φ

 c− b√
ġ′I−1

θ0
ġ

 = K1

1− Φ

 c√
ġ′I−1

θ0
ġ


For b = 0, RA

∞(δc, h1(b, 0), x) = 0. Hence,

sup
b

RA
∞(δc, h1(b, 0), x) = max

K0Φ

 c√
ġ′I−1

θ0
ġ

 ,K1

1− Φ

 c√
ġ′I−1

θ0
ġ

 .

Then, infc supb RA
∞(δc, h1(b, 0), x) occurs when c is chosen to set Φ

(
c/
√

ġ′I−1
θ0

ġ
)

= K1/(K0 + K1).
Plugging in this minmax rule, the minmax value in the conclusion follows.

(C) Consider δc with c ≥ 0. Fix b such that b > 0. Then

RC
∞(δc, h1(b, 0), x) = bΦ

 c− b√
ġ′I−1

θ0
ġ


≥ bΦ

 −c− b√
ġ′I−1

θ0
ġ

 = b

1− Φ

 c + b√
ġ′I−1

θ0
ġ

 = RC
∞(δc, h1(−b, 0), x).

So, supb RC
∞(δc, h1(b, 0), x) = supb:b≥0 RC

∞(δc, h1(b, 0), x).
Further, take c > 0 and any b > 0,

RC
∞(δ0, h1(b, 0), x) = bΦ

 −b√
ġ′I−1

θ0
ġ

 < bΦ

 c− b√
ġ′I−1

θ0
ġ

 = RC
∞(δc, h1(b, 0), x)

Also, RC
∞(δ0, 0, x) = 0 = RC

∞(δc, 0, x) (corresponding to b = 0). So,

sup
b

RC
∞(δ0, h1(b, 0), x) = sup

b:b≥0
RC
∞(δ0, h1(b, 0), x) ≤ sup

b:b>0
RC
∞(δc, h1(b, 0), x) = sup

b
RC
∞(δc, h1(b, 0), x),

which shows that δ0 is minmax over all rules δc with c ≥ 0. The analogous argument for c ≤ 0
yields δ0 as the minmax rule.
�

Proof of Theorem 1:

By assumption, for each h, δn(x,Zn) converges weakly under θ0 + h/
√

n to laws Qh, and we write

πn(h, x) = Eh[δn(x, Zn)] → π(h, x) =
∫

adQh(a).
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Let
LA
∞(a, h, x) = K0 · 1(ġ′h > 0) + a

[
K1 · 1(ġ′h < 0)−K0 · 1(ġ′h > 0)

]
.

Note that

Eh

[
LA(δn(x,Zn), θ0 +

h√
n

, x)
]

= K0 · 1
(

g(x, θ0 +
h√
n

) > 0
)

+Eh[δn(x,Zn)]

[
K1 · 1

(
g(x, θ0 +

h√
n

) ≤ 0
)

−K0 · 1
(

g(x, θ0 +
h√
n

) > 0
)]

.

So, for any fixed h, the continuous differentiability of g gives

lim inf
n→∞

Eh

[
LA(δn(x, Zn), θ0 +

h√
n

, x)
]

≥ K0 · 1(ġ′h > 0) + π(x, h)
[
K1 · 1(ġ′h < 0)−K0 · 1(ġ′h > 0)

]
= lim

n→∞
Eh[LA

∞(δn(x,Zn), h, x)]

=
∫

LA
∞(a, h, x)dQh(a).

This holds for all h, so

lim inf
n→∞

sup
h

Eh

[
LA(δn(x,Zn), θ0 +

h√
n

, x)
]

≥ sup
h

lim inf
n→∞

Eh

[
LA(δn(x,Zn), θ0 +

h√
n

, x)
]

≥ sup
h

∫
LA
∞(a, h, x)dQh(a)

≥ K0K1

K0 + K1

by Proposition 3. It is straightforward to verify that the rule δ∗n = 1(g(x, θ̂) > c∗) achieves the
bound.

For Loss C, we have for any h,

lim
n→∞

√
n · Eh

[
LC(δ(x,Zn), θ0 + h/

√
n, x)

]
= ġ′h

[
1(ġ′h > 0)− π(x, h)

]
=

∫
LC
∞(a, h, x)dQh(a),

where
LC
∞(a, h, x) = (ġ′h)

[
1(ġ′h > 0)− a

]
.

The remainder of the proof is analogous to the case for Loss A.
�
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Proof of Proposition 2′:
The proof follows the proof of Proposition 2.

Since ∆ġ ∼ N(0, ‖ġ‖2) under h0, we can find c satisfying

Eh0 [δc] = Eh0 [δ̃].

As before, we use the Neyman-Pearson lemma to derive a most powerful test of H0 : h = h0 against
H1 : h = h1(b, h0) for some b > 0. A most powerful test rejects for large values of

ln
dQh1

dQh0

= ∆(h1−h0) −
1
2
‖h1‖2 +

1
2
‖h0‖2 =

(
b

‖ġ‖2

)
∆ġ −

1
2
‖h1‖2 +

1
2
‖h0‖2.

The last equality follows by

∆(h1−h0) =
b

‖ġ‖2

∑
j=1

〈ġ, h̃j〉∆j =
(

b

‖ġ‖2

)
∆ġ.

The remainer of the proof then follows the proof of Proposition 2.
�

Appendix B: Loss B

Recall that LB(δ, θ, x) = −w0(x, θ) − δg(x, θ). As we did for Loss A and C, fix θ0 such that
w0(x, θ0) = g(x, θ0) = 0 and scale Loss B by

√
n to obtain the limiting loss and risk functions.

Suppose π(x, h) = limn→∞Ehδn(x,Zn), and denote ẇ0 := ∂w0(x, θ0)/∂θ. Then,

lim
n→∞

√
n · Eh

[
LB

(
δn(x,Zn), θ0 +

h√
n

, x

)]
= −ẇ′0h− π(x, h) ġ′h.

By Proposition 1, there is a rule δ in the limit experiment such that π(x, h) = Ehδ(x,Z), and the
limiting risk takes on the following form:

RB
∞(δ, h, x) = −ẇ′0h− (Ehδ) ġ′h.

Now we state and prove a minmax result for loss B under the conditions of Proposition 3.

Proposition B3 Suppose Z
h∼ N(h, I−1

θ ) for h ∈ Rk, and ġ 6= 0. The infimum is taken over all
possible randomized decision rules, and δ∗ denotes a rule which attains the given bound.
For Loss B,
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(i) ẇ0 = aġ for some a ∈ [−1, 0],

inf
δ

sup
h

RB
∞(δ(Z, x), h, x) = 0,

where δ∗ is any rule with Eδ∗ = −a;

(ii) ẇ0 6= aġ for any a ∈ [−1, 0],

inf
δ

sup
h

RB
∞(δ(Z, x), h, x) = ∞,

and all rules are minmax.

Proof: Let H0 = {h : ġ′h = 0} and H⊥
0 = {v : v′h0 = 0 for all h0 ∈ H0}. It is straightforward

to show that H⊥
0 = {aġ : a ∈ R}. For each h, there exists a unique h0 ∈ H0 and b ∈ R such that

h = h1(b, h0). Suppose ẇ0 = aġ for some a ∈ R. Then,

RB
∞(δ, h, x) = RB

∞(δ, h1(b, h0), x) = −(aġ′h0)− b
aġ′I−1

θ0
ġ

ġ′I−1
θ0

ġ
− (Eδ)b = −b(a + Eδ)

Case (i): ẇ0 = aġ for some a ∈ [−1, 0].
Take δ∗ such that Eδ∗ = −a. Then RB

∞(h, δ∗) = 0. Consider any δ with Eδ 6= −a. Then a+Eδ 6= 0
and for some b, RB

∞(h1(b, h0), δ) = −b(a + Eδ) > 0. Hence, all such δ∗ rules are minmax.

Case (ii)(a): ẇ0 = aġ for some a 6∈ [−1, 0].
Then for all δ, a + Eδ 6= 0, and as b −→∞ or −∞, −b(a + Eδ) −→∞. So, suph RB

∞(h, δ) = ∞ for
all δ and all rules are minmax.
Case (ii)(b): ẇ0 6= aġ for any a ∈ R, ie ẇ0 6∈ H⊥

0 .
There exists h̃0 ∈ H0 such that −ẇ′0h̃0 > 0. Note that ah̃0 ∈ H0 for a ∈ R. Also −ẇ′0(ah̃0) −→ ∞
as a −→∞.

sup
h

RB
∞(h, δ) ≥ sup

h0∈H0

RB
∞(h1(b = 0, h0), δ) ≥ sup

a∈R
RB
∞(h1(b = 0, ah̃0), δ) = sup

a∈R
−ẇ′0(ah̃0) = ∞

So the maximum risk of all rules is infinite, and all rules are minmax.
�

The extension of Theorem 1 to Loss B follows from the above proposition with the same bounds
and optimal rules for each case. The proof follows the proof for Loss C. These parametric results
for Loss B also carry over to the semiparametric case with the same bounds and optimal rules.
This extension is straightforward.
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