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ABSTRACT 
 

Between 5000 BCE and 1800, the population of the world grew 120-fold despite 

constraints on the total amount of land available for production.  This paper develops a 

model linking population growth to increasing productivity driven by random innovation 

and diffusion.  People are endowed with a set of skills obtained from their parents or 

neighbours, but those skills are imperfectly applied during their lifetimes.  The resulting 

variation in productivity leads to a distribution of income and to a process of diffusion 

whereby high-income activities spread at the expense of low-income activities.  An 

analytic formula is derived for the steady-state distribution of income.  The model 

predicts that the rate of growth of population approaches an asymptotic limit, whereupon 

there are no scale effects.  The model also predicts that if the rate of diffusion of 

knowledge is increased, the growth rate will increase.            
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1. Introduction 

For thousands of years prior to 1800, average per-capita income was very stable and 

very low.  Clark (2007) provides evidence to show that the standard of living of an 

English peasant in the year 1800 was similar to that of a hunter-gatherer living 100,000 

years ago, at last when measured in terms of nutrition and longevity.  According to 

Thomas Malthus, incomes were stagnant for so long because “the constant effort 

towards population, which is found even in the most vicious societies, increases the 

number of people before the means of subsistence are increased” (Malthus, 1826).  The 

two main assumptions of Malthus’ model were that the rate of population growth was 

increasing in per-capita income, and that there were diminishing returns to labour 

because land was in fixed supply.  He showed that under these two assumptions income 

would be mean reverting.  Population would also be mean reverting unless there were 

improvements to skills or technology that allowed more people to subsist off the same 

amount of land.  Hence according to Malthusian reasoning, population growth in the pre-

industrial era must have been driven by innovation.   

Historical evidence supports a link between population growth and innovation.  Phillip 

Hoffman has constructed an index of total factor productivity (TFP) for agricultural land in 

the Paris Basin between 1500 and 1800, showing a steady increase in TFP 

accompanied by a similar increase in the labour force over that period of time (Hoffman, 

1996, Table 4.10).  Clark has found a similar pattern for England between 1600 and 

1800 (Clark, 2007, Figure 2.6).  A recent paper by Ashraf and Galor (2008) has shown 

more generally that societies characterized by higher land productivity and an earlier 

onset of agriculture had a higher population density in the time period 1-1500 CE.  

Figure 1 shows world population at around 5 million in the year 5000 BCE (when 

agriculture was taking hold), increasing to 600 million on the eve of the industrial 

revolution (Kremer [1993]).  In the context of a Malthusian economy this 120-fold 

increase in population represents an enormous amount of innovation.  However in any 

given decade the rate of improvement would have seemed glacial.  One important 

characteristic of Figure 1 is that the rate of population growth appears to have been 

independent of the level of population, i.e. there were no scale effects between 5000 

BCE and 1800.     
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A simple macroeconomic model can be used to describe the phenomenon of a steadily 

growing population and a constant level of per capita income.  Let Y X  stand for 

output, fixed land, and labour respectively.  Let  stand for labour efficiency (or human 

capital per person).  The model consists of three equations: 

,  ,  L

A

Cobb-Douglas Production: ( )1Y X AL αα −= ,  0 1α< < , 

Exogenous Innovation: gtA e= , 

Malthusian Dynamics:  LL Yβ δ= −  

The symbol β  in the last equation represents the number of new labourers that survive 

to adulthood per unit of economic output, and δ  represents the natural death rate of 

labourers.  This last equation is analogous to the savings equation used by Solow in this 

1956 model of industrial growth, but with labour substituted for capital (Solow, 1956).  

Following the technique used by Solow, a steady-state solution to these equations can 

be obtained: 

Population Growth:  
1

L
Lg g
L

α
α
−

≡ = ,     

Income Per Capita:  LYy
L

gδ
β
+

≡ =  

 

Figure 1: World Population (Millions), 5000 BCE to 2000, Log Scale 
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           Regression is based on data between 5000 BCE and 1800. 
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Given the success of the above model in capturing the essence of the pre-industrial 

economy one might simply stop at this point.  But the model at it stands seems 

incomplete because it treats innovation as if it were some macroeconomic effect by 

which improvements in efficiency descend upon the entire population in a coordinated 

fashion.  Intuition would suggest that innovation is more likely a local phenomenon, and 

improved techniques displace older techniques through a process of diffusion.  There 

are two challenges in building a model of localized innovation and diffusion.  First, one 

must describe how individuals come up with innovations.  Second, one must avoid scale 

effects.  Kremer (1993) presents a proto-typical model of population growth that shows 

how scale effects arise naturally when innovation is assumed local.  In Kremer’s model, 

each person’s chance of inventing something is independent of population, so the 

aggregate rate of invention is proportional to population.  The implication of this 

reasonable assumption is that the rate of population growth should be increasing over 

time.  Although Kremer’s data supports a pattern of accelerating population growth after 

1800 (during the industrial revolution), that same set of data shows no apparent scale 

effects prior to 1800.  

The goal of this paper is to present a scale invariant model of pre-industrial growth with 

local random innovation and diffusion.  People are endowed with a set of skills obtained 

from their parents or neighbours, but those skills are imperfectly applied in their own 

lifetime.  There is no attempt by people to purposefully improve their skills.  Instead, 

random (directionless) variation leads to a distribution of income and to a process of 

diffusion whereby high-income activities spread at the expense of low-income activities.    

It turns out that a finite rate of diffusion puts a kind of “speed limit” on the aggregate rate 

of innovation and hence eliminates scale effects.  As the population grows, more people 

discover new skills that have already been discovered elsewhere but have not yet 

diffused across society, i.e. they end up “re-inventing the wheel”.  The economy 

eventually settles into a steady state in which the distribution of income is stable and the 

rate of growth of population is independent of the level of population.  A central 

prediction of the model is that the faster the rate of diffusion of knowledge, the faster the 

growth rate of population. 

A key assumption of the model is that knowledge diffuses through society at a finite rate.  

Modern evidence shows that the diffusion of superior technologies is indeed not 

instantaneous, even when the benefits are seemingly clear and there are no legal 
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barriers to adoption.  One of the best-known studies of diffusion concerns the adoption 

of hybrid seed corn by farmers in Iowa between 1930 and 1950 (Ryan & Gross [1943]).  

During those decades, hybrid seed led to yields that were 20% higher than those 

common at the time.  But farmers were conservative, tending not to switch to the new 

seed until they had witnessed their neighbours enjoying success.  As Griliches [1957] 

observed, the pattern of adoption was S-shaped:  there was an initial period of slow 

adoption, followed by a period when the rate of adoption was high, followed by a 

levelling-out process as the pool of potential new users shrank.  Subsequent work has 

shown that this S-shaped pattern of diffusion is practically ubiquitous (Rogers [1995]).   

The process whereby knowledge is spread through society by way of direct encounters 

between people as described above might be called horizontal diffusion.  An alternative 

type of diffusion, perhaps even more important in the pre-industrial era, was that 

between parent and child, i.e. vertical diffusion.  In a society with no public education 

and limited opportunities for travel, people would have learned most of their skills from 

their parents.  Such vertical transfers of knowledge would lead to the spread of superior 

techniques under Malthusian conditions because members of the most productive 

families would leave the most offspring.  And given that land was in fixed supply one 

might expect to see a process of selection, similar to Darwinian selection, acting to 

favour the people with the highest levels of skills and knowledge.1                             

The Malthusian assumptions underpinning the present model are reviewed by Galor 

(2005), and Galor & Weil (2000).  Several recent papers have presented models of pre-

industrial growth based on Malthusian assumptions (Kremer, 1993; Jones, 1999; Galor 

& Moav, 2002; Hansen & Prescott, 2002; Lucas, 2002).  These papers are mainly 

concerned with the transition from Malthusian income stagnation to modern growth, 

while the present paper is concerned only with the Malthusian era.  The role of selection 

in the diffusion of innovation was previously discussed by Galor & Moav, by Clark & 

Hamilton (2006), and by Clark (2007).  Whereas those authors explored the possibility 

that genetic selection may have driven increases in productivity, the present paper 

considers only what may be termed cultural selection, i.e. changes in knowledge and 

                                                 
1 From Darwin [1883]:  "...I saw, on reading Malthus on Population, that natural selection was the 
inevitable result of the rapid increase of all organic beings...".  The type of selection considered here has 
been variously termed cultural selection or behavioural selection, to distinguish it from genetic selection 
(Jablonka & Lamb, 2005). 
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skills.  Many of the results in this paper have been obtained using the tools of 

continuous-time stochastic calculus, originally applied to the study of economic growth 

by Bourguignon (1974) and Merton (1975).           

The paper is organized as follows.  Section 2 presents a model of population growth with 

random innovation and diffusion of knowledge (both horizontal and vertical).  Section 3 

presents an analytic formula for the distribution of income and shows how one may 

compute the population growth rate as a function of demographic and economic factors.  

Finally, section 4 summarizes the findings of this paper and suggests some possible 

extensions.                                                

 
 

2. The Model  

 

2.1 Production 

The production function for each unit follows the Cobb-Douglas form: 

(2.1)  ( )1i i i iY X A L αα −= .  

Here  labels a unit of production in which people have attained a certain level of 

knowledge , and Y , , and  stand for the levels of output, land and labour 

associated with that unit.  We assume that the quality of land is homogeneous across all 

units.  Note that there is no capital in this model (or equivalently, capital is tied to land or 

to labour in some fixed proportion

i

iA X L

( )

i i i

2).  A set of people may be a tribe, a manor in pre-

industrial Europe, or just a family.  We assume that the size of a unit is small in 

comparison with the whole population, so the economy is competitive.  One may think of 

the quantity  as representing the amount of effective labour, or human capital.  

Total output for the economy is simply 

i iA L

∑=
i

iYY .  

                                                 
2 The assumption that capital is tied to other factors seems reasonable for a pre-industrial economy.  For 
example, draught animals were an important form of capital but required pasture for grazing so the 
potential for accumulation was limited. 
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Since income drives population in a Malthusian economy, our immediate goal is to 

derive an expression for per-capita income applicable to each unit.  In order to do so we 

must first determine how land is distributed across the various units of production.  Two 

assumptions are sufficient.  First, we assume that the marginal product of land is the 

same across all units: 

  constanti

i

Y
X
∂

=
∂

. 

Second, we assume that the total amount of land is fixed (normalized to 1 for 

convenience): 

  . 1i
i

X =∑

With these two assumptions one may show that land is distributed in proportion to 

human capital: 

(2.2)  i i
i

A LX
AL

= , 

where  is the total quantity of labour and  is the labour-weighted average 

productivity across all units.  Per-capita income is then proportional to productivity:

L A
3

(2.3)  
( )

i
i

i

iY Ay
L AL α≡ =           

The assumption of a constant marginal product of land can be justified in the context of a 

society where there is clear title to land and a competitive rental market.  In that case, 

the marginal product of land is equal to the rent, and rent is the same for everyone 

because the quality of land is assumed homogeneous across all units of production. 

In a society without formal land ownership the distribution of land is more likely 

determined by military strength.  But even then one can argue that as long as people are 

rational, land will be distributed as described above.  Consider the situation where there 

are two neighbouring units of production, one of which enjoys a high marginal product of 

land (labelled “H”), and the other of which has a low marginal product of land (labelled 

                                                 
3 An interpretation of Equation (2.3) is that each unit earns its average product of labour, i.e. 

i iy Y A
AL

= . 
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“L”).  All units wish to expand their holdings of land because according to (2.1) that will 

allow them to expand output.  It is profitable for a given unit to invade its neighbour only 

if the military budget required to defend the acquired piece of land is less than its 

marginal product.  It turns out that unit “H” can economically expand its territory at the 

expense of unit “L” if it spends an amount on defence that is intermediate between the 

marginal products of the two units.  In that case unit “L” will find it uneconomical to match 

the military spending of unit “H” and will be forced to retreat.  A stalemate will be 

obtained when land is divided between the two communities such that their marginal 

products are the same.                 

There remains the question of how much of income goes to fuel population growth.  An 

extreme Ricardian view might be that only the labour share of income fuels population 

growth because the remainder of income (rent) is squandered by a small land-owning 

elite on luxury goods and military adventures.  But luxury goods makers and soldiers 

presumably have children, so some of that rental income will support the “effort towards 

population”.  It is not the aim of this paper to develop a full theory of land ownership, so 

instead we will simply assume that all income generated by a unit of production goes to 

support the raising of children in that unit.  Equation (2.3) can then be used as the basis 

for a Malthusian model of population dynamics.           

 

 

2.2 Fertility 

Following Hansen & Prescott (2002) we assume that the rate of growth of population in a 

production unit is a linear function of income: 

(2.4)  i
i

i

L y
L

δ= Β − . 

Here  is given by Equation (2.3) and iy Β  and δ  are constants.  Since the size of the 

labour force is proportional to total population, Equation (2.4) also describes the rate of 

growth of labour.  The first term in Equation (2.4) then represents the rate of entry into 

the labour force, which is roughly equal to the number of children that survive to 

adulthood.  Here adulthood means the ability to both work and reproduce.  A natural 
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interpretation of the first term in Equation (2.4) is that wealthy parents produce more 

children than poor parents.4  The second term in Equation (2.4) represents the natural 

death rate of labourers.   

Equation (2.4) can be derived by assuming a constant elasticity of parent’s marginal 

utility with respect to both net consumption  (after child-rearing expenses) and the 

number of children .  E.g. 

c
n

  
( )1 1

( , )
1

cn
U c n

θφ

θ

−
−

=
−

,  c y kn= − . 

Here  is the expenditure required to raise a single child.  For a given level of family 

income , utility is maximized when 

k

y n y= Β , 
(1 )k
φ
φ

Β =
+

.    

If we assume that knowledge is passed down through the generations, then Equations 

(2.3) and (2.4) together define a system that exhibits the characteristics of Darwinian 

selection.  Consider a hypothetical situation where there are two types of labourers, one 

representing the majority (labelled “L”), and the other representing a small minority 

having above-average skills (labelled “H”).  Figure 2 shows schematically what happens 

to these two populations over time. 

Since the population of type “H” individuals is small at first, the equilibrium of the 

economy is initially dictated by the properties of type “L” individuals.  The net income of 

type “L” individuals is just high enough to allow the population to remain stable (each 

couple produces on average two children that survive to reproduce).  But the type “H” 

individuals enjoy a higher income and so are able to grow in number.  The marginal 

product of land in type “H” communities is temporarily higher than that of the land 

controlled by the type “L” communities.  Hence by the logic of the previous section the 

territory controlled by type “H” individuals grows at the expense of the territory controlled 

by type “L” communities until the marginal products of land are equalized.  In the new 

equilibrium the net income of type “L” people is lower than before, so their numbers start 

                                                 
4 In a paper entitled “Survival of the Richest”, Clark and Hamilton provide evidence based on parish 
records from pre-industrial England showing a positive correlation between the number of heirs listed in 
wills and the total assets of testators, the later presumably a good proxy for income (Clark & Hamilton, 
2006).    
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to shrink (e.g. the rate of infant mortality goes up).  In the meantime, the population 

labelled “H” continues to rise, which according to Equation (2.2) triggers further 

expansion of territory.  The process continues until type “H” individuals have taken over 

the economy.  As expected, the higher level of population absorbs the higher income of 

the more productive people, to the extent that disposable per-capita income once again 

reverts to its original subsistence level.  

Figure 2: Selection in a Malthusian Economy 
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The mechanism of selection just described is similar to the evolutionary mechanisms 

presented by Nelson & Winter (1982) but with the roles of capital and labour reversed.  

In Nelson & Winter’s models, firms grow by reinvesting capital while competing for finite 

supplies of other resources such as labour.  To find something even closer to the 

present model one must look to the theoretical population ecology literature.5  Ecological 

models typically capture competitive dynamics by assuming the existence of a common 

limiting resource, and a population growth equation similar to (2.4), but with a “crowding 

term” , e.g. ( )C L

         ( )i
i

i

L C L
L

β δ= − . 

                                                 
5 See Vandermeer & Goldberg (2003) Ch. 1, for example. 
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( )C L  is a decreasing function of the total population , and L iβ  is a population specific 

birth parameter.  We can relate Equation (2.4) to the above ecological model by 

mapping iA iβ→  and ( ) ( )AL C LΒ →α .  In the model of population growth given by 

Equations (2.3) and (2.4), people are competing for a fixed quantity of land and the most 

productive people can survive crowded conditions that are too onerous for other types of 

people.  The main difference between the ecology models and our model of Malthusian 

dynamics is that in the former case fertility rates are determined by genetics, whereas in 

our case fertility rates are determined by skills, which are nevertheless passed to 

descendents as if they were something like genes.   

 

2.3 Horizontal Diffusion 

Consider two populations, labelled  and i j , and assume that the productivity of any 

person in population j  is greater than that of a person in population .  That is, .  

According to Equation (2.3) this productivity difference manifests itself as a difference in 

income, i.e. .  One would expect that if a person in population i  came into 

contact with a person in population 

i AA >

y y>

ij

j i

j  and was able to observe the superior techniques 

used by the person in population j , then there would be a transfer of knowledge.  This 

type of knowledge transfer can be captured using epidemic models, which generally 

assume that the rate of transfer between two populations is proportional to the product of 

the two populations (see Giroski, 2000 for a review).  The resulting dynamics gives rise 

to an S-shaped pattern of diffusion as seen by Griliches in his famous paper on hybrid 

corn (Griliches, 1957).  The Bass model of diffusion (Bass, 1969), widely used by 

marketers to forecast the spread of technology, is also based on this type of rule.    

Another aspect of diffusion observed by Griliches, and also emphasized by Rogers 

(1995), is that the speed of diffusion appears to be proportional to the economic benefit 

that is obtained by switching to the superior technique or technology.  This aspect of 

diffusion can be captured by assuming that the speed of diffusion is an increasing 

function of the difference in income.   
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We now postulate the following dynamics for the horizontal diffusion of knowledge 

between two populations, labelled i  and j : 

(2.5)  ( )j
j i j

L
L L y y

L
ν= − i , 

(2.6)  ( )i
i j j i

LL L L y y
L

ν= − = − j , 

where  is the total population.  The flow of knowledge is always from lower-income 

activities to higher-income activities.  The constant 

L
ν  captures the speed of diffusion.  

Note the symmetry between equations (2.5) and (2.6): only one of these equations is 

needed to specify the model.  The intuition behind Equation (2.5) is that the rate of 

increase in the population with superior knowledge  is proportional to the number of 

potential learners ( ), and is also proportional to the percentage of labourers that have 

already attained that level of knowledge (

jA

iL

LL j ).  This second factor represents the 

likelihood that a potential learner will be neighbours with a potential “teacher”, which 

captures the epidemic nature of diffusion.       

In an economy with many different levels of productivity, the rate of diffusion away or 

towards a given level of knowledge can be obtained by summing the effects of diffusion 

over all relevant pairs of types.  Hence to obtain the total rate of change of , we can 

sum Equation (2.6) over

iL

j  to obtain 

(2.7)  ( )i i iL L y yν= − , 

where y  is the labour-weighted average wage across the economy. 

It is useful at this point to place the above model of knowledge diffusion in the context of 

technology diffusion models.  Giroski (2000) classifies diffusion models into four 

categories: epidemic models, probit models, density-dependent population models, and 

information cascade models.  Epidemic models have already been discussed.  Probit 

models postulate that units of production (firms in modern parlance) are heterogeneous 

in their ability to adopt new technologies.  For example, a firm may adopt a new 

technology only if the profit in doing so exceeds some threshold, say *π .  Let’s say the 

distribution of *)(πf*π  across firms is .  The proportion of firms adopting the 
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*)(πf *technology is then equal to the area under  where π  is less than the increase in 

profit obtained by switching to the new model.   Density dependent population models 

include the model of selection described in the previous section.  Information cascade 

models describe the phenomena whereby “herd mentality” may cause firms to adopt a 

certain technology even when there are other more profitable alternatives. 

The model of diffusion described by Equations (2.5), (2.6) and (2.7) is a hybrid of 

epidemic and probit models.  The factor i jL L Lν  in Equation (2.5) captures the 

epidemic dynamics, while the dependence on j iyy −  captures the heterogeneity of 

capabilities across units of production.  One can derive the j iy y−  factor from a probit 

model by assuming that each unit of production adopts a new technique only if the 

accompanying increase in income exceeds some threshold.  If that threshold is uniformly 

distributed across units, then the proportion of units adopting the given technique will be 

linear in .                      j iy y−

v →Β

Note that Equation (2.7) is similar to the equation for population dynamics presented in 

the previous section (Equation (2.4)).  The correspondence can be seen if we map 

 and vy δ→  ( yν yis a constant since  is constant in a Malthusian economy).  

Hence our model can also be viewed as a selection model.  In epidemic models, 

selection acts on different variants of pathogens that are competing for hosts.  If skills 

are something like pathogens, then these skills are “competing for people” and only the 

most communicable will survive, communicability in this case being related to 

differences in income. 6

Finally, Equation (2.7) can be combined with Equation (2.4) to obtain the total rate of 

change of population of a given type: 

(2.8)  ( )i
i i

i

L By y
L

δ ν= − + − y

                                                

 

This last equation combines the effects of vertical diffusion and horizontal diffusion. 

 

 
6 Dawkins concept of a meme comes closest to capturing the idea of skills competing for people (Dawkins, 
1976). 
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2.4 Innovation 

Our model of innovation is very simple: 

(2.9)  i
i

i

dA dz
A

σ= . 

Here σ  is a constant and  represents a draw from a standardized iid normal process: 

.  There is no direction to innovation, and productivity is as likely to 

decrease as it is to increase.  To simplify matters we assume that individuals innovate 

independently of one another, so the  are uncorrelated across i .  One complication 

that we will need to address later is that the definition of a group may change over time.  

For example, a group may start out as a single “tribe”, but after the population expands, 

the tribe may split into two independent tribes each pursuing their own innovation 

according to Equation (2.9).          

idz

),0(~ dtNdzi

idz

   

 

 

2.5 Summary of the Model 

(2.3) Income:   
( )

i
i

i

iY Ay
L AL α≡ = ,   j

j
j

L
A A

L
= ∑ ,  ∑=

i
iLL , 

(2.8) Diffusion/Selection: ( )i
i i

i

L y y y
L

δ ν= Β − + − i
i

i

Ly y
L

≡∑,   ,   

(2.9) Innovation:  i
i

i

dA dz
A

σ= .             
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3. Aggregate Growth  

     

3.1 Simulation of the Model 

Before developing an analytic model of aggregate growth we present the results of a 

simulation exercise, designed to replicate the pattern seen in Figure 1.  The purpose of 

the simulation is to highlight some key properties that will need to be captured in the 

analytical solution.  Some of the parameters of the simulation have been chosen to be 

consistent with historical data; others have been chosen based on plausibility.  Together, 

they are designed to produce a rate of growth of 0.075% per year, consistent with the 

slope of the regression line shown in Figure 1.      

First, we assume that there are a large number of “tribes”, each of which is restricted in 

size.  Initially there are 1,000 tribes, each containing 5,000 people; hence there are 5 

million people to start.  Whenever a tribe grows beyond 10,000 people, it splits into two.  

This step is necessary to prevent any single tribe from taking over the entire economy, 

contradicting the assumption that there are a large number of units of production.  We 

are assuming that as population expands in the pre-industrial world, the number of 

communities expands with it, instead of each community becoming larger. 

Parameters: Using data from Hansen & Prescott (2002), along with our estimate of 

growth , we can infer that 0.075%g =L δ  must be approximately 181  in units of years-1, 

which implies that in the pre-industrial era the average person could expect to live an 

additional 18 years upon reaching adulthood.7  Summing (2.8) over i  we have  

(3.1)  L
Lg y
L

δ≡ = Β − ,  

and hence )( 0.05625L yyg δ =Β = + .  According to figures contained in Maddison 

(2007), world GDP per capita prior to 1800 was roughly US $500 in 1990 terms.  

Therefore 0.05625 500 0.0001125Β = .  For simplicity let us assume initially that there 

is no horizontal diffusion, so 0=ν  and all diffusion occurs vertically through a process of 

                                                 
7 Annualising Equation (15) in Hansen and Prescott, )351(2 g−=δ  where %075.0=g , hence 

0.0555δ = .   

 15



selection.  The share of land in production, α , is set to 0.3.  The one parameter left to 

be determined is σ .  By a process of trial and error it was determined that 0.0022σ =  

results in a rate of growth that is close to 0.075%.  This value of σ  implies that 

productivity fluctuates with a standard deviation of 0.22% per annum, or just less than 

1% over the average working life of an individual.   

The main finding of the simulation exercise is that the distribution of income quickly 

adopts the form shown in Figure 3, even when starting from an arbitrary shape.  The 

mean of the distribution ($500) is quite stable, which translates into a constant 

population growth rate and hence no scale effects.  Note that the mean income of $500 

is close to the subsistence level of 493$=Βδ 0= (substitute Lg  into Equation 3.1).  

The standard deviation of the distribution is approximately $38.  Over 99% of the 

population has an income that lies somewhere between $400 and $600.  The solid line 

in Figure 3 represents a normal distribution with the same mean and standard deviation 

as the simulated distribution.  It turns out that the normal distribution fits the simulated 

results very well, although as we shall see in the next section the exact distribution is 

actually related to a Bessel function.     

Although the average level of income is almost constant after a few hundred years of 

simulation, there is still a small residual dependence on population.  Figure 4 shows that 

the dependence appears to be approximately of the form Nba − , where  and b  are 

constants and  is the number of tribes.  As 

a

N ∞→N  the average income (and hence 

the growth rate) becomes independent of population. 

 
 

Figure 3: Distribution of Income 
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Figure 4: Dependence of Mean Income on Population  
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The observed dependence of the growth rate (and mean income) on the parameters Β , 

δ , ν  and σ  is as follows: 

1. When 0ν = , the population growth rate is independent of .  However, 

average income is negatively correlated with 

Β

Β  as expected in a 

Malthusian economy.  When 0ν > , the population growth rate is 

negatively correlated with Β . 

2. If one increases the death rate δ , the level of population drops and the 

average level of income increases, as expected in a Malthusian 

economy.  But interestingly, the population growth rate goes up. 

3. The population growth rate and the average income are both positively 

correlated with ν . 

4. The population growth rate and the average income are both positively 

correlated with σ . 

The last observation conforms to the expectation that in a “Darwinian” economy the rate 

of increase in mean productivity should be a positive function of the variance of 

productivity.  The more variance there is, the more that selection has to operate upon.  

Some of the other results are surprising.  For example, the second bullet point says that 

if the death rate increases, the rate of growth of population increases, and it is not at all 

obvious why this relationship should hold. 
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By studying the workings of the simulation one can obtain a picture of how diffusion and 

selection work in this economy and so gain some intuition around the relationships 

reported above.  The picture that emerges is as follows.  There are a large number of 

units, some of which are operating close to the frontier of knowledge, while others are 

further behind.  The more units there are operating near the frontier, the more likely it is 

that one of them will accidentally discover something that increases the overall 

productivity of the economy.  Furthermore, the faster the speed of diffusion, the more 

units will be located near the frontier of knowledge.  Therefore an increase in the speed 

of diffusion should increase the growth rate.  Regarding the second point, an increase in 

the death rate leads to a higher rate of selection (i.e. the slope of the curves in Figure 2 

are steeper), and therefore a higher rate of (vertical) diffusion.   

Finally, we can gain some intuition around why there are no scale effects in this model.  

One might expect that as the population increases, the rate of discovery should go up 

because there are more units drawing independent samples from the productivity 

distribution ( dz ).  However, not everyone is operating near the frontier of knowledge.  

Those that are lagging the frontier are making discoveries just as fast as those that are 

ahead, but the laggards are effectively “re-inventing the wheel”.  As the economy 

expands this phenomenon becomes more and more common, counteracting the 

increased rate of discovery.               

i

 

 

3.2 Analytic Solution 

We now wish to find an expression for the growth rate of population  as a function of 

the parameters 

Lg

α , , Β δ , ν  and σ .  According to Equation (3.1), the overall growth 

rate of population is a simple linear function of the average income y , so we can direct 

our efforts towards finding y . 

In the summary of the model shown in section 2.5, we listed some differential equations 

for  and ; and we expressed  as a function of .  So it should be possible to find iL A y Ai i i
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ya differential equation for  and find its fixed-point solution.  To carry out this procedure 

we make use of Ito’s lemma (Ito [1951]):8

Ito’s Lemma: 

, and function { }( )txf i , , then Given the process iiii dzxbdtxa(dx )() +=

  { } ∑∑ ∂∂
∂

++
∂
∂

+
∂
∂

=
ij

ijji
jii

iii
i

dtxbxb
xx
fdzxbdtxa

x
fdt

t
fdf ρ)()(

2
1)()(

2

, 

where ijρ  is the correlation between  and .   idz jdz

Since innovations are assumed to be independent, ijρ  is a matrix with ones down the 

diagonal and zeros everywhere else, i.e. ijij δρ = .  Hence 

  { } ∑∑
∂
∂

++
∂
∂

+
∂
∂

=
i

i
ii

iii
i

dtxb
x

fdzxbdtxa
x
fdt

t
fdf 2

2

2

)(
2
1)()(  

From Equation (2.3) we have 

(3.2)  
1Ay
Lα

α−

= . 

Applying Ito’s lemma to (3.2) using (2.3), (2.8) and (2.9) (see the box, Section 2.5) we 

can obtain dy  in several steps.  First: 

(3.3)  ( )
2

( ) 1ydA A H N dZdt
y
σ

σν
⎧ ⎫⎪ ⎪= Β+ +⎨ ⎬
⎪ ⎪⎩ ⎭

 

where  

( 22 1
y i

i

y y
N

σ = −∑ )  is the variance of income, 

( )
2 2

21
i i

i

i i
i

L y
H N

L y
=
⎛ ⎞
⎜ ⎟
⎝ ⎠

∑

∑
 is a Herfindahl index (a measure of concentration), 

                                                 
8 A non-rigorous derivation of Ito’s lemma can be found in Hull [2003]. 
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)1,0(~ NdZ  is a standardized normal, 

and  is the number of production units (e.g. tribes, manors).  One can readily see that 

the Herfindahl index is of order 

N

N1  by scaling the number of production units by a 

positive factor.  From Ito’s lemma we then have: 

(3.4)  ( )21 1) 1 (1 )
2

(1 1d dA
A

A Aα α
α H N dtα α α σ− −−= −
−

.   

Combining (3.3) and (3.4) with )(dL L y dtδ= Β −  we finally obtain: 

(3.5) ( )
2

2(1 )( ) ( ) (1 ) 1
2ydy y y yH N dtσα ν σ α δ α α

⎧ ⎫
= − Β+ + − Β − −⎨ ⎬
⎩ ⎭

 

      ( )(1 ) 1y H N dZα σ+ − , 

The equation for y  is mean reverting, with the point of attraction being a negative linear 

function of ( )NH 1

∞→N

, which explains the pattern shown in Figure 4.  In the limit that 

, H vanishes, as does the stochastic term.  The vanishing of the stochastic term 

is analogous to the elimination of unsystematic risk in a large diversified portfolio of 

assets.  We are then left with a deterministic portion only, which simplifies to: 

(3.6)  2(1 )( ) ( )y
dy y y
dt

α ν σ α δ= − Β+ + − Β . 

In deriving Equation (3.6) we have not considered the issue of changing group structure, 

such as occurred in the simulation exercise where we continuously split old tribes into 

new tribes.  However, it turns out that this complication is irrelevant for Equation (3.6) 

because at any given time, quantities such as y  and yσ  are invariant under splitting.     

A stable fixed-point solution can be obtained by setting both sides of Equation (3.6) 

equal to zero.9  At the fixed point, 2
yσ  is related to y  as follows:   

(3.7)  
( )2

1 ( )y

y y
v
δασ

α
Β −

=
− Β+

. 

                                                 
9 The fixed point is stable by inspection of the last term in Equation (3.6). 
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Using the parameter values listed in section 3.1, we obtain yσ = $37.80, which is close 

to the value of $38 obtained in the simulation exercise.  

In order to proceed further in deriving an expression for y  in terms of the parameters of 

our model, we need to find another equation for 2
yσ .  We can apply Ito’s lemma to derive 

an equation for 2 t

2

yd dσ  and try to find its fixed point, but it turns out that the fixed-point 

equation for yσ  then has a term containing the third moment.  Going further we could 

derive a whole set of recurrences relations for the higher moments, but that would only 

lead to an infinite regress.  Clearly we need to determine the entire density function for 

income.   

The most direct approach to finding the density function is to first derive it for each , 

and then sum over i  (weighting by 

iy

iL L ).  We can sum the individual distributions 

because we are assuming no correlation between the various stochastic processes 

driving the changes in productivity.  First, we apply Ito’s lemma to Equation (2.3) using 

(2.8) and (2.9) to obtain, in the limit of an infinite number of tribes: 

(3.8)  
2

( ) ( )y
i iidy y y dt y dz

y
σ

iα ν α δ σ
⎧ ⎫⎪ ⎪= − Β+ + − Β +⎨ ⎬
⎪ ⎪⎩ ⎭

. 

This describes a simple process of geometric Brownian motion.     

Next, to compute the density function for  we use the Fokker-Planck Equation, also 

known as the Kolmogorov Forward Equation (Cox & Miller, 1996):                 

iy

Fokker-Planck-Kolmogorov Equation: 

Given the process , the density function ( ) ( )i i idy a y dt b y dz= + i ( , )i iy tρ satisfies 

  [ ]
2

2
2

( , ) 1( ) ( , ) ( ) ( , )
2

i i
i i i i i i

i i

y t a y y t b y y t
t y y

ρ ρ ρ∂ ∂ ∂ ⎡ ⎤= − + ⎣ ⎦∂ ∂ ∂
, 

Application of this Equation to (3.8) leads to the following partial differential equation 

for ( , )y ti iρ : 
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(3.9)  
2

2 ( ) ( )yi
iy

t y
σρ σ α ν α δ

⎧ ⎫∂ ⎪ ⎪= + Β+ − − Β⎨ ⎬∂ ⎪ ⎪⎩ ⎭
ρ  

         
2

22 ( ) ( )y iy y
y y
σ ρσ α ν α δ

⎧ ⎫ ∂⎪ ⎪+ + Β+ − − Β⎨ ⎬ ∂⎪ ⎪⎩ ⎭
 

       
2 2

2
22

iy
y

σ ρ∂
+

∂
. 

Here we have dropped the index  on  because the income scale is common across 

all units.  Now define 

i iy

( , )f y t  as the distribution of income across all units of production: 

  
( )( , ) ( , )
( )

i
i

i

L tf y t y t
L t

ρ≡∑ . 

We may now derive a partial differential equation for  using (3.9), along with (2.8) and 

(3.1): 

f

 
2

2( )( ) ( ) ( )yf y y y f
t y

σ
ν σ α ν α δ

⎧ ⎫∂ ⎪ ⎪= Β+ − + + Β+ − − Β⎨ ⎬∂ ⎪ ⎪⎩ ⎭
 

      
2

22 ( ) ( )y fy y
y y
σ

σ α ν α δ
⎧ ⎫ ∂⎪ ⎪+ + Β+ − − Β⎨ ⎬ ∂⎪ ⎪⎩ ⎭

 

     
2 2

2
22
fy

y
σ ∂

+
∂

 

The term ( )( y y)νΒ+ −  in the above expression captures the effect of knowledge 

diffusion, while the rest of the expression is identical to (3.9).   

A steady-state distribution of income is obtained when 0=∂∂ tf .   Substituting for 2
yσ  

from (3.7) we obtain the following ordinary differential equation for ( )f y : 

(3.10)  ( )20 y f ayf by c f′′ ′= + + +    

where 

  2
2

2 2 (
1

a yασ δ
σ α

⎧ ⎫= − − Β⎨ ⎬−⎩ ⎭
)  

 22



  ( )2

2b ν
σ

= Β+  

  2
2

2 ( ) ( )
1

c y αν σ δ
σ α

⎧ ⎫= − Β+ + − − Β⎨ ⎬−⎩ ⎭
y  

Following the suggestion of Polyanin & Zaitsev (2003, p. 228), we make the substitutions 

  2z b= y  and 1( ) ( )af y z u z−= . 

Equation (3.10) then becomes 

(3.11)  [ ]uz
dz
duz

dz
udz 22
2

2
20 γ−++= ,   ca 4)1( 2 −−=γ ,  

which is Bessel’s equation.  It has the solution 

  , )()()( 21 zYCzJCzu γγ +=

where  and  are γJ γY γ -order Bessel functions of the first and second kind respectively, 

and ,  are arbitrary constants.  Hence 1C 2C

  ( ) ( ) ( ){ }1

1 2( ) 2 2 2
a

f y by C J by C Y byγ γ

−
= + . 

In order to prevent (0)f  from blowing up,  must be zero.  To see why, expand 

near  (Abramowitz & Stegun, 1972 pg. 360): 

2C

)(γ zJ z = 0

  ∑
∞

= ⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎟
⎠
⎞

⎜
⎝
⎛−

++Γ
⎟
⎠
⎞

⎜
⎝
⎛=

0

2

4
1

)1(!
1

2
1)(

k

k

z
kk

zzJ
γ

γ

γ , 

and   
)sin(

)()cos()(
)(

γπ
γπ γγ

γ

zJzJ
zY −−
= . 

When 0>γ ,  and 0)(lim
0

=
→

zJ
z γ ∞=−→

)(lim
0

zJ
z γ , hence −∞=

→
)(lim

0
zY

z γ .  So in order for 

the function ( )f y 0 to be bounded at the origin, we must set 2 =C .  Therefore our 

solution is 

(3.12)  ( ) ( )1
( ) 2 2

a
f y C by J byγ

−
= , 
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where  is a normalization constant. C

Now that we have the functional form for ( )f y , the final step of our analysis to compute 

y  as a function of the parameters of our model: α , Β , δ , ν  and σ .  Since the 

coefficients of the function ( )f y  themselves contain y  (see (3.10)), we must solve for 

y  using the consistency relation: 

(3.13)   
( )

( )
D

D

yf y dy
y

f y dy
=

∫

∫
,  

where  stands for the relevant domain of the function.  It turns out that we need to 

restrict the domain to lie between 

D

0y =  and the first non-zero root of the Bessel 

function, since the Bessel function is oscillatory.10  The only way to proceed along these 

lines is to resort to numerical methods.  Alternatively, the next section contains a useful 

approximation for y  and  based on the assumption that the distribution of income is 

normal. 

Lg

The Bessel function solution (3.12) implies that there is a maximum income attainable in 

the economy.  Using the parameter values listed in Section 3.1, the root of the Bessel 

function turns out to be located near $707, which is at about the 99.99999 percentile of 

the normal distribution shown in Figure 3.  This restriction on domain would seem to 

contradict Equation (2.9) because in principle it should be possible to obtain an arbitrarily 

large draw of a normal distribution, even if such a draw is very rare.  Indeed, there is a 

slim chance that some unit will make a large discovery that pushes its income above the 

maximum, but evidently the number of such units as a percentage of the total is not 

stable when the number of units approaches infinity.            

 

3.3 Normal approximation for ( )f y  

Recall from Figure 3 that a normal distribution fits the data from the simulation very well.  

Figure 5 shows the exact Bessel function solution (with Condition (3.13) verified to within 

                                                 
10 The amplitudes of oscillations to the right of the first root are too small to be visible in a graph. 
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3 cents) overlaid on a normal distribution with the same mean of $500 and a standard 

deviation of $37.80 determined by Equation (3.7).  Clearly the normal distribution is a 

viable base for approximation.       

 
 

Figure 5: Distribution of Income: Bessel vs. Normal 
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It turns out that one can derive the parameters of the approximate normal distribution 

using Galerkin’s method (Weisstein, 2008).  Let us assume that ( )f y  is approximately 

normal: 

(3.14)  
2

2

1 (exp( ) )
2 2

(
y y

f y h y y y
σπσ

⎛ ⎞−
−= ⎜ ⎟⎜ ⎟
⎝ ⎠

)
, 

where yσ  is obtained from (3.7).  From Equation (3.10) we have 0 , where 

.  Galerkin showed that one could approximate the 
solution to an ODE with some function, say , by solving 

( )( )L f y=

( )2( )L f y f ayf by c f′′ ′= + + +
( )h y

(3.15)  . ( )0 ( ) ( )h y L h y dy
∞

−∞

= ∫

The method entails setting the weighted average error  across the domain of the 

function equal to zero, with the weight function being the target function itself.  It is most 

often used to find the coefficients of a power series solution to a differential equation.  

Here we can use the method to find an approximate solution for 

( )L h

y .   Substituting (3.14) 

into (3.15) and using  

 25



  2 ( ) 1
2 y

h y dy
πσ

∞

−∞

=∫ , 

  2 2( ) ( )
4

yy y h y dy
σ
π

∞

−∞

− =∫ , 

  4 2
3

( ) ( )
3
8

yy y h y dy
σ
π

∞

−∞

− =∫  

2( 0) ( )ny y h y dy
∞

−∞

− =∫ n, where  is odd, 

equation (3.15) becomes 

  ( )
2 21 1

4 1 24 ( )
0

1
y

y BBy
By

σ α σ νδ ααπσ
( )

δ
α

⎧ ⎫
⎪ ⎪+

+ − −⎨ ⎬−⎪ ⎪−
−⎩ ⎭

= . 

Substituting for yσ  using (3.7), solving for y , and using Lg y δ= Β −  we finally obtain:   

(3.16) 
2

22

1
1 1 1 81 1 1

4 2 1 11
2

L
Bg

B
B

ν
σ

δ
α α

α α νσ α
α

ν

⎧ ⎫⎛ ⎞⎪ ⎪+⎜ ⎟− −⎡ ⎤ ⎪ ⎪⎛ ⎞ ⎝ ⎠= + − + +⎨ ⎬⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦ −⎡ ⎤⎛ ⎞⎪ ⎪+ −⎜ ⎟⎢ ⎥⎪ ⎪⎝ ⎠⎣ ⎦⎩ ⎭

 

  
( )11

2
ν δα σ

α
− + Β

. 

This formula effectively captures the directional dependence of the growth rate on the 

parameters of our model (see list of observations in Section 3.1).  A key prediction of the 

formula is that the growth rate is approximately linear in σ , but is approximately square-

root in δ  and 1 .  Table 1 shows that these dependencies are roughly born out by 

the simulation results (although there appears to be an upward bias to the approximated 

results).

v+ Β

                                                

11  

 
11 There is a fair bit of noise in the numerical simulation results (dependent on the random number seed), 
which may be causing some of the discrepancy between the simulated results and the normal 
approximation results. 
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Table 1: Tests of the Numerical Approximation 

Sigma B Delta v Simulation Normal Approx.
0.0022 0.0001125 0.0555 0 0.071% 0.086%
0.0044 0.0001125 0.0555 0 0.167% 0.171%
0.0022 0.0001125 0.08 0 0.081% 0.103%
0.0022 0.0001125 0.0555 0.0001125 0.087% 0.121%

Growth RateParameters
 

 

 

 
 

4. Conclusion 

The main premise of this paper is that it is possible to generate sustained productivity 

growth when individual units exhibit fluctuating productivity and there is some 

mechanism of diffusion that favours high-productivity units at the expense of low-

productivity units.  The resulting model of growth is similar to Darwin’s theory of natural 

selection.  Perhaps the strongest prediction of the model is that the distribution of 

income is stationary and is approximately normal, with a standard deviation that is a 

simple function of the average income, and of the coefficients of diffusion and 

demographics (Equation (3.7)).  

Although the Malthusian mechanism is no longer operating in the western world, the 

proposed model might even have some relevance to modern industrial growth.   

Horizontal diffusion might still be acting as a selection mechanism whereby productive 

skills are expanding at the expense of less useful skills.  Recall that one of the finding of 

this paper was that a finite rate of diffusion eliminates scale effects, i.e. the rate of 

growth of productivity is independent of the level of population.  Using a model of 

horizontal diffusion one might be able to address the lack of observed scale effects in 

modern growth data (e.g. as pointed out by Jones, 1995).                       

In conclusion, this paper has presented a model of population growth that is consistent 

with the historically observed pattern between 5000 BCE and 1800.  The model 

assumes that there are a large number of units of production that make random 

discoveries, which then diffuse to the rest of the population over time.  Delays in the 

diffusion of knowledge lead to a stable distribution of income such that the resulting 
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growth-rate of population is independent of the level of population.  A related finding of 

the paper is that the rate of growth is an increasing function of the speed of diffusion.  

Finally, it has been suggested that innovation in the pre-industrial era did not flow from 

deliberate R&D but rather was the result of numerous random trials, from which only the 

most successful survived.             
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