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prediction. Predictive approaches are based on the predictive ability of the models and are 

typically cross- validatory. A good reference for such criteria is Lahiri (1992).  

One possible strategy for constructing model evaluation criteria is to adopt an approach of 

sequential nature based on the predictions produced by the model. Such a strategy was 

suggested by Xekalaki and Katti (1984) who put forward various alternative schemes of this 

nature. Xekalaki et al. (2003), along the above lines of thinking, introduced a model evaluation 

scheme that utilizes the standardized prediction errors as scoring rules.  

In this paper we concentrate our attention to an alternative evaluation scheme, that utilizes 

again the model based prediction. In this scheme (proposed originally by Xekalaki and Katti 

(1984)), the forecasting potential of a model is measured based on a predictive approach of a 

non cross-validatory nature. This evaluation scheme consists of the sequential construction of 

an interval centered at the model's prediction with length that is increased or decreased 

depending on the degree of concordance between observed and predicted values of' the 

dependent variable. The evaluation of the model and the selection of a model among several 

candidate models is effected through the use of a scoring rule.  

In order to be able to apply the suggested methodology in model evaluation, we need to 

study its theoretical foundation. To do this, we develop some distribution theory that leads to a 

new binomial distribution with dependent trials. Properties of this distribution are studied and 

used to formulate the theoretical basis for making inference on the forecasting behaviour of a 

model by exploiting the sequential nature of the model-based predictions.  

In particular, section 2 provides the necessary background on Xekalaki and Katti’s 

(1984) method. The statistical behaviour of one of the scoring rules suggested by them is 

studied leading to a new binomial distribution with dependent trials whose properties are 

discussed in section 3. Sections 4 and 5 concentrate on a special case of the model and suggest 

its use for constructing confidence intervals or testing hypotheses concerning an appropriately 

chosen parameter that would reflect the forecasting potential of the model in question. Large 

sample inference is also made.  

 

2. DESIGN OF THE EVALUATION SCHEME 

 

Most often, a regression model describing the relationship between a set of predictor 

variables X1, X2, ..., Xm and one response Y is or the linear form  

                       E(Y | X1 = x1, ..., Xm = xm) = b0 + b1 x1 + ... + bm xm                      (2.1)  
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where the b's are coefficients to be estimated from the data. Let Xt be the lt×m matrix of 

predictor variables associated with t observations at time t (lt m, |  0), Y≥ t
'
t XX | ≠ t the 

corresponding lt×1 vector of observations on the dependent random variable (r.v.) Y and let b 

be the m×1 vector of regression coefficents. Then the model in (2.1) can alternatively be 

represented by  

Yt = Xt b+ εt         (2.2) 

where εt is an lt×1 vector of normal error random variables with mean E(εt)=0 and dispession 

matrix V(εt)=σ2Ιt. Here It is an lt× lt indentity matrix.   

Of course, the methodology to be studied is of general nature, it does not depend on the 

functional form of E(Y | X1 =x1, ..., Xm = xm) and hence it can be applied to any type of model.  

Using (2.2), one may predict the value of Y at time t+1 to be Y  where  is 

the least squares estimator of b at time t+1 given by   

t
0

1t
0

1t b X ˆˆ
++ = tb̂

                          (2.3) t
'
t

1
t

'
tt YX )X(Xb −=ˆ

and  is a (1×m) vector of values of the regressors at time t+1. The value of V( ) is then 

obtained by   

0
1tX +

0
1tY +

ˆ

1}X)X(X{Xσ)YV( 0'
1t

1
t

'
t

0
1t

20
1t += +

−
++

ˆ  

and is estimated by replacing σ2 by  

                                 S                                  (2.4) m).(l / )bX(Y )'bX(Y ttttttt
2
t −−−= ˆˆ

After the actual value  of Y at time t+1 has been observed, the model for predicting 

the value  of Y at time t+2 can be represented by  

0
1tY +

0
2tY +

1t1t1t εbXY +++ +=  

 

where the matrices Xt+1 and Yt+1 are defined by  





=

+
+ 0

1t

t
1t X

XX   and  Y  



=

+
+ 0

1t

t
1t Y

Y

with dimensions (lt +l)×m and (lt +1)×1, respectively.  

Then, obviously, at time t+2 the vector b will be estimated by  obtained by (2.3) 

substituting t+1 for t.  

2tb +
ˆ

Of course, incorporating the observed value  in the data set and reestimating the 

regression coefficients of the model so that it be ready for the next prediction on the value of 

0
1tY +
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Y, pressuposes that the statistical behaviour of the model in the future will be similar to its 

statistical behaviour in the past. On this assumption, the evaluation scheme proposed by 

Xekalaki and Katti (1984) is an n-stage sequential technique that is described by the following 

steps:  

1. At time t+1 obtain Y  using (2.2).  0
1t+

ˆ

2. Construct the interval  

]ˆˆ[ tt
0

1ttt
0

1t1t SkY   ,SkYC +−= +++  

where St is as given by (2.3) and kt a positive constant whose initial value is set by the 

experimenter.  

3. Observe the actual value Y  of Y at time t+l.   0
1t+

4. Choose a scoring rule to assign a score to each of the two complementary outcomes  

{ } { }1t
0

1tt1t
0

1tt CYO  and   CYI ++++ ∉=∈=  

5. Incorporate  X  and  to the data set and re-estimate the regression coefficents.  0
1t+

0
1tY +

6. Construct Ct+2 as in step 2 using the rule 







∉+

∈−
=

+++

+++
+

1t
0

1tt1t

1t
0

1tt1t
1t

CY   ifk )γ(1

CY  ifk )α(1
k  

where αt, γt   are non-negative quantities less than 1 defined  by the experimenter. These may 

well be functions of the frequencies of the events It and Ot, respectively.   

The process is repeated for as many times as the number of times the model was 

applied, say n. As a final rating reflecting the forecasting potential of the model Xekalaki and 

Katti (1984) suggested the average of the scores from step 4.  

Such scores can be obtained through a scoring rule the choice of which is a matter of 

the experimenter's personal judgement. Among the rules suggested by Xekalaki and Katti 

(1984), the simplest possible, amounts to assigning a score  

                              (2.5) 




=+ observed  is O if0

observed  is I if1
Z

t

t
1t

leading to Sn/n  as the final rating of the model where  

∑
=

=
n

1i
in ZS . 

In the sequel, attention is given to this rule and an attempt is made to develop some 

theory that will enable, us to obtain insight as to the statistical significance of an observed 
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value of Sn/n as well as of information provided by Sn -based confidence intervals or tests of 

hypothesis for appropriate parameters as to the merit of the model in question.  

 

3. THE PROBABILITY DISTRIBUTION OF THE SCORES 

 
For a series of n points in time, consider the sequence of pairs 

[ ]{ }  =  n ..., 2, 1,i  :Y ,Y 0
i

0
i

ˆ . Each pair [ ]   0
i

0
i Y ,Ŷ  can be regarded as a trial whose 

outcome can be designated as  

            (3.1) 






∉

∈
=

i
0
i

i
0
i

i
CY   if(failure)   0

CY   if(success)   1
Z

i = l, 2, ..., n. Hence {Z1, Z2, …, Zn} is a sequence of Bernoulli variables with  

    n. ..., 2, 1,i      0),P(Z11)P(Zp iii ==−===                 (3.2) 

It is obvious from the evaluation scheme that the probability of the outcome of a trial 

depends on the outcome of the previous trial. Let  

    
[ ]

[ ] (i)
001ii

(i)
01

(i)
101ii

(i)
11

p1Z|1Z Pp

p1Z|1Z Pp

−====

−====

−

−

0

1
                 (3.3) 

 












=− (i)

11
(i)
10

(i)
01

(i)
00

i 1,i
pp

pp
π                 (3.4) 

Therefore, {Zt, t=1, 2, ..., n} defines a non-homogeneous Markov process with first order 

transition probability matrix given by (3.4).  

Before proceeding to the further study of the statistical inference related to this 

evaluation scheme it is necessary to study the distributional properties of the joint distribution 

of Z1, Z2, …, Zn as well as of the distribution of Sn = Z1 + Z2 + … + Zn. In this respect we first 

derive two results, which specify the probability pi of success at the i-th step and the mean and 

variance of the total number of successes.  

 

Theorem 3.1.  Consider the sequence of r.v. 's  Z1, Z2, …, Zn as defined by (3.1), (3.2) and 

(3.3). Then, for i = 1, 2, 3, … 

[ ] [ ]∏∏∑
===

− −   +−   +=
i

2I

(I)
01

(I)
111

i

jI

(I)
01

(I)
11

1

2j

1)(j
01

(i)
01i pppppppp        (3.5) 
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where . 0p(0)
11 =

 

Proof.  It is obvious that  

[ ] n      ..., 3, 2,i     ,p  p1p pp (i)
011i

(i)
111ii =−+= −−  

or, equivalently, that  

[ ] n      ..., 3, 2,i     ,p  pppp 1-i
(i)
01

(i)
11

(i)
01i =−+=      (3.6) 

Therefore, (3.5) is valid for i=2. Assume that it is true for i=2, 3, ..., n. It will be shown that it is 

true for i=n+1. Indeed, from (3.5) and the induction hypothesis we have that  

       [ ] n
1)(n

01
1)(n

11
1)(n

011n p pppp +++
+ −+=  

 

   [ ]×−+= +++  ppp 1)(n
01

1)(n
11

1)(n
01  

 

         [ ] [ ]








−   +−   + ∏∏∑
===

−
n

2i

(i)
01

(i)
111

n

ji

(i)
01

(i)
11

n

2j

1)(j
01

(n)
01 ppppppp

 

                         [ ] [ ] [








−   +−   +−+= ++

==

−
+

=

+ ∏∑∏ 1)(n
01

1)(n
11

(n)
01

n

ji

(i)
01

(i)
11

n

2j

1)(j
01

2n

2i

(i)
01

(i)
111

1)(n
01 pppppppppp ]

 

             [ ] [ ].∏∑∏
+

=

+

=

−
+

=

+ −  +−+=
1n

ji

(i)
01

(i)
11

1n

2j

1)(j
01

1n

2i

(i)
01

(i)
111

1)(n
01 ppppppp

Hence the result.  

 

Theorem 3.2.  Let Z1, Z2, …, Zn be defined as in theorem 3.1 and let  

∑
=

=
n

1i
in ZS . Then  

         (i)           (3.7) ∑
=

=
n

1i
in pE(S )

         (ii)         (3.8) ∑∑
<=

−+−=
ji

jiij

n

1i
iin )ppWP(W'2)p(1p)V(S

 with pi, i=1, 2, ..., n  as defined by (3.5),  W΄=(0, 1) and, for i<j.  
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 iρ  1ii,  2i1,i1j2,j  j1,jij ππππP +++   ⋅⋅⋅−−−=

where  is given by (3.4) and  j 1,jπ −








 −
=

i

i
i p0

0p1
ρ ,     i = 1, 2, …, n          (3.9) 

 

Proof:   The proof of (i) is straightforward. To prove (ii) observe that  

∑∑∑
<==

+=







=

ji
ji

n

1i
i

n

1i
in )Z,Cov(Z2)V(ZZV)V(S  

But,  

V(Zi) = pi (1–pi)                       (3.10)  

and,   

Cov(Zi, Zj) = E(Zi Zj) – pi pj                   (3.11)  

    i,j =1, 2, ..., n;    i ≠ j.  

Moreover, since {Zt, t=1, 2, ...,} is a Markov process with first order transition 

probability matrix given by (3.4) it follows that, for a non-negative integer m  

  .   ππ πππ 1i  i,2i  1,i1mi  2,mimi  1,mimi  i, +++−+−++−++   ⋅⋅⋅=  

Hence, setting j–i =m the probability P(Zi =x, Zj =y),  x, y =0, l is the (x, y) element of the 

matrix  

iijij ρ πp =  

which implies that  





 = 1
0P (0,1))ZE(Z ijji . 

 Combining (3.10) and (3.11) leads to (3.8) and hence the theorem is established. 

In what follows we derive the probability generating function (p.g.f.) of Sn = Z1 + Z2 + … + Zn. 

As an intermediate step we specify the p.g.f. of (Z1, Z2, … ,Zn). 

Theorem 3.3.  Let Sn be defined as in theorem 3.2. Then the p.g.f. of Sn is given by 

                  (3.12) 







  












  ⋅⋅⋅  












−=

1
1

spp

spp

spp

spp
  s)p,p(1(s)G

(n)
11

(n)
10

(n)
01

(n)
00

(2)
11

(2)
10

(2)
01

(2)
00

11Sn

 Proof:  Let GW(s) denote the p.g.f. of a r.v. W. Then  

s)s,...,(s,G(s)Z...G(s)G
n211n  Z..., , Z,ZnZS =++=                (3.13) 

 But from the definition of a p.g.f. we have 
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      ∏∑∑
===

== =
n

1i

z
i

1

Z
nn11

1

0Z
n1 Z..., ,Z

i

n1

n1
s )z  Z..., ,zP(Z...)s ..., ,(sG

0

∏∑∑
===

===== =
n

1i

z
i1-n1-nnn

1

Z
112211

1

0Z

i

n1

s )zZ|zP(Z ... )z Z|zP(Z )zP(Z...
0

 

The latter equality follows from Markov’s property of the process defined by {Zt, t=1, 2, …, n} 

and implies that 

                (3.14) 


















   





















⋅⋅⋅  





















−=

1

1

(n)

n
 

11

(n)

10

(n)

n
 

01

(n)

00
(2)

2
 

11

(2)

10

(2)

2
 

01

(2)

00
111n1ZZ

s

s

s

s

pp

pp

pp

pp
 )sp,p(1)s,...,(s,...,G

n1

          

Relationship (3.12) follows immediately from the successive application of (3.13) and (3.14). 

This completes the proof of the theorem.  

Theorems 3.1, 3.2 and 3.3 can be used to derive the joint distribution of (Z1, Z2, … ,Zn) and the 

distribution of  Sn.  

Theorem 3.4.   Let Z1, Z2, ..., Zn be defined as in theorem 3.1. Then  

P(Z1=z1, Z2 =z2, ..., Zn=zn) =  

                                         [ ] [ ] [ ] [ ]{ }∏
=

−−−−− −−−−  −=
n

2i

)z(1  )z(1(i)
00

z )z(1(i)
01

)z(1 z(i)
10

z z(i)
11

z1
1

z
1

i1ii1ii1ii1i11 pppp)p(1p
 

zi = 0, 1 ;  i = 1, 2, …, n                 (3.15) 

Theorem 3.5.   If Sn is defined as in theorem 3.2 then P(Sn = s) = 

[ ] [ ] [ ] [ ]{ }∏∑
=

−−−−

=

− −−−− ×
∑

−
n

2i

)z(1 )z(1(i)
00

z )z(1(i)
01

)z(1z(i)
10

z z(i)
11

sZ

z1
1

z
1

i1ii1ii1ii1i

i

11 pppp)p(1p   

s = 0, 1, 2, …, n                 (3.16) 

We call the distribution defined by (3.15) Markov-dependent multivariate Bernoulli 

distribution with variable transition probabilities and the distribution defined by (3.16) 

Markov-dependent binomial distribution with variable transition probabilities.  

The interesting thing about this Markov-dependent binomial distribution is that it is not 

a mathematical creation but it arises as a consequence of a real problem.  

The immediate objective would be to develop tables for the probability distributions 

defined by (3.15) and (3.16) which can be used for either deriving confidence intervals for p or 

for testing hypotheses pertaining to p. Such a tabulation would be immense and will be the 

subject of future research. Another problem is the estimation of the parameters involved.  
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The special case of this distribution where the transition probabilities are constant, i.e.,   

 was considered by Klotz (1973) as a model for rainfall data. Klotz 

(1973), treated the problem of estimating the parameters of this special case by the method of 

maximum likelihood while Devore (1976), suggesting a modification on the log likelihood, 

came up with explicit expressions for the solutions of the resulting likelihood equation namely  

p,1)z|1p(zp 1ii
(i)
11

==== −

)n(nnλ 111011 +=ˆ                       (3.17) 

 ( ) ( ) ( ){ }010010111001111001 nnnnnnnnnp ++++=ˆ                   (3.18) 

where nij is the observed frequency of (i, j) ; i, j = 0, 1.  

Also Klotz (1973) showed that the asymptotic distribution of nnp)(Sn −  is normal 

with mean 0 and variarice λ)(1λ)2pp)(1p(1 −+−−  and remarked that this variance coincides 

with the variance of  in (3.18).   p̂

For this special case, of the Markov-dependent binomial distribution with constant pi 

considered by Klotz we can show that the following properties are valid, as immediate 

consequences of the above theorems. 

Theorem 3.6.   Let Z1, Z2, ..., Zn be a sequence of r.v’s with P(Zi=l)=l–P(Zi=0)=p, i=1, 2, ... and 

P(Zi=1| Zi-1=1)=λ p, i= 2, 3, ..., n  and let ≤ ∑=
=

n

1i
in ZS . Then   

 
(i) E(Sn) = np  

(ii)  




















 








−
−

−
−
−

−−
−

−−
+−= n

n p1
pλ1

λ1
pλ1n

λ1
p)p)(λ2p(1p)np(1)V(S       (3.19) 

 

Theorem 3.7.  Let Sn be defined as in theorem 3.6 then  























−

−
−

−
−

−
−=

−

1
1

λsλ1

ps
p1
λ1

p1
λ11

  ps) p,(1(s)G

1n

Sn
                (3.20) 

  

Theorem 3.8.  Let Z1, Z2, ..., Zn and Sn be defined as in theorem 3.6. Then  

 

(i) P(Z1 = z1, ..., Zn = zn) =  

(3.21) 
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n1

n

1i
i

n

2i
i1i ZZ

0

Z

2
0

2ZZ

2
0

1n
0

λ1
λ1

p)(1 )λ(1
p λ)(1

pλ)(1
p)(1 )λλ(1

p1
)λ(1 +−









−
−

  
∑









−−
−

  
∑









−
−−

  
−

− ==
−

  

 

(ii) ×
−−

−
−

−
==

−

s2s
0

s2s1n
0

n p)(1)λ(1
pλ)(1

p1
)λ(1

s)P(S  

  

                             
n1

i

n

2i
i1i ZZ

0

sZ

ZZ

2
0

λ1
λ1

p λ)(1
p)(1 )λ(1 λ +

=









−
−

  
∑

∑









−
−−∑ =

−

      (3.22) 

 

where λ0 is given by (4.3).  

  

Theorem 3.9.  If Z1, Z2, ..., Zn are defined as in theorem 3.6, the pairs (Zi-1, Zi), i=2, 3, ..., n are 

negatively correlated with correlation coefficient given by the formula 

           ρ = (λ–p) (l–p).                    (3.23)  

    

 
4.  LARGE SAMPLE INFERENCE PERTAINING TO THE ADEQUACY OF MODEL 

 
The method suggested for the evaluation of a forecasting model and the results obtained 

in the previous section provide a framework whereby a sequence of Bernoulli trials is realised 

with varying probabilities of success pi with Markov dependence reflected by the parameter 

at each step.  1)Z|1P(Zp 1ii
(i)
11 === −

The question that naturally arises is how well the model is going to perform at a certain 

point in time given its recent performance history. In this section, this question is considered 

through the construction of confidence limits or through testing hypotheses concerning an 

appropriate parameter that will "reflect" the forecasting potential of the model. It seems that 

 is a suitable choice and it is obvious from theorem 3.2 that S∑
=

=
n

1i
in /npp n/n  is an unbiased 

estimator of pn.   

To illustrate how our methods works in the model-evaluation problem we confine 

ourselves to the special case of the Markov-dependent binomial distribution with constant 

transition probabilities, i.e., with pi = p, a constant, for which statistical inference is available. 
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From the scheme described in section 2 it becomes apparent that the random variables 

Zi-1, Zi  are negatively correlated since 0).Z|1P(Z1)P(Z1)Z|1P(Z 1iii1ii ==≤=≤== −−  

This suggests a variant of the evaluation scheme whereby step 6 can be modified as 

follows:  

Construct Ct+2 defining kt+1 so that   

pi = p,  i =1, 2, ..., n ;     p∈(0,1)        (4.1)  

  

     .n  ..., 2, 1,i       0,1;z     ,λpλ    ,λ λp i0
z1

0
Z(i) ii

1iz
==≤≤= −

−

  The validity of (4.1) can be ensured by a value of kt+1 which is an appropriate multiple 

of  

       














∉
+

+

∈
+

+

++

+−

++−

++
+−

++−

1t
0

1t

0t,ml

01tml
t

1t
0

1t
t,ml

1tml
t

CY  if
2 / )λ(1t
2 / )λ(1,t

k

CY  if
2 / λ)(1t
2 / λ)(1,t

k

t

t

t

t

                  (4.2) 

where tv, α denotes the 100a percentile of the t distibution with v degrees of freedom.  

Since p1 = p2 = … = pn = p  it follows from (3.6) that i.e.     p, / p)p(11p (i)
01

(i)
11 −−=

   p)(1 / p λ)(1λ 0 −−=      (4.3) 

Hence the probability distribution of (Z1, ..., Zn) can be specified completely by the parameters 

p and λ.  

Using the large sample results of Klotz mentioned in the previous section one may 

proceed to construct confidence intervals or to test hypotheses for p. Thus, the approximate 

100(1-α)% confidence limits for p can be obtained for known λ by  

 λ)(1 λ)p2(1 )p(1 p z p α/21 −+−−± − ˆˆˆˆ                    (4.4) 

where Zα represents the 100α percentile of the standard normal distribution and  stands for 

either 

p̂

nnS  or the right hand side of (3.18).  

As to the testing of the statistical hypothesis, H0: p  p≥ 0 versus H1: p<p0 a critical region 

of size α can be determined by  

}zλ))2p)(1p(1(p)pnsλ)((1n:1] [0,{s α/20000 <+−−−−∈                 (4.5) 
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In the case where λ is not known approximate confidence limits or critical region can 

be obtained by substituting λ by its maximum likelihood estimator λ̂  as given by (3.17) in 

(4.4) or (4.5), respectively.  

 

5. SMALL SAMPLES APPROACH 

 

Trying to assess the merit of the large sample inference approach pertaining to the 

methodology suggested by Xekalaki and Katti (1984) or its variant of section 3, one may well 

argue that it would be of small value: The suggested scheme aims at evaluating models of a 

time series by exploiting the sequential nature of model-based prediction on the presupposition 

that the model does not change substantially over the entire study time period. Hence allowing 

the length of the period to increase by letting n increase, i.e. allowing "eternal" use of model 

may not be meaningful. It becomes therefore evident that the development of an exact 

inferential approach is necessary. This will have to depend upon the exact distribution of Sn as 

given by (3.12). Developing a computational algorithm for generating the cumulative 

distribution of Sn will be the subject of future research. Going back to the variant of Xekalaki 

and Katti’s scheme of section 3 one can be led to exact confidence statements or tests 

concerning p based on Ladd’s (1975) tabulation of a reparameterized version of the 

cummulative distribution of (3.22).  

Hence, to make a confidence statement of the type:  

“p1 ≤ p p≤ u at a confidence level l– α1– αu” 

the limits p1 and pu can be determined so that  

)p 1;s S(n,1)pp  ,n  sP(Sα 11n1 −−==≥=  

)p s; S(n,1)pp  ,n  sP(Sα uunu −==≤=  

where S(., .; p) can be determined by entering Ladd’s table for Phh=λ, Phm=(1–λ)p/(1–p) and 

p=(λ–p) (1–p).   

The same table can be used for determining a critical region of size α to test the 

hypothesis H0: p ≥ p0 against H1: p<p1. This will be defined by  

{s∈[0, 1]: s t where t is such that ≤ 0n pp   ,n t P(Sα =≤= }. 
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