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Review and Simulation Comparison 

Zoi Tsourti and Ioannis Panaretos 
Department of Statistics, Athens University Of Economics and Business 

76 Patision Str, 10434, Athens, GREECE 

 

Abstract 

Extreme-value theory and corresponding analysis is an issue extensively applied in many 

different fields. The central point of this theory is the estimation of a parameter γ, known 

as extreme-value index. In this paper we review several extreme-value index estimators, 

ranging from the oldest ones to the most recent developments. Moreover, some 

smoothing and robustifying procedures of these estimators are presented. A simulation 

study is conducted in order to compare the behaviour of the estimators and their 

smoothed alternatives. Maybe, the most prominent result of this study is that no 

uniformly best estimator exist and that the behaviour of estimators depends on the value 

of the parameter γ itself. 

Keywords : extreme value index; semi-parametric estimation; smoothing modification. 

 

1 Introduction 
Extreme value theory is an issue of major importance in many fields of application where 

extreme values may appear and have detrimental effects. Such fields range from 

hydrology (Smith (1989), Davison and Smith (1990), Coles and Tawn (1996), Barão and 

Tawn (1999)) to insurance (Beirlant et al. (1994), Mikosch (1997), McNeil (1997), 

Rootzen and Tajvidi (1997)) and finance (Danielsson and de Vries (1997), McNeil (1998 

and 1999), Embrechts et al.  (1998, 1999), Embrechts (1999)). Actually, extreme value 

theory is a blend of a variety of applications and sophisticated mathematical results on 

point processes and regular varying functions.  

The cornerstone of extreme value theory is Fisher-Tippet's theorem for limit laws for 

maxima (Fisher and Tippet, 1928). According to this, if the maximum value of a 

distribution function (d.f.) tends (in distribution) to a non-degenerate d.f. then this 

limiting d.f. can only be the Generalized Extreme Value (GEV) distribution: 
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A comprehensive sketch of the proof can be found in Embrechts et al. (1997).  

The random variable (r.v.) X (the d.f. F of X, or the distribution of X) is said to belong to 

the maximum domain of attraction of the extreme value distribution Hγ if there exist 

constants cn > 0, dn∈ℜ such that ( )c M d Hn n n
d− −  →1

γ  holds. We write X∈MDA(Hγ) 

(or F∈MDA(Hγ)). 

In this paper we deal with the estimation of the parameter (extreme-value index) γ. In 

section 2 a general theoretical background is provided, in section 3 several existing 

estimators for γ are presented, while in section 4 some smoothing methods on specific 

estimators are given and extended to other estimators, too. A simulation comparison of 

the presented extreme-value index estimators along with their smoothing alternatives is 

analytically described in section 5. Finally, concluding remarks are found in section 6. 

 

2 Modelling Approaches 
A starting point for modelling the extremes of a process is based on distributional models 

derived from asymptotic theory. The parametric approach to modelling extremes is 

based on the assumption that the data in hand (X1, X2, ..., Xn) form an i.i.d. sample from 

an exact GEV d.f. In this case, standard statistical methodology from parametric 

estimation theory can be utilised in order to derive estimates of the parameters θ . In 

practice, this approach is adopted whenever our dataset is consisted of maxima of 

independent samples (e.g. in hydrology we have disjoint time periods). This method is 

often called method of block maxima. Such techniques are discussed in DuMouchel 

(1983), Hosking (1985), Hosking et al. (1985), Smith (1985), Scarf (1992), Embrechts et 

al. (1997) and Coles and Dixon (1999). However, this approach may seem restrictive and 

not very realistic since the grouping of data into epochs is sometimes rather arbitrary, 

while by using only the block maxima, we may loose important information (some blocks 

may contain several among the largest observations, while other blocks may contain 
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none). Moreover, in the case that we have few data, block maxima cannot be actually 

implemented. 

 

In this paper we deal with another widely used approach, the so-called ‘Maximum 

Domain of Attraction Approach’ (Embrechts et al., 1997), or Non-Parametric. In the 

present context we prefer the term ‘semi-parametric’ since this term reflects the fact that 

we make only partly assumptions about the unknown d.f. F. 

So, essentially, we are interested in the distribution of the maximum (or minimum) value. 

Here is the point where extreme-value theory gets involved. According to the Fisher-

Tippet theorem, the limiting d.f. of the (normalized) maximum value (if it exists) is the 

GEV d.f. Hθ = Hγ µ σ; , . So, without making any assumptions about the unknown d.f. F 

(apart from some continuity conditions which ensure the existence of the limiting d.f.), 

extreme-value theory provides us with a fairly sufficient tool for describing the behaviour 

of extremes of the distribution that the data in hand stem from. The only issue that 

remains to be resolved is the estimation of the parameters of the GEV d.f. θ γ µ σ= ( , , ) . 

Of these parameters, the shape parameter γ (also called tail index or extreme-value index) 

is the one that attracts most of the attention, since this is the parameter that determines, in 

general terms, the behaviour of extremes.  

According to extreme-value theory these are the parameters of the GEV d.f. that the 

maximum value follows asymptotically. Of course, in reality, we only have a finite 

sample and, in any case, we cannot use only the largest observation for inference. So, the 

procedure followed in practice is that we assume that the asymptotic approximation is 

achieved for the largest k observations (where k is large but not as large as the sample 

size n), which we subsequently use for the estimation of the parameters. However, the 

choice of k is not an easy task. On the contrary, it is a very controversial issue. Many 

authors have suggested alternative methods for choosing k, but no method has been 

universally accepted. 
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3 Semi-Parametric Extreme-Value Index Estimators 
In this section, we give the most prominent answers to the issue of parameter estimation. 

We mainly concentrate to the estimation of the shape parameter γ due to its (already 

stressed) importance. The setting on which we are working is : 

Suppose that we have a sample of i.i.d r.v.’s X1, X2, ..., Xn (where X1:n ≥ X2:n ≥ ... ≥ Xn:n 

are the corresponding descending order statistics) from an unknown continuous d.f. F. 

According to extreme-value theory, the normalized maximum of such a sample follows 

asymptotically a GEV d.f. Hγ µ σ; , , i.e. ( )F MDA H∈ γ µ σ; , . 

In the remaining of this section, we give the most prominent answers to the above 

question of estimation of extreme-value index γ. Of course, it would be unrealistic to 

claim that we can cover the whole literature on these issues, since the literature is indeed 

vast. We describe the most known suggestions, ranging from the first contributions, of 

1975, in the area to very recent modifications and new developments. 

3.1 Pickands Estimator 
The Pickands estimator (Pickands, 1975), is the first suggested estimator for the 

parameter γ ∈ℜ  of GEV d.f and is given by the formula 

ln
ln ( / ): ( / ):

( / ): :

γ P
k n k n

k n k n

X X
X X

=
−

−











1
2

4 2

2

 . 

The original justification of Pickands estimator was based on adopting a percentile 

estimation method for the differences among the upper-order statistics. A more formal 

justification is provided by Embrechts et al. (1997).  

A particular characteristic of Pickands estimator is the fact that the largest observation is 

not explicitly used in the estimation. One can argue that this makes sense since the largest 

observation may add too much uncertainty. 

The properties of Pickands estimator were mainly explored by Dekkers and de Haan 

(1989). They proved, under certain conditions, weak and strong consistency, as well as 

asymptotic normality. Consistency depends only on the behaviour of k, while asymptotic 

normality requires more delicate conditions (2nd order conditions) on the underlying d.f. 

F, which are difficult to verify in practice. Still, Dekkers and de Haan (1989) have shown 
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that these conditions hold for various known and widely-used d.f.’s (normal, gamma, 

GEV, exponential, uniform, Cauchy). 

3.2 Hill Estimator 
The most popular tail index estimator is the Hill estimator, (Hill, 1975), which, though, is 

restricted to the Fréchet case γ > 0 . The the Hill estimator is provided by the formula 

ln ln: :γ H i n
i

k

k nk
X X= −

=
+∑1

1
1 . 

The original derivation of the Hill estimator relied on the notion of conditional maximum 

likelihood estimation method. 

The statistical behaviour and properties of the Hill estimator have been studied by many 

authors separately, and under diverse conditions. Weak and strong consistency as well as 

asymptotic normality of the Hill estimator hold under the assumption of i.i.d. data 

(Embrechts et al., 1997). Similar (or slightly modified) results have been derived for data 

with several types of dependence or some other specific structures (see for example 

Hsing, 1991 as well as Resnick and Stărică, 1995, 1996 and 1998).  

Note that, the conditions on k and d.f. F that ensure the consistency and asymptotic 

normality of the Hill estimator are the same as those imposed for Pickands estimator. 

Such conditions have been discussed by many authors, such as Davis and Resnick 

(1984), Haeusler and Teugels (1985), de Haan and Resnick (1998). 

Though the Hill estimator has the apparent disadvantage that is restricted to the case γ>0, 

it has been widely used in practice and extensively studied by statisticians. Its popularity 

is partly due to its simplicity and partly due to the fact that in most of the cases where 

extreme-value analysis is called for, we have long-tailed d.f.’s (i.e. γ>0).  

3.3 Adapted Hill Estimator  
The popularity of the Hill estimator generated a tempting problem to try to extend the 

Hill estimator (with its simplicity and good properties) to the general case γ ∈ ℜ. Such an 

attempt, led Beirlant et al. (1996) to the so-called adapted the Hill estimator, which is 

applicable for any γ in the range of real numbers :  

ln( ) ln( )γ adH i
i

k

kk
U U= −

=
+∑1

1
1  , where U X

i
X Xi i n j n

j

i

i n= −








+

=
+∑( ): : ( ):ln ln1

1
1
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3.4 Moment Estimator  
Another estimator that can be considered as an adaptation of the Hill estimator, in order 

to obtain consistency for all γ ∈ ℜ, has been proposed by Dekkers et al. (1989). This is 

the moment estimator, given by 

( )
γ M M

M
M

= + − −












−

1
1

2

2

1

1 1
2

1  , where ( )∑ −≡
=

+
k

i

j
nknij XX

k
M

1
:)1(: lnln1

, j=1, 2. 

Weak and strong consistency, as well as asymptotic normality of the moment estimator 

have been proven by its creators Dekkers et al. (1989).  

3.5 QQ – Estimator 
One of the approaches concerning Ηill’s derivation is the ‘QQ-plot’ approach (Beirlant et 

al., 1996). According to this, the Hill estimator is approximately the slope of the line 

fitted to the upper tail of Pareto QQ plot. A more precise estimator, under this approach, 

has been suggested by Kratz and Resnick (1996), who derived the following estimator of 

γ: 

ln ln ln
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The authors proved weak consistency and asymptotic normality of qq-estimator (under 

conditions similar to the ones imposed for the Hill estimator). However, the asymptotic 

variance of qq-estimator is twice the asymptotic variance of the Hill estimator, while 

similar conclusions are drawn from simulations of small samples. On the other hand, one 

of the advantages of qq-estimator over the Hill estimator is that the residuals (of the 

Pareto plot) contain information which potentially can be utilised to confront the bias in 

the estimates when the approximation is not exactly valid. 

3.6 Moments Ratio Estimator 
Concentrating on cases where γ > 0 , the main disadvantage of the Hill estimator is that it 

can be severely biased, depending on the 2nd order behaviour of the underlying d.f. F.  

Based on an asymptotic 2nd order expansion of the d.f. F, from which one gets the bias of  

the Hill estimator, Danielsson et al. (1996) proposed the moments ratio estimator : 
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γ MR
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M
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1
2

2
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 . 

They proved that γ MR  has lower asymptotic square bias than the Hill estimator (when 

evaluated at the same threshold, i.e. for the same k), though the convergence rates are the 

same. 

3.7 Peng's and W estimators 
An estimator related to the moment estimator γ M  is Peng’s estimator, suggested by 

Deheuvels et al. (1997): 

( )
γ L

M
M

M
M

= + − −
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2
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2
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2
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This estimator has been designed to somewhat reduce the bias of the moment estimator. 

Another related estimator suggested by the same authors is the W estimator 

( )
γ W

L
L

= − −

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



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−

1 1
2

1 1
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 , where ( )L
k

X Xj i n k n
j

i

k

≡ − +
=
∑1

1
1

: ( ): , j=1, 2. 

As Deheuvels et al. (1997) mentioned, γ L  is consistent for any γ ∈ℜ  (under the usual 

conditions), while γ W  is consistent only for γ < 1 2/ . Moreover, under appropriate 

conditions on F and k n( ) , γ L  is asymptotically normal. Normality holds for γ W  only for 

γ < 1 4/ . 

3.8 Use of Mean Excess Plot 
A graphical tool for assessing the behaviour of a d.f. F is the mean excess function 

(MEF). The limit behaviour of MEF of a distribution gives important information on the 

tail of that distribution function (Beirlant et al., 1995). MEF’s and the corresponding 

mean excess plots (MEP’s) are widely used in the first exploratory step of extreme-value 

analysis, while they also play an important role in the more systematic steps of tail index 

and large quantiles estimation. MEF is essentially the expected value of excesses over a 

threshold value u. The formal definition of MEF (Beirlant et al., 1996) is as follows: 

Let X be a positive r.v. X with d.f. F and with finite first moment. Then MEF of X is  
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F u
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u
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The corresponding MEP is the plot of points { }u e u, ( ),  for all u > 0 . 

The empirical counterpart of MEF based on sample ( )X X X n1 2, ,..., , is 
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, where 1( , ) ( )u x∞ =1 if x>u, 0 otherwise.  

Usually, the MEP is evaluated at the points. In that case, MEF takes the form 

( ) ( )E e X
k

X Xk k n i n
i

k

k n= = −+
=

+∑( ): : :1
1

1
1 ,  k=1,..., n. 

If X MDA H∈ ( )γ , γ>0, then it s easy to show that 

( ) ( )e u E X u X uXln ln ln ln= − > → γ ,  as u → ∞ . 

Intuitively, this suggests that if the MEF of the logarithmic-transformed data is ultimately 

constant, then X MDA H∈ ( )γ , γ>0 and the values of MEF converge to the true value γ. 

Replacing u, in the above relation, by a high quantile Q k
n

1−





, or empirically by 

X(k+1):n, we find that the estimator e XX k nln ( ):( )+1  will be a consistent estimator of γ in case 

X MDA H∈ ( )γ , γ>0. This holds when k n/ → 0 as n → ∞ . Notice that the empirical 

counterpart of e XX k nln ( ):( )+1  is the well-known the Hill estimator. 

3.9 Comparison of Estimators 
The aforementioned estimators share some common desirable properties, such as weak 

consistency and asymptotic normality (though these properties may hold under slightly 

different, unverifiable in any case, conditions). On the other hand, simulation studies or 

applications on real data can end up in large differences among these estimators. In any 

case, there is no ‘uniformly best’ estimator. Of course, Hill, Pickands and Moment 

estimators are the most popular ones. This could be partly due to the fact that they are the 

oldest ones. The rest estimators have been introduced later. Actually, most of these have 

been introduced as alternatives to Hill, Pickands or Moment estimator and some of them 
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have been proven to be superior in some cases only. In the literature, there are several 

comparison studies of extreme-value index estimators (either theoretically or via Monte-

Carlo methods), such as Deheuvels et al. (1997) and Rosen and Weissman (1996). Still, 

these studies are confined to a small number of estimators.  

 

4 Smoothing and Robustifying Procedures for Semi-
Parametric Extreme-Value Index Estimators 

4.1 Introduction 
In the previous section, we presented a series of (semi-parametric) estimators for the 

extreme value index γ. Still, one of the most serious objections one could raise against 

these methods is their sensitivity towards the choice of k (number of upper order statistics 

used in the estimation). The well-known phenomenon of bias-variance trade off  turns out 

to be unresolved, and choosing k seems to be more of an art than a science. 

Some refinements of these estimators have been proposed, in an effort to produce 

unbiased estimators even when a large number of upper order statistics is used in the 

estimation (see, for example, Peng, 1998, or Drees, 1996). From another standpoint, 

adaptive methods for choosing k were proposed for special classes of distributions (see 

Beirlant et al., 1996 and references in Resnick and Stărică, 1997). Still, no hard and fast 

rule seems to exist. Another common unfortunate feature of semi-parametric estimators 

of γ is that the optimal choice of k depends mainly on 2nd order assumptions of the 

underlying d.f. F, which are not verifiable in practice. Accordingly, it is not an 

exaggeration to say that choosing is the Achilles heel of semi-parametric estimation 

methods for extreme-value index γ. In this paper we present a different approach towards 

this issue. We go back to elementary notions of extreme-value theory, and statistical 

analysis in general, and try to explore methods to render (at least partially) this problem. 

The procedures we use are i) smoothing techniques and ii) robustifying techniques. 

 

4.2 Smoothing Extreme-Value Index Estimators 
The essence of semi-parametric estimators of extreme-value index γ, is that we use 

information of only the most extreme observations in order to make inference about the 

behaviour of the maximum of a d.f. An exploratory way to subjectively choose the 
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number k is based on the plot of the estimator ( )γ k  versus k. A stable region of the plot 

indicates a valid value for the estimator. The search for a stable region in the plot is a 

standard but problematic and ill-defined practice. The need for a stable region results 

from adapting theoretical limit theorems which are proved subject to the conditions 

k n( ) → ∞  and  k n n( ) / → 0 . 

But, since extreme events by definition are rare, there is only little data (few 

observations) that can be utilised and this inevitably involves an added large statistical 

uncertainty. Thus, sparseness of large observations and the unexpectedly large 

differences between them, lead to a high volatility of the part of the plot that we are 

interested in and makes the choice of k very difficult. That is, the practical use of the 

estimator on real data is hampered by the high volatility of the plot and bias problems and 

it is often the case that volatility of the plot prevents a clear choice of k. A possible 

solution would be to smooth ‘somehow’ the estimates with respect to the choice of k (i.e. 

make it more insensitive to the choice of k), leading to a more stable plot and a more 

reliable estimate of γ. Such a method was proposed by Resnick and Stărică (1997, 1999) 

for smoothing Hill and Moment estimators, respectively. 

4.2.1 Smoothing Hill Estimator 

Resnick and Stărică (1997) proposed a simple averaging technique that reduces the 

volatility of the Hill-plot. The smoothing procedure consists of averaging the Hill 

estimator values corresponding to different values of order statistics p. The formula of the 

proposed averaged-Hill estimator is : 

av k
k ku

pH H
p ku

k

( )
[ ]

( )
[ ]

γ γ=
− = +

∑1
1

  ,  

where u<1, and [x] denotes the smallest integer greater than or equal to x. 

The authors proved that through averaging (using the above formula), the variance of the 

Hill estimator can be considerably reduced and the volatility of the plot tamed. The 

smoothed graph has a narrower range over its stable regime, with less sensitivity to the 

value of k. This fact diminishes the importance of selecting the optimal k. The smoothing 

techniques make no (additional) unrealistic or uncheckable assumptions and are always 
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available to complement the Hill plot. Obviously, when considerable bias is present, the 

averaging technique offers no improvement. 

Resnick and Stărică (1997) derived the adequacy (consistency and asymptotic normality) 

of the averaged-Hill estimator, as well as its improvement over the Hill estimator (smaller 

asymptotic variance). Since the asymptotic variance is a decreasing function of u, one 

would like to choose u as big as possible to ensure the maximum decrease of the 

variance. However, the choice of u is limited by the sample size. Due to the averaging, 

the larger the u, the fewer the points one gets on the plot of averaged Hill. Therefore, an 

equilibrium should be reached between variance reduction and a comfortable number of 

points on the plot. This is a problem similar to the variance-bias trade-off encountered in 

the simple extreme-value index estimators. 

4.2.2 Smoothing Moment Estimator 

Resnick and Stărică (1999) also applied their idea of smoothing to the more general 

moment estimator γ M , essentially generalizing their reasoning of smoothing the Hill 

estimator.  

The proposed smoothing technique consists of averaging the moment estimator values 

corresponding to different numbers of order statistics p. The formula of the proposed 

averaged-moment estimator, for given 0 1< <u , is : 

[ ]
av k

k ku
pM M

p ku

k

( )
[ ]

( )γ γ=
− = +

∑1
1

 . 

In practice, the authors suggest to take u=0.3 or u=0.5 depending on the sample size (the 

smaller the sample size the larger u should be). 

In this case the consequent reduction in asymptotic variance is not so profound. The 

authors actually showed that through averaging (using the above formula), the variance 

of the moment estimator can be considerably reduced only in the case γ < 0 . In the case 

γ > 0  the simple moment estimator turns out to be superior that the averaged-moment 

estimator. For γ ≈ 0  the two moment estimators (simple and averaged) are almost 

equivalent. These conclusions hold asymptotically, and have been verified via a graphical 

comparison, since the analytic formulas of variances are rather complicated to be 
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compared directly. Full treatment of this issue and proofs of the propositions can be 

found in Resnick and Stărică (1999). 

4.3 Robust Estimators Based on Excess Plots 
As we have previously mentioned the MEP constitutes a starting point for the estimation 

of extreme-value index. However, though theoretically the values of MEF consistently 

estimate parameter γ, in practice strong random fluctuations of the empirical MEF and 

the corresponding MEP are observed, especially in the right part of the plot (i.e. for large 

values of u), since there we have fewer data. But this exactly is the part of plot that 

mostly concerns us, that is the part that theoretically informs us about the tail behaviour 

of the underlying d.f.  Consequently, the calculation of the ‘ultimate’ value of MEF can 

be largely influenced by only a few extreme outliers, which may not even be 

representative of the general ‘trend’. It is striking the result of Drees and Reiss (1996) 

that the empirical MEF is an inaccurate estimate of the Pareto MEF, and that the shape of 

the empirical curve heavily depends on the maximum of the sample.  

 

In an attempt to make the procedure more robust, that is less sensitive to the strong 

random fluctuations of the empirical MEF at the end of the range, the following 

adaptations of MEF have been considered (Beirlant et al., 1996): 

• Generalized Median Excess Function M k X Xp
pk n k n

( )
([ ] ): ( ):( ) = −+ +1 1  

 (for p=0.5 we get the simple median excess function). 

• Trimmed Mean Excess Function T k
k pk

X Xp
j n

j pk

k

k n
( )

:
[ ]

( ):( )
[ ]

=
−

−
= +

+∑1
1

1 . 

The general motivations and procedures explained for the MEF and its contribution to the 

estimation of γ hold here as well. Thus, alternative estimators for γ>0 are : 

• ( )ln( / )
ln ln. ([ ] ): ( ):γ gen med pk n k np

X X= −+ +
1

1 1 1  

which for p=0.5 gives ( )ln( )
ln ln([ / ] ): ( ):γ med k n k nX X= −+ +

1
2 2 1 1  

(the consistency of this estimator is proven by Beirlant et al., 1996). 

• 
[ ]

ln ln:
[ ]

( ):γ trim j n
j pk

k

k nk pk
X X=

−
−

= +
+∑1

1
1  
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The performance of both of these families of alternative estimators is going to be 

explored (via simulation) in the next section. 

 

5 Simulation Comparison of Extreme-Value Index 
Estimators 

5.1 Details of Simulation Study 
In this section, we try to investigate and compare, via Monte Carlo methods, the 

performance of the extreme-value index estimators introduced, as well as the 

performance of the modifications suggested previously. Apart from the standard form of 

estimators, we apply to all of them the averaging procedure presented in section 4. 

Resnick and Stărică (1997, 1999) suggested (and proved the adequacy and good 

properties of) this procedure only in the context of Hill and moment estimator. We apply 

the procedure to other extreme-value index estimators, so as to empirically evaluate its 

effect on these estimators. In addition, apart from these mean-averaged estimators, we 

apply analogously a median-averaging procedure to our estimators. Moreover, for γ > 0 , 

we also examine estimators based on median excess plot as well as on trimmed mean 

excess plot. The following table 1 contains all the estimators that are included in the 

present simulation study. These estimators are compared with respect to the distributions 

of table 2.  

Table 1. Estimators included in the simulation study 

Estimators Formula 

Standard Estimators  

Pickands estimator (for γ∈ℜ) 
ln

ln : :

: :

γ P
M n M n

M n M n

X X
X X

=
−
−









1
2

2

2 4

 

Hill estimator (for γ>0) ln ln: :γ H i n
i

k

k nk
X X= −

=
+∑1

1
1  

Adapted the Hill estimator (for γ∈ℜ) ln( ) ln( )γ adH i
i

k

kk
UH UH= −

=
+∑1

1
1  

 

Moment estimator (for γ∈ℜ) 
( )

γ M M
M
M

= + − −












−

1
1

2

2

1

1 1
2

1  



 14 

Moment-Ratio estimator (for γ>0) γ MR
M
M

= ⋅
1
2

2

1

 

 
 
QQ estimator (for γ>0) 

ln ln ln

ln ln

: :

γ qq

j n
j

k

i n
i

k

i

k

i

k

i
k

X k X

k i
k

i
k

=
+

−








+






−
+









==

= =

∑∑

∑ ∑

1

1 1

11

2

1 1

2  

 
Peng’s estimator (for γ∈ℜ) ( )

γ L
M
M

M
M

= + − −












−

2

1

1
2

2

1

2
1 1

2
1  

 
W estimator (for γ<1/2) ( )

γ W

L
L

= − −












−

1 1
2

1 1
2

2

1

 

Mean-Averaged Estimators (u=0.5)  

Averaged X estimator  
(X stands for all the standard estimators) av k

k ku
pX X

p ks

k

( )
[ ]

( )
[ ]

γ γ=
− = +

∑1
1

 

Median-Averaged Estimators (u=0.5)  

Median-Averaged X estimator  
(X stands for all the standard estimators) 

{ }med av k med p p ku kX X. ( ) ( ), [ ] ,...,γ γ= = + 1  

Estimators based on Excess Plot  

Estimator based on Median Excess Plot 
(for γ>0) ( )ln( )

ln ln([ / ] ): ( ):γ med k n k nX X= −+ +
1
2 2 1 1  

Estimators based on Trimmed Mean 
Excess Plot (for γ>0) p=0.01, 0.05, 0.10 [ ]

ln ln:
[ ]

( ):γ trim j n
j pk

k

k nk pk
X X=

−
−

= +
+∑1

1
1  

 

Table 2. Distributions used in the simulation study 

Name Extreme-value index  γ Other parameters 

Burr 0.25, 0.55, 1, 2 (τ, λ) = (0.25, 1), (0.55, 1), (0.5, 2), (1, 0.5) 

Fréchet 0.25, 0.55, 1, 2 - 

Log-gamma 0.25, 0.55, 1, 2 α=1, λ = 4, 1/0.55, 1, 0.5 

Log-logistic 0.25, 0.55, 1, 2 - 

Pareto  0.25, 0.55, 1, 2 - 

Weibull 0 λ=1, τ=0.5, 1.5 

Exponential 0 - 

Log-normal 0 µ=100, σ=1 
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Normal 0 µ=10, σ=1 

Gamma 0 α=1, β=0.5, 1.5 

Beta -1/3, -2 (α, β) = (0.5, 3), (2, 3), (0.5, 0.5), (2, 0.5) 

Uniform -1 (α, β) = (0,1), (5, 10) 

As seen from table 2, the distributions used in table 2, range from distributions with finite 

upper endpoint (γ<0) to long-tailed distributions (γ ≥ 0). From each of these 

distributions, 1000 samples were generated of moderate size (n=100) and 500 samples of 

large size (n=1000), based on which the performance of the estimators is examined. In 

our study, the performance of any estimator of γ, is evaluated in terms of the bias, 

standard error and root mean square error of the estimator based on k upper order 

statistics (where k ranges from 1 up to sample size). The root mean square error (rmse), 

being a combination of standard deviation and bias, is essentially the basis for 

comparisons of estimators. In the next section we summarize the main results of the 

simulation study. 

5.2 Discussion of Simulation Results 
Before proceeding to the discussion of the results, it should be noted that the performance 

of the estimators did not seem to remain stable for data stemming from different 

distributions. For this reason, in the sequel we provide the main findings of the simulation 

study distinguishing for each different class of distributions. Paragraphs with more 

general remarks are provided at the end of this section. 

• Burr Distribution 

In the case of Burr distribution, the estimation of extreme-value index, which ranges in 

the interval (0,+∞), seems to depend on the value of extreme-value index itself. So, for 

γ=0.25 (i.e., more generally speaking, for γ <
1
2

) the best estimator is the Hill estimator 

(it has the smallest rmse and in most cases the smallest bias). Moreover, in small samples 

(n=100) Hill, also, has the smallest std, while for n=1000 Moment-Ratio displays the 

smallest std. The mean averaging procedure improves the performance of Pickands 

estimator. The same general result holds for γ=0.55 but only for small samples. For 

γ=0.55 (large samples) and for γ=1 Moment-Ratio outperforms the Hill estimator. 

Finally, for γ>1 (i.e. for γ=2) Moment estimator is preferable for large sample sizes 
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(n=1000), while W is best when it comes to small sample sizes. As long as trimming 

effect is concerned, no clear effect exists. 

• Fréchet Distribution 

For samples of small size (n=100), the Hill estimator, in general, displays the best 

performance. For Fréchet data with γ up to 1, the Hill estimator has the smallest rmse 

and, most of the times, the smallest bias and std. However, when γ exceeds 1 (in our case 

for γ=2) the variability of Hill is much increased and W stands out as the best estimator. 

When we are dealing with large simulated data-sets (n=1000), though the performance of 

Hill remains in the same level, Moment-Ratio estimator improves greatly (its bias and, 

consequently, its rmse is reduced significantly) and turns out to be the best estimator. 

Again this holds for values of γ smaller than or equal to 1, since for γ=2, Moment 

estimator has the smallest rmse. As long as the averaging procedures are concerned, the 

only improvement is observed in the case of mean-averaged Pickands estimator. 

• Log-Gamma Distribution 

For large sample sizes (n=1000) and γ up to 1, the best estimator is, undeniably, the 

Moment-Ratio estimator. It has the smallest bias, std, as well as rmse. However, when γ 

exceeds 1, the behaviour of Moment-Ratio deteriorates (mainly due to the large increase 

of std) and though, still, Moment-Ratio has the smallest bias, it is Moment the estimator 

with the smallest rmse. A point that is worthy to be pointed out here is that while the 

behaviour of most estimators deteriorates as γ exceeds 1, the performance of W estimator 

is improved. Actually, now, W has the smallest std. The situation is quite different when 

we are dealing with small samples (n=100). In those cases, it is the Hill the best estimator 

(smallest bias, std, rmse). Of course the behaviour of Moment-Ratio is not disappointing 

since it is the second best estimator (not differing much from the Hill). The only case 

where Hill is surpassed by another estimator is for γ=2 and for small k (k=12, 20), when 

W estimator displays the smallest std and rmse. No satisfactory improvement can be 

attributed to the averaging procedures.   

• Log-Logistic Distribution 

When we are dealing with large samples the situation is quite clear. The best estimator is 

the Moment-Ratio estimator, since it always has the smallest rmse (in many cases it also 

has minimum bias or std). However, the evaluation of estimators gets more complicated 
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for small sample sizes (n=100). Generally speaking, we could say that among all 

estimators the estimator based on 10% trimmed mean excess plot is the best estimator 

(smallest rmse). If we confine our comparison among the standard estimators, then Hill 

and Moment-Ratio estimators are the most preferable.  For γ<1 and for small and 

moderate choice of k (k=12, 20) it is the Hill which has the smallest rmse (while the 

second smallest rmse is achieved by the Moment-Ratio), while when a larger portion of 

data is used in the estimation (k=40) the Moment-Ratio stands out as the best estimator 

(followed by the Hill). Irrespectively of the choice of k, in the case of γ>1, the best 

estimator is W. 

• Pareto Distribution 

As was the case for distributions previously discussed, the Moment-Ratio estimator tends 

to be, in general, preferable. For large samples and γ up to 1, Moment-Ratio has the 

smallest rmse and the smallest bias (for γ smaller than 1 it also has the smallest std). 

However, when γ exceeds 1, Moment estimator “outguns” Moment-Ratio. Even then, 

Moment-Ratio has the smallest bias, while W has the smallest std. Again, for small 

samples the situation is somewhat different. For γ up to 1, Hill is the best estimator 

(smallest rmse, bias and, usually, smallest std). But for γ=2 and for k small (k=12, 20) its 

variability is much increased while the behaviour of W is improved leading to a 

minimum rmse attributed to W. It is useful to add that Moment-Ratio is the second best 

estimator here. 

• Weibull Distribution 

Weibull d.f. belongs to the maximum domain of attraction of Gumbel d.f., i.e. the 

extreme value index equals zero. That means that not all of the estimators under 

examination should actually be applied to that type of data. Indeed, according to 

theoretical results, Hill, Moment-Ratio and QQ estimators are not consistent for γ ≤ 0 . 

However, in the context of our simulation study we applied all estimators even in cases 

that they are not applicable (for comparison reasons). The simulation results here do not 

suggest that any single estimator is uniformly best. So, for large samples and τ=0.5 Peng 

is the best estimator, while for τ=1.5 the result depends on the number of upper order 

statistics used (k). For large k, again Peng is the best estimator. However for smaller k 

(k=12, 20) QQ and Moment estimators display better performances (though even then the 
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performance of Peng is not bad). The situation is somehow similar for small samples 

(n=100). That is, for τ=0.5 Peng is preferable but for τ=1.5, it is outperformed by 

Moment and Moment-Ratio estimators. 

• Exponential Distribution 

For large sample sizes (n=1000) Moment estimator has the best performance (for all 

choices of k). Apart from having the smallest rmse, it also exhibits minimum bias. As 

long as standard error is concerned, Moment-Ratio has the smallest values (though 

Moment-Ratio is theoretically applicable only for γ > 0 ). The mean averaging procedure 

improves the performance of Pickands estimator (though it still remains inferior to other 

estimators). Estimators based on trimmed mean excess plots have a better performance 

than simple the Hill estimator (the larger the proportion of trimming the better the 

performance of the estimator, while the median excess estimator is worse than Hill. 

For small samples (n=100) Moment estimators perform better only when a large portion 

of the sample is used in the estimation (k=40). Even then when we are dealing with 

averaged estimators, Pickands outperforms the Moment. When a smaller k is used in the 

estimation of extreme-value index (k=12 or 20) Moment-Ratio performs better (in terms 

of rmse) and has the smallest std, while Pickands has the smallest bias. 

Generally speaking, for estimating the extreme-value index in the case of exponential 

d.f.s Moment estimator is most preferable for large samples, while for small samples we 

should opt for mean-averaged Pickands estimators.  

• Log-Normal Distributions 

For large samples the situation is quite clear, since Peng is the best estimator for all 

choices of k. However, things are not so simple for n=100. In that case, the choice of best 

estimator seems to depend on the choice of k. So, for large k, Peng is the best estimator, 

while for small k Moment and Moment-Ratio outperform it.  

• Normal Distribution 

In the case of normally distributed data the zero extreme-value index seems to be better 

estimated by the Moment-Ratio estimators. This holds for all choices of k, for small and 

for large sample sizes. The only problem seems to be the fact that Moment-Ratio 

estimator is not theoretically applicable when extreme-value index equals zero. Other 

estimators with satisfactory behaviour are Hill and Q-Q estimators (both of which are, 
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again, not applicable for zero extreme-value index). As long as averaging procedures are 

concerned, we should note that mean averaging greatly improves the performance of the 

standard Pickands estimator. However, mean averaged Pickands estimator is not one of 

the best estimators. 

• Gamma Distribution 

Here, for the first time the mean averaging procedure provides rather promising results. 

Though there is not a uniformly best estimator (for all choices of k and sample size n), 

the mean averaged Pickands estimator displays the most satisfactory behaviour (in most 

cases it has the smallest rmse). It is really impressive its improvement over the simple, 

standard Pickands estimator. Other estimators with acceptable performance are Peng's, 

Moment, Moment-Ratio and the Hill estimator. 

• Beta Distribution 

Beta distribution belongs to the maximum domain of attraction of Weibull d.f, since it 

has finite upper end-point. That means that the extreme-value index that we are trying to 

estimate is negative and, as previously mentioned, not all estimators are applicable here.  

When we are dealing with large samples the situation is quite clear. Moment estimator is 

uniformly the best estimator (with the smallest rmse). Also, Peng's performance is almost 

as good as Moment's. Moreover, here it is evident the beneficial effect of the averaging 

procedures (the mean as well as the median averaging). Mean averaging procedure 

substantially improves the performance of Pickands estimator, while both averaging 

procedures improve the performance of Moment and Peng's estimator. So, in most cases 

it is the mean averaged Moment estimator that has the smallest rmse among all tested 

estimators. These results hold for different choices of k and parameters α,β of the beta 

distribution (i.e. for different values of the extreme-value index). However, this is not so 

when it comes to small sample sizes. Actually, for small sample sizes (n=100 in our case) 

the situation is much more complicated. The performance of the estimators depends not 

only on the value of k but also on the value of the extreme-value index γ itself. So, for 

values of γ close to 0 (-1/3 in particular) mean averaged Pickands estimator seems to be 

the best choice, while among the standard estimators Moment-Ratio and Moment are 

more preferable. As the value of γ draws away from zero (γ=-2) the performance of all 

estimators deteriorates (the values of rmse's are evidently larger). The behaviour of 
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Moment, Moment-Ratio and Peng's estimator is very disappointing. Pickands is the best 

estimator among standard estimators. Moreover, the effect of averaging procedures is 

much less significant. Anyhow, it is the median averaged Pickands and Moment 

estimators that exhibit the smallest rmse. 

• Uniform Distribution 

Uniform distribution is also bounded to the right and its tails are characterized by 

extreme-value index equal to -1. The situation here is somewhat similar to the case of 

Beta distribution. More specifically, for large sample sizes (n=1000) Moment estimator is 

the most preferable estimator, followed by Peng's. Averaging procedures (mean and 

median) improve their performances, while mean averaging also improves the 

performance of Pickands estimator. Here it is the median averaging procedure that 

provides better results than the mean averaging. These results hold for small samples of 

uniformly distributed data. The only difference in this case is that for small k (k=12) 

standard estimators display very large rmse's and the 'good' estimators previously 

mentioned are outperformed by estimators such as Hill and Moment-Ratio. 

5.3 General Comments 
Though differences exist between different distribution, some common underlying 

behaviour of estimators, if we discern them according to the corresponding value of γ. 

More particularly: 

• For γ>0 

For large sample sizes Moment-Ratio seems to be the most preferable estimator. It is 

usually the best estimator, in terms of minimum rmse. Even in cases that other estimators 

outperform it, it is one of the bests, while in no case does it display very unsatisfactory 

performance. It is interesting to note that the W estimator tends to be appropriate for 

distributions with extreme-value index γ larger than 1, though for smaller values of γ its 

performance can be very unsatisfactory. So, it may be risky to use this estimator, since in 

real-life applications, the value of γ is unknown. For small samples (in our case n=100), 

the Hill estimator turns out to be the best choice, while Moment-Ratio and Moment 

estimators can also be regarded as safe options. Among averaging procedures, only the 

mean averaging of Pickands estimator is effective. However, the improvement is not 

large enough to out-beat the other standard estimators. On the other hand, the trimming 
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procedure concerning the Hill estimator slightly improves the performance of Hill. This 

result combined with the fact that standard the Hill estimator is, in some cases, the best 

estimator lead to even better results. Still further exploration on this issue is required. 

• For γ=0 

The maximum domain of attraction of Gumbel distribution contains a wide range of 

distributions differing a lot. Consequently, there is not a uniformly superior estimator. 

However, by examining more carefully the above results one could deduce that Peng's is 

the most preferable estimator of the extreme-value index. Moment and (surprisingly) 

Moment-Ratio also display an adequate behaviour. The usefulness of averaging 

procedures in these cases should also be stressed out. These procedures have an obvious 

profitable impact on Pickands estimator, so that mean-averaged Pickands estimator can 

also be regarded as an adequate estimator of zero γ. 

• For γ<0 

This class contains upper-bounded distributions. Though the shape of distributions differs 

a lot from the distributions with γ=0, the behaviour of extreme-value index estimators in 

these two classes of d.f.'s displays great analogies. Here, Moment and Peng's estimators 

are undeniably the most preferable estimators and the beneficial effect of both mean and 

median averaging procedures is even more evident. Moreover, as we deviate from zero 

(and positive) values of γ, the inadequacy of estimators such as Hill, Moment-Ratio and 

so on, is more clear. 

 

6 Discussion 
The comparison (via simulation)  of semi-parametric estimation methods for the 

extreme-value index and some robustifying alternatives has been the central issue of this 

paper. The simulation study conducted led to some very interesting results. The first is 

that, as one could naturally expect, the performance of estimators on a specific data-set 

depends on the distribution of the data. So, there is not a uniformly best estimator. 

Nevertheless, by looking more carefully at the results, some general conclusions may be 

reached. More specifically, in cases of long-tailed data (with an infinite upper end-point) 

Moment and Moment-Ratio estimators seem to estimate more satisfactorily the non-

negative extreme-value index γ. However, when it comes to upper-bounded distributions 
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(characterized by a negative value of γ) Peng's and Moment estimators are more 

preferable. As far as the impact of smoothing (averaging) procedures is concerned, we 

deduce that it is effective (improving the performance of standard estimators) in cases 

where the true value of extreme-value index is non-positive. Particularly, mean-averaging 

procedures improve greatly the performance of Pickands estimator (in case of zero γ), 

while median-averaging of Moment and Peng's also leads to improved estimators (for γ 

negative). 

The dependence of estimators' performance on the distribution of data in hand can be 

alternatively seen as dependence on the true value of the index itself. So, before 

proceeding to the use of any estimation formula it would be useful if we could get an idea 

about the range of values where the true γ lies in. This can be achieved graphically via 

QQ and mean excess plots. Alternatively, there exist statistical tests which tests such 

hypothesis. See, for example, Hosking (1984), Hasofer and Wang (1992), Alves and 

Gomes (1996) and Marohn (1998). 

Moreover, it should be pointed out that among the averaged estimators used in the 

simulation study only the mean-averaged Hill and Moment estimators have been 

theoretically explored by Resnick and Stărică (1997, 1999). As we have seen, the median 

averaging procedure has also displayed some interesting effectiveness, implying that it 

may be worthy to be also studied theoretically (with special emphasis on Moment and 

Peng's estimators). The same holds for the mean-averaged Pickands estimator. 
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