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2.2. North-South Trade and the Dynamics
of the Environment

1. Introduction

This paper develops a dynamic model of North-South trade in w
environment plays an important role. Our model is based on Chich
North-South model for the macroeconomic interaction between twc
of the world economy. The latter was introduced in a static conte>
We introduce dynamics in the original North-South model by allor
endogenous accumulation of capital. As a second extension of [1], v
duce here a variable which represents the system of property righ
environmental asset which is used as an input to production.’ This
could represent, for example, the property rights on forests from whi
is extracted to be used as an input to the production of traded good
property rights on water which is similarly used, perhaps for agr
goods for export.

The paper explains mathematically and through simulations the d
of a two-region world. There are two produced goods and two i
production. Capital is one input: it accumulates in the two regions
time as a function of profits. We show that as we vary the property
the environment the dynamics of the system changes. The less well
are the property rights, the more chaotic are the model’s dynamics.

The models which result bear some similarity to one created by |
Neumann in 1932 and extended by Richard Goodwin in 1990 [12, ch
- We establish, in a sequence of steps, that these models are varian

- coupled logistic maps studied in several recent papers, for example, [
idea is to alter [1] to allow capital accumulation through time, assun
the approach to equilibrium follows rapidly. New equations are intro
our model, which are not found in [1] or [3]. These equations des:
evolution of capital stock through time by accumulation and depreci
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The outline of the paper> and the main results are as follows. In Section 2 we
introduce some useful notation, and in Section 3 the static North-South model
[1] is recalled. Following that, we develop in Section 4 a rather simple one-
dimensional model which is pedagogically useful because it anticipates the
mathematical structure of our main model. We analyze its dynamical behavior
in a sequence of propositions, and confirm this behavior through simulation.
This dynamical behavior is essentially equivalent to the logistic map, and is
similar to that which will be found later in our main model. In Section 5.2
we introduce our main (two-dimensional) model, and establish its dynamic
behavior through simulation. We find a very rich dynamic behavior, with an
extensive web of bifurcations controlled by the environmental property rights

parameters. We find chaotic attractors, and chaotic separatrices. That is, the -

basins of attraction form a fractal structure. In Section 6, the conclusions,
we interpret our results in the broader context of North-South trade and the
environment.

1.1. The Dynamic North-South Model

Cur dynamic model is based on [1], but with a major extension. Two fun-
damental equations are added to those of [1], which endogenize the changes
in capital stock in the two regions through time. We first explain intuitive-
ly how the dynamical model is defined, and following this we provide the
mathematical definitions.

The dynamical model is constructed iteratively as follows. Start from given
values of the exogenous parameters of the North-South model* of [1]. The
vector of initial levels of capital stocks in the two regions is a two-dimensional
parameter, which will be the initial value (for £ = 1) of our dynamical system
in the plane. Now solve the static North-South model analytically.”> The
solution gives us, inter alia, the equilibrium value of GNP in each region.® So
far the model is static, and identical to that in [1]. How does our dynamical
system move in the plane from period ¢ = 1 to period ¢t = 2? To define
the dynamics we will introduce two new equations, one in =ach region, both
depending on the corresponding equilibrium level of GDP in the region in
period t = 1. These equations explain how capital accumulates: a proportion
of GDP int = 1 is saved and increases previous period capital stock, while
some of the old capital depreciates. From these equations one updates capital
stocks and obtains a new set of exogenous parameters for the (static) North-
South model for ¢ = 2. These differ from the previous set (for ¢ = 1) only
with respect to the initial capital stocks, which have now varied according to
our two new equations. The new capital stocks for the North and the South
define a two-dimensional vector describing the period ¢ = 2 value of our
dynamical system. Now solve the (static) North-South model for this new set
of exogenous parameters, and obtain GDP for period ¢t = 2. Iterating this
procedure defines the dynamical system in the plane for every period ¢ > 1.
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The following is the mathematical formulation of the procedure explained
above.

Our first goal is to define the two new capital accumulation equations which
add to the equations of the (static) North-South model and obtain, from these
two new equations, a two-dimensional discrete dynamical system, generated
by an endomorphism of the plane, T' : ®2 — R2. The two new equations are:

Kn(t+1)" =sy(GNPN) + (1 — dn)Kn(2), (1.1.D
Ks(t+ 1) = sg(GNPs) + (1 — é5)Ks(t). (1.1.2)

Equation (1.1.1) describes capital accumulation through time in the North,
and (1.1.2) in the South. These equations are standard, and are interpreted
as follows. Equation (1.1.1) explains capital stock at time ¢ + 1 in the North
(N) as the sum of capital stock in the previous period in the North, Ky (t),
minus the part of this which is depreciated (J, is the depreciation factor in
the North) plus savings, which is the savings rate in the North, sy, times the
gross national product in the North, GNPy .

In order to determine our two-dimensional discrete dynamic system we
need to define from these equations an endomorphism of the plane, T" : R2
2. The depreciation and savings rate are exogenously given parameters. But
how do we determine GNP in the two regions for any given values of the
capital stocks in each, considering that they trade with each other through the
international market?

The solution to this problem is one of the main contributions of our paper:
the specifications of the GNP variables as the solutions of two simultaneous
market equilibrium problems. Here is where we use [1]. The combination of
Equations (1.1.1) and (1.1.2) with the North-South trade model is done here
for the first time, and we call this the dynamic North-South model.

How do we obtain an endomorphism of the plane from the two equations
for capital accumulation? We start with initial values of the two capital stocks,
one for each region, K and K. The static North-South model solves the
world economy equations from the following initial parameters: capital and
labor supply, technologies and demand in each region. Here, for the dynamic
North-South model, we assume instead that capital and labor supply and
technologies are initially given in each region.

In each region, at time ¢, we solve fully the static North-South model at time
t and obtain GNP at time ¢. From this, in turn, we compute the capital stocks,
at time ¢ + 1, using our new dynamic equations for capital accumulation,
(1.1.1) and (1.1.2).

The procedure can be summarized as follows. The static North-South mod-
el determines endogenously five price variables and sixteen quantity variables.
It has two goods traded internationally (basic goods, B, and industrial goods,
I) and two factor of production (capital, K, and labor, L). The price variables
are the international terms of trade for the two traded goods B and I, denoted
by pp and pj, (these are reduced to one by the normalizing assumption pr = 1,
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and henceforth p = pg), and the prices of labor and rental of capital in each
region, denoted w and r. Technologies are different in the two regions so that
the rewards to labor and to capital are also different. The sixteen quantities
which are endogenously determined are: supply and demand for the basic
and industrial goods, employment of factors in the two sectors, imports and
exports of both goods, all in each of the two regions. From these endogenous
variables we obtain an expression for the desired GNP in each region. By
definition, GNP is the value of the gross national product, that is, the value of
all outputs minus all inputs (of B and I) computed at the equilibrium market
prices, p. These are the prices at which all markets clear. Recall that part of
the preduction of each country is consumed in the other country, and that
relative prices p have adjusted to permit this trade and to clear markets, so
that imports equal exports in each of the two traded goods. The result is an
equilibrium level of GNP in each region,

GNPy = pBy + I¥, (1.1.3)
GNPs = pB§ + I5. (1.1.4)

Here p, BS, and I® are determined as the solution of a system of 22 simul-
taneous equations in 22 variables, as in the static North-South model, This
is explained in Section 5.2 below. Therefore, for each value of capital stock
we have assumed an instantaneous adjustment to an equilibrium in the static
North-South model.

From all this we obtain the GNP in each region at time ¢. The two dynamic
equations (1.1.1) and (1.1.2) then provide capital stocks in the two regions at
the next period, ¢t + 1. Our plane endomorphism, T, is now well defined.

The equations describing GNP in each region are nonlinear. Therefore,
the endomorphism T is nonlinear as well. In the following we shall study its
qualitative properties and experiment with simulations depicted graphically.
But before analyzing the model, it will be useful to explain the connections
with the environment. '

1.2. North-South Trade and the Environment

The environment appears in this model as one of the inputs, or factors of pro-
duction. While in the original North-South model the two factor of production
are labor and capital, recently [4] the model has been extended to three fac-
tors of production, one of which is a natural resource, such as water from
an aquifer, or fish from a common body of water, or wood from a common
forest. In the original North-South model the behavior of a certain parameter
« — representing the supply response of a factor to its price — is shown to be
crucial in explaining the patterns of trade between the two regions, including
the terms of trade and the gains from trade. Furthermore, in [4], the absolute
value of this parameteér in the South, ag, is proven to vary with the property
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rent in the two regio rtghts regime for the resource (such as land). This resource is used as an input
forthe productlon of the traded goods (such as cash crops: coffee, cotton palm
11), It is, therefore, of interest to simulate the behavior of the North-South
odel with different property rights for this environmental resource, that is,
dlﬁ'erent values of ay and ag. These parameters contain crucial information
,bout property rights. It was shown in [4-6] that os is smaller when the
yperty rights are well defined, and is larger when they are ill-defined. As an
xample, [4] predicts that a regime of property rights which gives better rights
e locals of the rainforest (for example, in Guatemala and Ecuador) could
ove the terms of trade on cash crops and control the overexploitation of

_ples are: rainforests, bodies of water, or fisheries. These are inputs o
oductlon of environmentally mtenswe goods which are internationally

ans, palm 0il). In our model we shall now reinterpret L as an envz-
al input used, together with the other input, K, to produce basic and

I : s well-defined property rights on the blOleCI‘Slty of a ramforest,
input to the production of pharmaceutlcals then the wood input

@ is large: this means that a lot more wood will be harvested,
ay be destroyed, for smaller increases in prices. The price
€ value of the input.

shown in [4, 6] that well-defined property rights lead to bet-
of scarce resources. Good examples are provided by Merck
als, Inc. and Shaman Pharmaceuticals, Inc. These companies
0 agreements to advance cash and to share the profits from
dlvers1ty samples in Costa Rica and in South American coun-
Versity samples are an input to the production of valuable
xamples: curare and the more recently discovered peri-
atS Hodgkins disease and leukemia in children) sharing the
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profits with the locals. This amounts to improving the property rights of the
local population on the common property resource: the rainforest’s biodiver-
sity. This scheme is not too different from the venture capital agreements
which advance working capital to use intellectual property (software ideas)
and share the rights subsequently with the entrepreneurs. By increasing the
realized value of the common property input, these agreements increase the
interest in conservation by those who would otherwise overuse or overexploit
the resource beyond its biological steady-state extraction rate.

All of these considerations may be represented in the North-South model
by varying the parameter c:g in the South. This variation simulates the input of
property right agreements in developing countries for their valuable common
property resources. For the theories explaining the general impact of varying
in the static North-South model in [3], see [5]. In this paper we address the
dynamic North-South model, and ask the same questions. The problem is
more complex since our model is dynamic, and we rely on simulation to
provide our answers. '

1.3. Organization of the Paper

We begin by recalling the static North-South model. Then we will develop
the equations for the general form of the dynamic North-South model in the
sequence of steps. To reveal the mathematical structure of the problem, we will
present, in the first of these steps, a very simplified one-dimensional dynamic
version of our two-dimensional dynamic system. This is only a mathematical
artifice, as the economics are embodied only in the full two-dimensional
version, our main model, of Section 5.2. We then explain some properties of
the dynamical model and present simulations which confirm our results and
suggest possible extensions. We end with a proposal for a dynamical system
linking our dynamic North-South model with the atmospheric chemistry of
the carbon cycle. '

2. Notational Conventions

We will write K in place of K{N) used in [3]. We are going to encounter
symbolic expressions in the variables:

KN7KS')SN7SS,""

and so on. We will refer to K for example as a root symbol, and only when
accompanied by a subscript N or S will the symbol denote a variable. Thus,
we may write expressions or equations in these root variables, but they are
symbolic only. When the appropriate subscripts are adjoined, they become
expressions or equations of variables defined in our models. Let A be an
expression of root symbols. Then Ax will denote the same expression in
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the corresponding variables of the North system, and likewise for Ag for the
South, while A7 will be defined to mean Ay + Ag.
Note: Equation (GC2.21b) denotes equation 2.21b in [3].

3. Recalling the North-South Model

We begin with the parameters, variables, and notations of the static North-
South model as defined in [3]. The root symbols of the eight parameters
in each region are: ai,ay,c1,c2,a, 3, K and L. Thus, we will encounter
a1 = 1N, @15, etc. The crucial variables which determine the model are five
price variables and sixteen quantity variables. The price variables are:
1. p = pp denotes the price of basic goods, B. Since the price of industrial
goods, I, had been set to unity, p;y = 1, p is the relative price of basics
with respect to industrial goods. It is also called the terms of trade since
B and I are the only two goods in the international market. In a market
equilibrium, p is the same in both regions, North and South, but all other
price variables may differ in the two regions.

. w denotes wages.

.  denotes the capital rental price.

Since labor and capital are not traded internationally (that is, between
the two regions), their values are determined by p according to local
conditions (Equations GC2.21b, GC2.4a) which are unequal in the two
regions (because two regions have different production technologies).
The five price variables, or prices, are p, vy, s, Wy, Ws.

The quantity variables are the following.

4. K denotes capital stock. This is determined by r, see (GC2.4) and Fig-
ure 1. This relationship is for the static model only. This K will be
determined, in the dynamic models of this paper, by a discrete dynamical
system modeling the annual variation of capital stock in each region.

5. L denotes labor. This is determined by w and p, see (GC2.3).

6. BS and BP denote quantities of basic goods supplies and basic goods

demanded.

. IS and IP denote quantities of industrial goods supplied and demanded.

. X§ = B5 — B? and X7 = I — IP denote exports of goods, the excess

of what is supplied over what is consumed in each re%ion.

The sixteen quantity variables are: L, K, BS, BS, IS, I”, X§, X3, in each
region. The diagram of Figure 1 shows how p (and the parameters in each
region) determine all of these other variables. Labor, L, and capital, K, are
the inputs to production. Using labor can capital the two economies produce
the two goods, or commodities, BS and I°. In each region, BY is produced
using labor and capital according to

BS = min(L/ay, K/c1). 3.1)

oo 3
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-2 -1 1 2

Figure 1. Grahp of K(r). The y-intercept is at K, and the slope is .

Therefore, efficient use of L and K requires that
BS =L/a; = K/e1,

that is, labor and capital are used in fixed proportions for each level of output
of BS, or

L/K = al/cl?

where a; is called the labor-output ratio (since BS=1L /a1) and ¢ is called
the capital output ratio (since BS5 = K/c;). Equation (3.1) is the production
technology which determines how much B can be produced with the available
K and L. Similarly, each region has a production technology for I,

I5 = min(L/az, K/c2) . (3.2)
with the same interpretation for the parameters a; and c3. Equations (3.1)

and (3.2) give rise to (GC2.20). (GC2.20 indicates equation number 20 from

section 2 of [3].)
Now « and 3 represent the responses of labor and capital supplies to

changes in their prices: w and r. We postulate:

L=ow/pp+L (GC2.3).

with L < 0, and
r=(K-K)/8 (GC2.4)
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with K > 0. Equation (GC2.3) means that as the real wage w/pp increases, so
does the supply of labor. And Equation (GC2.4) means the same for capital.
The negative value of L indicates the minimum wage needed for survival
before people supply positive labor.

Note: these relationships are particular to the static model. Later in this
paper, while retaining the static relationship (GC2.3), we shall replace (GC2.4)
with a dynamic rule of capital accumlation.

Some further relationships are the following, all from [3]:

pB = (a1 —rD)/ay, (GC2.21)
B% = (¢;L — a2K)/D (GC2.20)
IS = (mK — e1L)/D (GC2.20)
w = (ppc2 — 1)/ D, (GC2.21)

all of which are non-negative, and
D= aijty — axcy.
All remaining symbols denote constants defined in [3]. Note that the super-

- script S in B® and I° and denotes Supply (vs Demand), not South (vs North).

Also the subscript B in pp indicates Basic (vs the subscript I for Industrial).
Henceforth, we will omit these subscripts when no confusion results (esp. in
Section 4). Hence: L for LS (we will not use L), p for pp (we will not use
p1), B for BS (we will not use BP), and I for IS (we will write I? when we
mean demand for industrial goods). Thus the equations above become:

p=(a1—rD)/a; (GC2.21a)
B =(cLl—-aK)/D (GC2.20a)
I=(a;K —¢,L)/D (GC2.20b)
L=ow/p+L (GC2.3a)
w=(pe; —¢1)/D (GC2.21p)
r=(K-K)/B (GC2.4a)

all non-negative, and
D= aijc; — axqy.

To close the static model in [3], two more variables were fixed:
I=1P

exogenously in each region.
This “closure” corresponds to the demand specification derived from
assuming a simple preference form, which was defined and illustrated in
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[3]. One can consider several other demand specifications without changing
the structure of the model or its behavior, as shown in [1, 3]. Indeed, in
the specification of our dynam1ca1 North-South model, the two-dimensional
endomorphlsm is defined using a demand spec1ﬁcat10n (5 3.1) which amounts
to requiring that the demand for industrial goods I” is a proportion 1 —
of GNP. This last specification is useful in a North-South world, because
typically industrial countries consume a higher proportion of their GNP in
the form of industrial goods, while developing countries consume propor-
tionately more basic goods. With our specification (5.2.6) it is also possible
to simulate an economy where the proportion y depends on the GNP level,
with -y decreasing as a function of GNP. We now begin a step-by-step devel-
opment of our two-dimensional dynamical system. The first step will be a
simple one-dimensional model.

4. One-Dimensional Models

In preparation for our main model, the two-dimensional map defined in Sec-
tion 5.2, we now study a preliminary, one-dimensional model. This simple
model is less realistic in economic terms than our main model of Section 5.2.
Qur purpose in introducing a simple model first is pedagogic: this serves to
anticipate and explain the mathematical behavior of the larger model in a
transparent fashion. It is important to note that the results of this paper do
not depend on this simple model but rather on the main model, which is
introduced and developed in Section 5.2.

We now introduce dynamics for the macroeconomic variables of the North
region. The variables of the South will then be obtained as functions of those
of the North, as foliows.

PROPOSITION 1. In the North-South model, the South capital is obtained
from the North by the affine isomorphism,

Kg = Ho + Hi1Kp,

where
Bsazs Dy
Hy = £595°N
'™ ByanDs

and

Hy = gﬁ [—al—N azs + ans} - HiKy + Ks.

s 1 an
Proof. From (GC2.4) we have

Ky =BnrN+ KN (4.0.1)
and :

Kg = fBsrs + K. 4.0.2)

North-Sout

As we assume the terms of
or from (GC2.21a),

p = (a15 — rsDxg
or, solving for rg,

1
rs = E {(TNL

we now substitute (4.0.1)
Kg = fsrs + K
Using (GC2.4a) to replac

Bs | azs.
Kg=125]%s
o DS az

and simplifying, we get £

Henceforth in Section 4,

4.1. The Dynamics of the
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result, after a rapid tran
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will be defined by a func
point Z subsequently), sc
Also, we write K+ for f

F(K) = (1-4)

where the depreciation r
small, positive values, ar

GNP =pB +1.
As usual, GNP is the in
(GC2.16).

After substitution of
mophism f may be writ

PROPOSITION 2. The)
f(K)= Ao+
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As we assume the terms of trade p = pp are the same in eachregion, ps = py;,
or from (GC2.21a),

p = (a1s —rsDg)/azs = (ain — rnDn)/azn, (4.0.3)
or, solving for rg,
1 a
S = 5o {(TNDN —ain) =+ alS} ) (4.0.4)
s an

we now substitute (4.0.1) into (4.0.2) and obtain

- a
Ks =fsrs + Ks = _gi {(TNDN - alN)-'2£ + alS} + Ks.
s aN

Using (GC2.4a) to replace ry we have

Dy (Kn—K _
Kg = Bs JasDn | Kn _av oy kg
Dg aIN BN asN
and simplifying, we get the proposition. a

Henceforth in Section 4, we will write K in place of Ky, and so forth.

4.1. The Dynamics of the One-Dimensional Model

We envision a dynamic in which changes in the capital stock in the North
result, after a rapid transit to new static equilibrium, in new equilibrium
values of the variables. We use discrete dynamics to model the annual reports
of these variables. And now, Equation (4.0.1) is understood as a demand
equation, so that 3 < 0. This differs from [3]. The annual increments of K
will be defined by a function, f : R\{Z} — R (we will identify the excluded
point Z subsequently), so that for year n + 1, we have K (n + 1) = f(K(n)).
Also, we write Kt for f(K). This function is assumed to be defined by

F(K)=(1-8K +s(GNP), 0<4, s<I, (@.1.1)

where the depreciation rate, d, and the rate of savings, s, are constants with
small, positive values, and

GNP = pB + I. (4.12)

As usual, GNP is the inner product of goods and prices, and again, p; = 1
(GC2.16).

After substitution of the expressions in the preceding section, the endo-
mophism f may be written in the following form.

PROPOSITION 2. The function defined in (4.1.1) may be expressed as
f(K) = Ao+ A1K + A,K? + A /(K ~ Ky), (4.1.3)
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. where the coefficients are given by
Ap = (s/a)[1 + K /B)(L + acy/ D) — sa3e;,
A1 =(1-68) +(s/B{~K — (c2/a2)(L + ec2/ D)},
Ay = s/,
A, = —s(cja:$8/ D),
and the singular point (Z above) is
Ko= K +a18/D.

4.2. Proof of Proposition 2

We will demonstrate the dynamical rule given above in six steps.
Step 1. First we observe:
p=1u (K - K0)7

where u; = —D/a,8, and Ky = K + a;8/D.
Proof. From (GC2.21a) of Section 2 we have

p= (a1 —rD)/az
and substituting for r from (GC2.4a) above,
ay (K-K)D
p=——-—7,
az a2f8
from which we obtain
p=1uy+ U]K )
where u, is defined above, and
a8+ DK
Uy = ———— .
axf
Then Step 1 follows, with

a1+ DK + aff a1f

K - - = _— s — K .
0 uQ/U1 a2 D D + K
Step 2. Continuing, we find:
ac; + LD ac;+LD - . «
L= —= K K+L+—= (-
D " + =03 tLlt+g5le-a)

North-South

Note: Combining Steps
K. Combining with Propo:
the primary variables, Ky,
dimensional model.

Proof. From (GC2.3a) of

w -
L = (a— + L)
p p »
and substituting for W fron

pcy — €
D

pL=a +

Using Step 1,
_ (%2,
pL = (D +L)

Y
- - (R~

acy + LL
 Ba

acy + LL
"~ far

acy + LL
" Bar

completing the derivation.

Step 3. Next, see that:

pK = _D K+
a8

Proof. From Step 1 we h:
pK = pi(K — Ko

Step 4. Putting these togeth
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Note: Combining Steps 1 and 2, we have expressed L as a function of
K. Combining with Proposition 1, we see that the evolution of all four of
j the primary variables, Ky, Ly, Ks and Lg, are determined from our one-
"+ acy/D)}, | dimensional model.
Proof. From (GC2.3a) of Section 2 we have

i 30:%61,

pL=p(a%+E) =aw + pL
and substituting for W from (GC2.21b),
_Jfesa  r_ (e ), _cu
pL =« 3] +pL <D+L)p D
Using Step 1,
ac; = ac
pL = (—EE-FL)M(K—KO)—FI
yove in six steps.
_ ac D acy D acy
| = (T )+ (B +E) a5
i ac; + LD ac+LD ,_.. a1, oc
= K K4+ —)—-—
far "t g EtD)T D
ac; + LD a+ILD _ ac; - ac
= — K K+ —+L-—
Boi " Bum D "D
acy + LD ac+ILD _ - «a
Bar + Bar + L+ D(Cz cl),
completing the derivation.
Step 3. Next, see that:
D D - a
K=—-—_K4 [——~K+—]K.
P a3 a2 a2
Proof. From Step 1 we have
pPK = pi(K - Ko)K
'* = pK? - pi KoK
af | 5
L ¢ D g2, D [ ﬂﬁ]
D P Ry T
D D _
’ = g K ok ] K
R+L+2 (c—a) i i i
D Step 4. Putting these together, we have
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pB = Cy + C1K + C,K?,

where
_ ac;+LD - - «
Co = af K+L+ B(Cz—cl),
c=_95 _al K a
'~ "aBD @B F D’
C; = 1/B.
Proof. From Section 2 (GC2.20a) we have
Ll —aK
B = p————
b p D
2, 2
in which we may replace pL with Step 2, and pK by Step 3, obtaining
c2 | aca+ LD ac+LD - . «
B = <={- K K — (¢ —
p D{ a8 + af +L+D(Cz cl)}
ay D _, [D ~ 4] }
-=1—— K+ |—K+—|K
D{ a3 a3 a2
1 ar% al K a
= - K- + =+ — K
B {alﬂD af B D
ac+LD - . «
+{ 0B K+L+b-(62—cl)},
which is Step 4.

Step 5. Similarly, see that:
I=5L+ LK +I./(K — Ky),

where

IO = - [ﬂ_fl_ + QCICZ:l s

D "Dz
I = 95‘,
I, = -%Pud

D3

North-South

Proof. From Section 2 (C
_ alK——clL
I= D
= U G0
=pk D[
_aK—-qlL _
- D
_ alK—clL _
B D
_ uK—qal
- D
_ g |al
B DK [D
which is Step 5
GNP = Go+ G1 K
where
Go=Co+1p= ac
Gl == Cl +Il = — l
G, = C,=1/8,
G* = I* = —aﬁazc;}
Proof. From Section 4 (4
GNP =pB +1,

in which we may replace pi
GNP = C,K? + (C

which completes our deriva

4.3. Preliminaries on Quad.

In the preceding sections we
generating a semi-cascade (
the North-South model. Thi
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Proof. From Section 2 (GC2.20b) we have

_ alK—clL
I= D
O e § L 5
= DK D[p + L]
_ alK—cll_}_gﬂ_z_v_
- D D p
_ alK—clL_g_c_l[ fl]
- D Dz |7 p
_ alK—clf_aclcz a_cfl
- D D? D2 p
_ag_lal eaal| o 1
D D ' D? D? py(K — Ko)
which is Step 5
' GNP = Gy + G 1K + G2 K? 4 G./(K — Ky),
where
_ _aCZ+LD- Cl,z «
Gy = Co+ Iy = e K+ (1 D)L+D(62 1)
aé CZE R
Gi=0Ci+I1=—-]|— 4+ ="+ —
oo [alﬁD alf ﬂ]
G, = Gy =1/8,
G. = I, = —afayd/D.

Proof. From Section 4 (4.1.2) we have
GNP = pB + I,

in which we may replace pB by Step 4, and I by Step 5, obtaining
GNP = C3K* + (C1 + ) K + (Co + Ip) + I,

which completes our derivation.

4.3. Preliminaries on Quadratic Maps

1
K-Ko

acicy
D2

In the preceding sections we have obtained an endomorphism of real numbers,
generating a semi-cascade (discrete dynamical system), for the dynamics of
the North-South model. This one-dimensional model will be useful to us, as
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we will see later in the study of our main (two-dimensional) model. This is
because dynamics in one dimension has been extensively studies, whereas
dynamics in two dimension is a current frontier. To relate this one-dimensional
model to the well known logistic map, we will make use of the following.

PROPOSITION 3. 4 quadratic function, f : R — R, defined by

f(z) = Ap + Az + Ayz?
with Ay # 0, and the discriminant A = (A} — 1)2 —440A; > 0, has a
repelling fixed point at
(4 -1 4 A

24, 24,

with its distinct preimage at By + B, where

By =-A1/A> —2By.
The affine function

z: R R, y— z(y) = By+ By

is an affine isomorphism, and conjugates [ into the canonical form for the
quadratic family

9(y) =z~ (f(z(¥))) = py(1 — ),

By =

with
p=1+A.

Furthermore, the usual domain of this logistic function, y € J = [0,1], is
mapped to an interval x € I = [By, By + By), in the orientation preserving
case By > 0, else z € I = [By + By, By, by this affine isomorphism.
Proof. To compute the next value of y under the conjugate map, we apply
the inverse map to y™, -
B 1
+_ _Z0, 1 +
Y B, + B, T
By 1
=5 TE f(z)
__bB 1 2
= B +B1[A0+A1x+A2£L‘ 1,
and then with z — y,

B A A A
yt = ——9+—°+B—:(Bo+Bly)+B—?(Bo+Bly)2

B A A
= [——QV+QA—’1+——‘BO+E—ZB§]
' 1

+ [A1 + 2AzBo]y + (AzBl)yz.

North-South
Now we equate this with the

¥+ =g(y) = py(1

term by term.
For degree zero,
By Ay | A
—_—— 4+ =+ =1
B, + By * B
andas A; #0and B; #0

AyBE + (A1 - 1)E

from which, by the binomiz
o (A—-12
Bo= 24,

Note: The quadratic equ:
of the map f, so the + yiel
two possible values for By

f’(Bo) = A; + 24

we choose the positive sig

other root, with the minus s

a fold bifurcation, and initi

distinct preimage is By + 1

the critical point is z, = —
For degree one,

u=A;+2A,Bp
and for degree two,

u=-—AB.
Subtracting these two expr

completing the specificatio
sion for u above we obtain

COROLLARY 4. Given th
flz) = Ag+ Az
with Ay #,0, and (Ay — 1

_A-l+

Bp =
0 24,
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limensional) model. This is ‘ Now we equate this with the desired canonical form,
xtensively studies, whereas +_ _ _ 2
) relate this one-dimensional . vT =9 =py(l-y) =0+ py+(-p)y
ake use of the following. : term by term.

| For degree zero,
> R, deﬁned by , By Ag A A

[t Al A Mninl Zip2
B1+Bl+BlBO+Bl 0 O,

-1)* — 4404, > 0, has a andas A, # 0 and By # 0
AyBl+ (A —1)By+4p =0
from which, by the binomial formula,
(A —-1x4)
24, ’

| Note: The quadratic equation for By here is the condition for a fixed point
of the map f, so the + yields the two fixed points. As the slope of f at these
two possible values for By is

f,(Bo) =A;+2A;Bp=1+A

we choose the positive sign for the repelling fixed point. If B; denotes the
_other root, with the minus sign, then this is the paired fixed point, created by
a fold bifurcation, and initially attractive, for A small and positive. Then its
distinct preimage is By + By, where B] = —A;/A; — 2By . Also, note that

By =

the canonical form for the

inction, y € J = [0,1], is » the critical pointis z, = —A;/2A4;.
the orientation preserving For degree one,
affine isomorphism. _
e conjugate map, we apply 3 p=A1+24:5
and for degree two,
um = -—AzB 1.
Subtracting these two expressions and solving for B,
4
Bj=—-—-2B
1 A 0
completing the specification of the affine isomorphism. From the first expres-
sion for 1 above we obtain its form in the proposition. O
Ay (Bo+ Biy)? COROLLARY 4. Given the function f : R\{Z} — R, defined by
B f(z) = Ao+ Az + Ax2? + A, /(z — %)

with Ay #,0, and (A} — 1)? > 4Ap Ay, then y — z = By + By with
_A1 —14+A

Bo = 24,

————— nli' U T p—
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and
By =—-A1/A; — 2B

is an affine isomorphism, and conjugates f to the canonical formg : R\{g} —
R, with

9(y) =z (f(2(W)) = wy(1 — ) +v/(y — 7)

withv = A,/B3, § = Z/B) — Bo/B) = £~ (&), and u + A as above. And
as above, the usual domain of the logistic function,y € J = [0, 1], assuming
§ ¢ J, is again mapped to the interval, z € I = [Bo, Bo + Bi), by the affine
isomorphism.

Proof. The quadratic terms are conjugated as shown, according to Propo-
sition 3 above. For the last term, see that

A v
-z y-9

(1/B1)

Z

with which, the formula for g is obtained. m]

Remark. If the singular point lies outside the interval J, then this interval
as approximately the invariant interval defined by the initially repelling fixed
point and its distinct preimage. In case the point 7 lies to the right of the
interval J, the domain of g should be reduced to the subinterval J* defined
by the expanding fixed point and its nearby preimage. In case j lies to the left
of J, then the interval may be increased to J*. The case with 7 in the interval
shown in Figure 2.

The invariant interval of g, J*, is not identical to the reference interval,
J = [0, 1] unless v = 0. Likewise, we have an interval for f, I'*, not identical
to the corresponding reference interval, I = [By, By + Bi}.

In summary, we see that in the case in which the singular point is outside
the interval of interest, our one-dimensional model must behave exactly like
the well-known logistic (or quadratic) map, with a convergent sequences of
period-doubling bifurcations, and chaotic attractors. In the other case (which
occurs with reasonable values of our numerous parameters) the behavior
should be similar. This is difficult (but possible) to establish analytically, but
we will use simulation instead.

4.4, Simulations

We now establish that, indeed, the behavior of our one-dimensional model
is that of the familiar logistic function, even though the singularity falls in
the domain of the map. We begin by fixing values for the many parameters
appearing in this dynamical system. First, let § = 0.1 and s = 0.08. For the

by
&
:
i
b

North-South

Figure 2a. Graph of the one-dime
at the left. This is the singularity, s

Figure 2b. Graph of the one-dime;
in the map.
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Pinl ey junioeipe,

Figure 2a. Graph of the one-dimensional model with 0 < z < 163. Note the gap in the graph
at the left. This is the singularity, shown enlarged in Figure 3. &P B

Wik bre jrcinarise,

Figure 2b. Graph of the one-dimensional model with 0 < z < 20, illustratin i i
ot o, , illus g the singularity
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others, our guide will be table (c) on page 44 of [3], except for the sign of §
which we reverse. Thus, in the North,

=2, K=12,

a; =0.15, L=10.5,

1 = 1.8, = 6,

=17 pB=-917

These are chosen so that p,r,w, L, K, B,I > 0 in each region. Note that
the control parameter y in the transformed dynamical system depends upon
all of these values. The derived constants are then approximately:

D =313
Ay = —0.058524, By = 0.167727,
A; = 1350306, Bj; = 42.306847,
A; = —0.008247, By = 79.110881,
A, = 0.1201, B; = 163.389119,
with the singularity at £ = 5.801917 and the attracting fixed point at
42.316339, see Figures 2a and 2b.

The response diagram for function f of (4.1.1) — with all the parameters
fixed with these values except for , which is regarded as the control parameter
in the simulation — is the familiar orbit diagram for the quadratic family, as
shown in Figure 3.

5. Two-Dimensional Models

In the first dynamical system studied above, we had an evolution in the North
variables, while the South variables were to be determined from their Northern
siblings by an algebraic relation. We now want to consider a more symmetric
dynamic, in which the corresponding variables in both regions are in mutual
coevolution.

5.1. A Preliminary Model

Here we rewrite the one-dimensional model as a two-dimensional model
without changing the dynamics for K. That is, instead of obtaining Kg
from K after each timestep by conjugation with the affine isomorphism of
Proposition 1, which assumed a rapid settling to static equilibrium, we will
derive a semi-cascade for Kg parallel to that of K.

From Proposition 1 we have

Kg=Hy+ H Ky, 5.1
while from Proposition 2,
Kn(n+1) = f(Kn(n)),

North-South

Figure 3. Response diagram !
familiar figure for the quadratic
dynamical system. Each value
a particular map generating th
attractor of the dynamical syste:
(as in equilibrium theory), peric
in economic data).

or writing fx in place of
Ky = fn(Kn).
Note that the inverse of P:
Ks — Hy
Ky=—"—
N ]
We now apply the map

(5.3) to the rights-hand si
ing result.

PROPOSITION 5. The d
Jor Kg, which may be ex)

Ks(n+1) = fs
where the generating end

fs(y) = Aos +.
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" Figure 3. Response diagram for the one-dimensional model with 6 < o < 8. This is the

familiar figure for the quadratic family. The vertical axis is the domain of the one-dimensional
dynamical system. Each value of the control parameter a determines a vertical interval, and
a particular map generating the dynamic. The white point (or set of points) is the unique
attractor of the dynamical system for the given value of the control parameter: a point attractor
(as in equilibrium theory), periodic attractor (as in business cycles), or a chaotic attractor (as
in economic data).

or writing fy in place of f,

Ky = fn(Kn). (5.2)
Note that the inverse of Proposition 1 is
_ Ks—Hy
Ky = o (5.3)

We now apply the map of (5.1) to the left-hand side of (5.2), and its inverse
(5.3) to the rights-hand side, as in the proof of Proposition 3, with the follow-
ing result.

PROPOSITION 5. The dynamic (5.2) for K implies a conjugate dynamic
Jor Kg, which may be expressed,

Ks(n+1) = fs(Ks(n)) or K& = fs(Ks),
where the generating endomorphism is

Fs(y) = Aos + A1y + Azsy? + Aus
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and the coefficients are given by

H2
Aps = H0+H1A0—A1H0+A2—H—‘:,
Hy
= —24,—
Aig = A 25
Ay
As = o’
A*S = HIZA*’

§ = Ho+ K H.

Note: Given Kg and all the parameters, we obtain all the variables. But,
we will use different values for the parameters in the South: again, as in
Section 4.4, we let § = 0.1 and s = 0.08. For the others, we again refer to
table (c) on page 44 of [3], except for the sign of § which we reverse. Thus,
in the South,

a) =45 K=217,
a; =0.02, L =-2,
c; = 0.01, a =75,
=3, pB=-0.025.
These are chosen so that p, r, w, L, K, B, I > 0 in each region. Note that the

control parameter 4 in the transformed dynamical system depends upon all
of these values. The derived constants are then approximately:

D =135
Ag = —750.642844, By = 2.691218,
Ay = 558.498719, By = 2.694575,
A, = —103.512843, By = 0.006303,
A, = 0.0000000008, B; = 0.013018,

with the singularity atZ = 2.691667 and the attracting fixed point at 2.694576.

Proof. From Proposition 1 we have
Kg = Hy+ H\Kn
with inverse
__Ks—H,
=—F
while from Proposition 2,
Kn(n+1) = fn(KEn(n)).

Ky

North-South ]

' As in the proof of Proposi
1ts inverse to this equation, g

K; = HO+H1K}
= Ho+ H\ f(.

= H0+H1f<
= H0+H1A0

+ HiA,—
K

= Hy+ HiAp

+HI A, —

1 KS

from which the proposition fc
We may apply the Corollary

dyqamical systems (4.2) and (¢
logistic endomorphism,

ky = unky(1 — kN,
kE = psks(1 —ks) -

both on the unit interval, with

;U'N=1+V(A1N—
ps =1+ /(A1s—1

VN = A*N/B%N,
vs = A.s/B%.
Thgt is, we have in this mo
logistic maps, each of the form
fIK)=(1-8K +s
or equivalently,
f(E)=(1-6)K+s
We now seek to couple them th
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tiracting fixed point at 2.6945 76.
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As in the proof of Proposition 3, we now apply the affine isomorphism and
its inverse to this equation, getting

K; = H0+H1K1"v'-
= Ho+ H f(Kn)

Ks—Ho)

= H0+H1f( T,

Ks — H
= HO+H1A0+H1A1“‘u + Hi4; {

Kg— Ho]z
H,

H,
1
(Ks — Hp)/H, — Ky

+ H A,

A
= Ho+ HiAo+ A (Ks — Ho) + -H—2 (K% — 2HoKs + H})
) .
1
*Ks — Ho— KoH,

from which the proposition follows. 0

+ H?A

We may apply the Corollary of Proposition 3 independently to each of the
dynamical systems (4.2) and (5.1), obtaining the (uncoupled) two-dimensional
logistic endomorphism,

k}‘v = unkn(1 —kn) + vn/{kn — ko),
ks = psks(1 — ks) + vs/(ks — kso),

both on the unit interval, with

un =1+ /(Aiy — 1)2 - 4Aov Aoy = 1 + Ay,

ps =1+ \/(AIS — 1)2—44p54;5 =1+ Ag,
VN = A*N/B%N,
Vg = A*S/st.

That is, we have in this model a minor modification of two (uncoupled)
logistic maps, each of the form
F(K) = (1-0)K + s(GNP),
or equivalently,
f(K)=(1-90)K + s(pB + I).
We now seek to couple them through p.
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5.2. The Main Model

We will work with an endomorphism of the plane
T :R* - R (Kn,Ks) — (K, KY)
defined as in the one-dimensional model by
K% = sn(pBn + In) + (1 — 0n)KNn, (5.2.1)

K;' = ss(pBs + Is) + (1 — és)Ks, (5.2.2)

where the terms of trade, p, are the same in both regions, because markets
are competitive. These equations predict growth of capital stock in one fiscal
period. As before, pB + I is the GNP (gross national product), s is the savings
rate, and & is depreciation. In our simulations, we will use s ~ 12 /100, and
8 ~ 10/100, and for both regions.

The time evolution of all of the variables in each system is to be found by
the iteration of the mapping T, beginning with any initial state, (K, K§). To
complete the definition of the endomorphism 7" and thus the dynamics of the
inodel, we explain the determination of the intermediate variables, p, B,1,in
each region. These are determined by equation (GC2.22) of [3] modified as
follows:

By =0, Kn=Ky; Bs=0, Ks=Ks.
We recall, from [3], the equation
Arp* + (Cp + IRYp - Vr =0, (GC2.22)

where here A = fSaja; /Dz, and C and V are defined below. Equation
(GC2.22) then becomes, with 8 = 0 in each region,

(Cr+IRp-Vr=0, (5.2.3)

using the convention of Section 2. Here, the symbolic expressions C, V and
IP, are defined by

C = (1/D)[e;L — a1 K + acicz/ D), (5.2.4)
V = ad/D?, (5.2.5)
IP = GNP(1 — ), (5.2.6)

where v € (0, 1). In fact, we will choose y = 60/100. In any case, we would
like s + (1 — ) < 1. Note that C is a function of K in each region, V' is
a constant, and GNP in the expression for I is to be determined from the
formula GNP = pB + I. Equation (5.2.6) is the assumption that demand
for industrial goods is proportional to GNP, as described above, in each
region. This treats the two goods, B and I, symmetrically. Note that the
values of B and I are directly computed as function of K (in each region) by
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Equations (3.1) and (3.2), but the value of p in this expression is not directly
available. We obtain this value, assuming the rapid approach to equilibrium
in the static model as described in Section 1, as described below.

Once p is determined, we obtain the GNP, which is given by Equa-
tion (4.1.2), and equations (GC2.20a,b), (GC2.21a), and (GC2.3) from [3],
as:

GNP = p(c;L — a3K)/D + (a1K —c1L)/D
= p(acs/D* + ¢,L/D — K/ D]
+[—2aciey/D? + a1 K/D — ¢, L/ D) + ac}/D?p (5.2.7)

for each region. Note that Equation (5.2.3) determines p if GNP is known,
but our expression (5.2.7) above requires p. When this circularity is resolved,
we obtain a quadratic equation for p with all coefficients known.

We begin by rewriting (5.2.3), using (5.2.6), in the form

p[Cr + (1 — ¥)GNP] — Vpr = 0, (5.2.8)
and using (5.2.7), this yields
Erp* + (Cr + Fr)p+ (G — Vr) =0, (5.2.9)

where

E = (1-7)[ag/D* - (a2K + L)/ D],

F = (1-9)[-2acic;/D* + a1 K/D — ¢, L/ D],
and

G = (1~ 7v)ac}/D>.

Thus, computing L from K in each region, all the coefficients of the
quadratic equation (5.2.9) are known. We solve this equation, and in case of
two real roots, we choose the larger one for the current value of p. Then from
(5.2.7) we have GNP in each region, and the specification of the map T is
complete.

An interesting simplification to our main model results from substitut-
ing 7K for GNP in the dynamical rules for the 2D endomorphism, Equa-
tions (5.2.1) and (5.2.2). This third model has been studied by Di Matteo [10]
and we may return to it in a future publication.

5.3. Simulation Results

For the first two-dimensional model, the response diagram is shown in Fig-
ure 4. Throughout this section, the values of all the constants are as given in

Section 4.4 (for the North) and Section 5.1 (for the South) except as noted in
the figure captions.
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Figure 4. Response diagram for the first of the two-dimensional models. Here we vary
an from 31 to 49 while holding as fixed at 20. The horizontal axis represents the control
parameter, oy, while the vertical axis represents the North capital supply, K, after several
iterations. The interpretation of this diagram is identical to that of Figure 3, except that here
the vertical axis is the one-dimensional projection of a two-dimensional state space.

It is here that our experience with the one-dimensional model is pedagog-
ically useful, as we see a strong similarity in the response diagrams. In this
case, we have a two-dimensional state space, of the variables Ky and K,
and a one-dimensional control space, of the control parameter, ay. Thus,
the response diagram is three-dimensional. But here we have reduced it to
a two-dimensional graphic by projection. The vertical axis represents the
two-dimensional state space (of the capital stocks in North only), and the
horizontal axis is the control space of the environmental variable ay. As the
two equations of the first two-dimensional model are uncoupled, this pro-
jection gives us exactly the response diagram of the one-dimensional model
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Figure 5. Response diagram for the second of the two-dimensional models. Here we vary the
as from 40 to 90 while holding the oy fixed at 6. The horizontal axis represents the control
parameter, as. Both North and South capitol stocks are plotted on the vertical axis. This view
of the response diagram is constructed as follows. For each value of the control parameter
(horizontal axis) there corresponds a dynamical system on the state space, a rectangle in the
plane of the state variables Ky and K's. This discrete dynamical system has a single attractor,
either a point (static attractor), a finite point set of & > 1 points (a k-periodic attractor), or
an infinite set (chaotic attractor). In any case, we (step 1) project this attractor onto the Ky
axis, then (step 2) project this attractor onto the K's axis, and then (step 3) superimpose both
projections onto the same interval of real numbers. Finally (step 4), this picture is inserted into
the response diagram as a vertical line segment over the chosen value of the control parameter.
Note that there are two figures, similar to Figure 4, which are superimposed here, one for each
of the projections: K and K.

studied above, that is, Figure 3. (Some of the parameters differ, however,
between these two figures.) We see, at the left of the response diagram, a
period doubling bifurcation, followed by the familiar convergent sequences
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Figure 6. A histogram of the attractor in the two-dimensional state space of Ky and K,
for a particular value of the control parameter, s = 80. The horizontal axis represents values
of K, the vertical, K's. The bar on the lower left shows the gray scale code, from black (no
points of the trajectory in a unit area) to white (maximum number of trajectory points in a unit
area).

of similar events. As we see this in projection, we may understand that there
is a periodic attractor in the two-dimensional state space of the variables Ky
and Kg, which progressively becomes more and more complex, and finally,
fills a subset of the plane chaotically. Starting from any initial values of the
two capital supplies, the time sequence of subsequent values approaches this
attractor asymptotically.

But the second two-dimensional model is our main goal in this paper. And
for this model, the bifurcation diagram is shown in Figure 5.

For some values of the various parameters, we find a single basin, with a
chaotic attractor. The attractor portrait for one such case is shown in Figure 6.
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Figure 7. The two basins of attraction using the second of the two-dimensional models with
as setto 17.5 and ay to 1.5. In addition, the South’s a3 and ¢; are set to 0.05 and 0.04 rather
than 0.02 and 0.01 as in Figure 6. The darker bands belong to one basin. The wedges between
them comprise the other basin, and are shaded according to how far each point is from the
attractor, in terms of number of iterations.

Note that this attractor is closely approximated by a straight line segment,
indicating that the one-dimensional model is surprisingly good, at least for
these values of the parameters.

For other values of the parameters, we find multistability. That is, there are
two or more basins. The basin portrait for one such case is shown in Figure 7.
This portrait has two basins, each containing a point attractor. The two basins
are separated by a fractal boundary. This portrait is radically nonlinear, and
indicates a significant difference from the one-dimensional models, which
are necessarily monostable (that is, they have a single attractor).

6. Conclusion

We introduced and developed a dynamic version of the North-South model
and studied its global dynamics. Our methodology was to replace the sta-
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tic capital endowments in the North-South model by a process of capital
accumulation and depretiation through time. After showing that this leads to
a well-defined dynamical system on the plane, we studied the evolution of
trade and the environment through the global dynamics of the system. We
showed that there is a crucial parameter which explains global dynamics:
this is the regime of property rights for environmental assets in developing
countries, i.e. in the region we call the South. We showed that the less well-
defined are these property rights, the more chaotic is the model. We studied
the particular characteristics of this chaotic system.

In a future development we hope to explore the global climate in relation
with international trade. In this context, the common property resource is
the planet’s atmosphere, which is used as an input to production, for exam-
ple, in the combustion of fossil fuels (oil). A by-product of this combustion
is CO,. In this case we would study not one but rwo separate but close-
ly interacting dynamical systems on the plane: international trade and the
biosphere (atmospheric chemistry, solar radiation, biological gas exchange,
ocean dynamics, water reservoirs, climate, etc.). Especially, we will explore
the greenhouse gas exchange between (1) the atmosphere, (2) human popu-
lations (which inhale oxygen and exhale carbon dioxide, both by breathing
and by industrial activities), and (3) biomass and bodies of water, which act
as CO,, reservoirs.

A simple biosphere model for beginning the study of this connection is
the daisy-world model of Watson and Lovelock. This model achieves climate
regulation with two cooperating species of “daisies”: black daisies (preferring
. cool but making warmth) and white daisies (preferring warm but making
cool). One can replace one species of daisies by human industry, and by
doing so extend the analysis of this paper to consider two coupled dynamical
systems: the dynamical North-South system and the modified daisy-world
system just described. The dynamical North-South model will be extended to
three dimensions: K, L and E. See [2] for this extension in a static framework.

Notes

1. Seealso [6].

2. See Equation (4.1.1).

3. More details are given in Section 1.3 below.

4, These are standard exogenous parameters, common to all general equilibrium models:

technologies, supplies of inputs, i.e. capital and environment, and the preferences in the
two regions.

5. The North-South model can be solved analytically by a single “resolving” equation [1].
This means that, knowing the exogenous parameters we can compute explicitely the
equilibrium values of the model.

6. GNP is the value of the outputs minus the value of the inputs. In other words: it is the
inner product of the equilibrium prices with the difference between outputs and inputs at
an equilibrium.
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