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Optimal solution of the nearest correlation matrix problem 
 by minimization of the maximum norm 

 
 

SK Mishra 
Dept. of Economics 

NEHU, Shillong, India 
 

1. Introduction 
 
The nearest correlation matrix problem is to find a valid correlation matrix (positive 
semidefinite ( , )R m m : 1 1 ; 1 ; , 1,2,..., ; 3ij ji ii ijr r r r R i j m m− ≤ = ≤ = ∈ ∀ = ≥ ) that is 

nearest to a given invalid (negative semidefinite) or pseudo-correlation matrix, Q  with 

1 1 ; 1 ; , 1,2,...,ij ji ii ijq q q q Q i j m− ≤ = ≤ = ∈ ∀ = . In the literature on this problem, 

‘nearest’ is invariably defined in the sense of the least Frobenius norm .
F F

Q R∆ = −  
However, it is not necessary to define ‘nearest’ in this conventional sense. The thrust of 
this paper is to define ‘nearest’ in the least maximum norm (LMN), 

m m
Q R∆ = − sense 

and to obtain R  from Q . The LMN provides the minimum range of deviations. 
 

2. Origins of  pseudo-correlation matrices 
 

Being the quadratic form, a valid product moment correlation matrix, R , is necessarily 
positive semidefinite (psd). All the successive principal minors of R  are non-negative or 
stated differently, all the eigenvalues of R  are non-negative. Each element ijr R∈  is the 

cosine of angle ijθ  between the vectors .i jx and x  An arbitrary real symmetric matrix, Q  
(defined above), is not a genuine product moment correlation matrix obtainable from some 
real X  although it may appear to be so. Such negative semidefinite (nsd) or pseudo-
correlation matrices may enter into empirical investigation due to several reasons. First, the 
coefficients of correlation may not be computed by the Karl Pearson’s (product moment) 
formula. They might have been obtained by Spearman’s formula (of rank correlation) or 
they could be the polychoric coefficients of correlation. Secondly, some of them might 
have been computed from  variables different in sample size (observations). Suppose 

11 12

21 22

Q Q
Q

Q Q
 

=  
 

 such that 11Q  is obtained from 1 1 1( , )X n m , 22Q  is obtained from 

2 2 2( , )X n m : 1 2n n> , and 12 21Q Q′=  is obtained from 1 2 1 2 2 2[ ( , ), ( , )]X n m X n m , while 

2
1

X
X X

 
=  ∅ 

, ∅  standing for ‘information not available’. Then Q  could fail to be 

positive semidefinite. Thirdly, when the off diagonal entries in Q  are large (say  ≥  0.9) in 
magnitude, but recorded with substantial error or approximation,  Q  may fail to be positive 
semidefinite. Fourthly, when the elements of near-singular matrices are rounded off (for 
reporting in research papers, etc.) without a due care taken to the possible effects of 
rounding off on the status of the matrices regarding the properties such as positive 
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semidefiniteness etc, the reported matrices may lose the properties that they originally have 
had. A telling example of this is the psd matrix obtained by Higham (see Higham, 2002, p. 
335 : the matrix was singular in the original). However, the reported matrix (rounded off at 
the fourth place after decimal) has its determinant = -2.441038E-05 (one of the eigenvalues 
is 1.343337484 05E− − , instead of zero). Surely, a negative value of the determinant is due 
to rounding off. Lastly, in simulation, especially when Q  is an initial approximation to R  
large in dimension, the analyst has to arbitrarily fill in the values of 

; , 1, 2,...,ijq i j i j m≠ ∀ = . The only restraint observed by the analyst is that 1iiq =  and 

1 1 , 1, 2,..., .ij jiq q i j m− ≤ = ≤ ∀ =  Such an arbitrary Q  may often fail to be psd. It may 
also be noted that if a pseudo-correlation matrix has a non-negative determinant, it does not 
imply that it is psd, since the negative eigenvalues even in number may make the 
determinant positive. 
 

3. A  brief  review of literature on the nearest correlation matrix problem 
 

Rebonato and Jäckel (1999) proposed two methods to solve the nearest correlation matrix  
problem. The first method is based on a hypersphere decomposition of R (a trial matrix at 
every iteration). In this scheme the angular coordinates, ,ij i jθ θ∈ ∀ , are chosen on a trial 

basis and from these coordinates a matrix B  is obtained such that 
1

1
cos sin

j

ij ij ikk
b θ θ

−

=
= Π for 

1,..., 1j m= −  and  
1

1
sin

j

ij ikk
b θ

−

=
= Π  for j m= . This is done for all 1,2,...,i m= . From B  we 

get R BB′= . Iteratively, the method searches for R such that 
F

Q R−  is minimized. 

Finally, after convergence, R̂ R= . The second method is based on a spectral 
decomposition  and undergoes the five steps: (i)(i)  (i) Calculate the eigenvalues jλ  ̂ * and the 

eigenvectors js  of Q ; (ii) set all negative jλ   ̂ *  to zero to obtain jl ; (iii) multiply the vectors 

js * by their associated “corrected” eigenvalues jl  and arrange as the columns of *B ; (iv) 

obtain B from *B  by normalizing the row vectors of *B  to unit length;  (v) obtain 
ˆ ,R BB′=  which is a psd matrix and an approximation to Q , the given nsd matrix. It 

appears that the second method is quite crude but simple. The nearness of R̂  to Q  will 
depend on the magnitude of the determinant of Q .  
 
 Higham (2002) proposed a method to obtain R̂  from Q  such that ˆ

F
Q R−  is the least. 

The method is very general and allows for weights to be assigned to different elements of 
the distance matrix as desired by the analyst according to the level of confidence put in to 
the accuracy or (rationally justified) most probable value of .ijq  In that case, the weighted 
norm of difference is minimized. However, for larger matrices, the method is time 
consuming due to the linear convergence of the algorithm used by Higham.  
 
Anjos et al. (2003) formulated the nearest correlation matrix problem as an optimization 
problem with a quadratic objective function and semidefinite programming constraints. 
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Using such a formulation they derived and tested a primal-dual interior-exterior-point 
algorithm designed especially for robustness and handling the case where Q is sparse. 
Instead of using the so-called normal equations to obtain search direction at each iteration, 
their algorithm eliminates the linear feasibility equations from the start, by maintaining 
exact primal and dual feasibility throughout and using a single bilinear equation to linearize 
for the search direction at each iteration. The search direction is found using an inexact 
Gauss-Newton method rather than a Newton method on a symmetrical system, and is 
computed using a preconditioned conjugate-gradient type method. The authors considered 
two types of preconditioner, an optimal diagonal preconditioner and a block diagonal 
preconditioner obtained from a partial Cholesky factorization. Once the current iterate is 
sufficiently close to the optimal solution, the algorithm applies a crossover technique that 
sets the barrier parameter to zero and does not maintain interiority of the iterates. This 
technique attributes robustness to the algorithm with asymptotic quadratic convergence and 
the ability to handle warm starts simply. Through the preliminary computational results, the 
authors demonstrated the robustness of the algorithm and showed that sparsity can be 
successfully exploited.   
 
In Grubisic and Pietersz (2004) geometric optimization algorithms are developed that 
efficiently find the nearest low-rank correlation matrix. The algorithms are shown to be 
globally convergent to a stationary point, with a quadratic local rate of convergence. The 
connection with the Lagrange multiplier method is established, along with an identification 
of whether a local minimum is a global minimum. The proposed methods have additional 
benefits, first that any weighted norm can be applied, and second that neighborhood search 
can straightforwardly be applied. The authors showed numerically that their methods 
outperform the existing methods in the literature. 
 
Pietersz and Groenen (2004) proposed a method based on majorization that finds a low-
rank correlation matrix nearest to a given (pseudo) correlation matrix. The method is 
globally convergent and computationally efficient. Additionally, it is straightforward to 
implement and can handle arbitrary weights on the entries of the correlation matrix. A 
simulation study by the authors suggests that majorization compares favourably with 
competing approaches in terms of the quality of the solution within a fixed computational 
time. 
  
Al-Subaihi (2004) proposed a modification of Kaiser-Dichman procedure (see Kaiser and 
Dichman, 1962) to generate normally distributed (correlated) variates from a given 
negative semidefinite Q , which, in the process, is approximated by a positive definite *R  
matrix. The resulting variates satisfy the *R  matrix. It appears that Al-Subaihi’s method 
does not guarantee that *R  is sufficiently close to Q .  
 
We take an example from Al-Subaihi (2004, p. 11). The values of 1 1,2,3, 4,5.iiq i= ∀ =  
The value of  12 21 13 31 0.5.q q q q= = = =  Other elements in the first row (as well as the first 
column) are all zero.  The values of the off-diagonal elements  0.84ij jiq q= =  for 

, 2,3, 4,5 ; .i j i j= ≠   
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Al-Subaihi generated the first matrix (call it *R , given in table 1) as an approximation to 
Q , while we have simply perturbed *R  to obtain **R . We find that the second matrix, **R , 
approximates Q  more accurately than the first matrix, *R , generated by Al-Subaihi. Note 
that neither of the two matrices ( *R  and **R ) is optimally close to the given Q  matrix.        

 
4. The Chebyshev or maximum norm of deviations as a measure of  proximity 

 
Instead of the minimum Frobenius norm, one may opt for the Least Maximum Norm 
(LMN) such that the 

,
ˆmax ij iji j

q r−  is minimum. The LMN gives the minimum range in 

which R̂  (around Q ) exists. This line of investigation may be useful since the LMN allows 
for the least substitutability among the off-diagonal elements of the distance matrix 

ˆ: ; , .ij ij ij ijq r i jδ δ∆ ∈ ∆ = − ∀  We accomplish this task here and for the sake of 

comparison present some results. As an exercise we first take a matrix from Higham’s 
(2002) paper. The results are presented in table 2. The 

, ,
ˆmax( ) maxij ij Fiji j i j

q rδ = −  produced 

by Higham’s estimated F̂R  is 0.23931 and 
, iji j

δ∑ is 1.27186. On the other hand, the  

, ,
ˆmax( ) maxij ij miji j i j

q rδ = −  produced by LMN  estimated m̂R  is 0.21922 and 
, iji j

δ∑ is 

1.31536. The determinants of the three matrices are : 1.0− , 9.64694658E-06 and 
1.28158791E-05  approximately. The eigenvalues of the three matrices are given in table 3.  
 
Then we take a matrix from Al-Subaihi’s (2004) paper. The values of 

1 1,2,3, 4,5.iiq i= ∀ =  The value of  12 21 13 31 0.5.q q q q= = = =  Other elements in the first 
row (as well as the first column) are all zero.  The values of the off-diagonal elements  

0.84ij jiq q= =  for , 2,3, 4,5 ; .i j i j= ≠  The results are presented in table 4. The first of 
the two matrices presented in table 4 is obtained by Al-Subaihi, while we obtain the second 
by minimizing the maximum norm  of ∆̂ . 
 
The Erhardt-Schmidt (or Frobenius) norm *

F
∆ of * * * * *: ; , ,ij ij ij ijq r i jδ δ∆ ∈ ∆ = − ∀  

where * *
ijr R∈ (Al-Subaihi’s generated positive se midefinite matrix) and ijq Q∈  (the 

negative semidefinite matrix from which *R  is generated) is 0.313057 against 0.096539, 
which is the  ˆ

F
∆  of ˆˆ : ijδ∆  ˆˆ ˆ; ,ij ij ijq r i jδ∈ ∆ = − ∀ , while ˆ

îjr R∈ , the psd matrix 

nearest to Q  in the LMN sense. The corresponding maximum norms  *

m
∆ and ˆ

m
∆  are 

0.564 and 0.11185 respectively.  
 
The *

, ,
max( ) maxij ij iji j i j

q rδ = −  produced by Al-Subaihi’s *R  is 0.1128 and 
, iji j

δ∑ is 0.9798. 

The 
, ,

ˆmax( ) maxij ij miji j i j
q rδ = −  produced by m̂R  is 0.02237 and 

, iji j
δ∑ is 0.430392. Thus, 
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m̂R  is an indubitably better approximation than *R .  This shows that the *R  matrix 
generated from Q  by Al-Subaihi is only sub-optimally close to Q . 
 
As an example, let us take a matrix, Q , from Rebonato and Jäckel (1999, p.9). It is a 
symmetric (negative definite) matrix with unit diagonal elements; 12 21 0.9q q= = ; 

13 31 0.7q q= = and 23 32 0.3q q= = . From this Q  we obtain three different positive definite 

matrices, the first ( ĤR ) by the hypersphere decomposition, the second ( ŜR ) by the spectral 

decomposition and the third ( m̂R ) by the LMN procedure, presented in table 6. The first 

matrix has 2ˆ( )ij Hijq r−∑∑ = 0.00972135 and the min(max( ˆij Hijq r− )) = 0.00542; the 

second matrix has 2ˆ( )ij Sijq r−∑∑ =0.009931042 and the min(max( ˆij Sijq r− ))=0.00598 

while the third matrix has the corresponding values 0.010371895 and 0.00484 respectively. 
 
Thus we have two alternative approaches to obtain the nearest psd matrices from the given 
nsd Q : the one, used conventionally, that minimizes ˆ

F
∆ and the other, proposed by us in 

this paper, that minimizes ˆ
m

∆ .  Use of either norm has its own justification. The LMN 

minimizes the range of deviation and hence, does not allow any element  
îj i j

r
≠

∈ R̂  to 

deviate too much from its corresponding  ijq . The min(Frobenius norm) may permit 

excessive deviation of a few elements if so required to bring other element of R̂  closer to 
their counterpart elements (of Q ). However, to disallow any element  

îj i j
r

≠
∈ R̂  to deviate 

too much from its corresponding  ijq  amounts to place a high level of confidence on the 

elements of Q . 
 

5. The proposed algorithm to obtain the LMN correlation matrix 
 

Our proposed LMN algorithm that generates the nearest positive semidefinite correlation 
matrix from a given (fed by the user) nsd  pseudo-correlation matrix, ,Q  runs as follows: 
1. Let 0Q  be the given invalid correlation matrix. Set 0.Q Q=  
2. Find all eigenvalues ( L , a diagonal matrix) and eigenvectors (V ) from .Q  Each column 

jv of V  (associated with the eigenvalue jjl = diagonal element of L ) has unit 
Euclidean length. 

3. Replace all negative values in L  by zero. 
4. Generate m uniformly distributed random numbers (0,1)U  and add them to the diagonal 

elements of L  matrix. Normalize L  such that its trace is equal to m . 
5. By random walk method of optimization find the best possible L  that characterizes trace 

= m , positive determinant and a positive definite R̂  = VLV ′  closest to 0.Q  

Nearness is defined in terms of the Chebyshev or maximum norm ˆ
m

∆ = 0
ˆ

m
Q R− . 
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6. Check if all ˆ
îir R∈  are approximately unity. It would depend on tolerance level chosen.  

If not, replace them by unity. Consider it as Q  and go to step 2,  else stop.  
 
Note that up to step 3, our algorithm is identical to that of Rebonato and Jäckel (1999). The 
difference lies in steps 4  through 6 that make adjustments in the eigenvalues to minimize 
the maximum norm ˆ

m
∆ .   

6. The LMN computer program 
 

We provide here the source codes of the computer program that implements the algorithm 
given above. The main program (LMN) checks if the Q  matrix fed by the user is not an 
nsd matrix. If Q  is not a psd matrix, it is best approximated by a positive definite matrix, 

R̂ . It is stored in a file named by the user.  LMN invokes two subroutine subprograms and 
a function subprogram. Some procedures in the computer program (especially, the one that 
computes eigenvalues and eigenvectors) have been adapted from Krishnamurthy and Sen 
(1976), pp. 242-247. The program may be compiled by any suitable FORTRAN compiler. 
We have compiled the program by Microsoft FORTRAN Compiler. 

 
7. Inputs to the Computer Program 

 
When this program is run, it asks for the following parameters (and inputs). Although 
sufficiently explained in the program queries, they are explained here. 
 
Before running the program, the Q  matrix should be stored in some file. This can be done 
by some text editor such as EDIT.COM (of MICROSOFT). The name of this file is, say 
inputfile. When the program runs, it asks for the value of m (order of the matrix) and the 
inputfile name (in which Q  is stored). The file name should be in single quotes ‘inputfile‘. 
Then it asks for the seed to generate random numbers: with this seed the uniformly 
distributed random numbers lying between (0, 1) = U(n,m) are generated. This number 
should lie between –32767 and 32767, zero excluded. This is a suitable number for most 
personal computers. 
 
The program runs and if Q  is not negative semidefinite, it terminates. If so, the inputfile  
and the outputfile of LMN program  are identical. If Q is negative semidefinite, the 
program obtains R̂  and  asks for the outputfile name to store it. The file name should be in 
single quotes ‘outputfile‘. 
 
LMN should be run repeatedly on its own output file to ensure that the resulting matrix is 
psd. This is required because the output file stores correlation matrix with rounded off 
elements.  Since the output matrix is almost always near-singular, rounding off may often 
make it negative definite. Note that an nsd pseudo correlation matrix, Q , is a problematic 
and pathological case. It has to be handled with care and patience. It may also be borne in 
mind that in numerical analysis a very small non-zero value and zero (exact) cannot be 
strictly discriminated and therefore, when an acute near-singularity is met with, the 
difference between  singular and non-singular (regular) matrices is blurred in practice. 
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Presently, in the codes given here, the maximum permissible m  is 10. This parameter can 
be increased. Accordingly, dimensions in the program may be changed before compilation. 
 

8. Limitations and possibilities of  improvement 
 

Although theoretically there are no snags in minimizing the maximum norm of deviation of 
R  from ,Q  our algorithm has clearly two weaknesses, (1) it fails if at any stage of iteration 

the intermediate R̂  turns out to be extremely near-singular, and, for some pathological 
cases of ,Q  LMN program may not converge; and (2) the random walk method is a very 
crude and slow method of optimization. It is easy to preclude extreme near-singularity of 
R̂ at any intermediate stage. But it would be a further research work to replace the random 
walk method of optimization by some more efficient method such as the Genetic 
Algorithm (see Holland, 1975;  Goldberg, 1989; Wright, 1991).  
 

9. Geometric programming and the min-max nearest correlation matrix 
 

The Geometric Programming (GP) algorithm developed by Grubisic and Pietersz (2004) 
also can solve the nearest correlation matrix problem by minimization of the maximum (or 
Chebyshev) norm. After reading this paper that appeared on SSRN (Mishra, 2004), Pietersz 
wrote “… the idea of your paper, of using a maximum error function for rank reduction of 
correlation matrices, is good, novel and testifies of original work. …Though you are the first to study 
precisely this min-max problem, other algorithms than your LMN algorithm are already available for 
solving it. For example, the geometric programming algorithm that I have developed with Igor 
Grubisic can already solve this problem. …” Pietersz (2004), slightly modifying the GM 
algorithm of Grubisic and Pietersz (2004), showed that while the optimal solutions 
obtained by the LMN and GP algorithms are identical for Higham’s matrix (see table 2, 3 rd 
panel) and Rebonato & Jäckel’s matrix (see table 6, 3 rd panel), the GM solution is 
substantially better than the LMN solution in case of Al-Subaihi’s matrix (see table 7). The 
minmax error, 

, ,
ˆmax( ) maxij ij miji j i j

q rδ = −  produced by GM algorithm is 0.0217 against 

0.02237 obtained by the LMN algorithm. 
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Table 1. Inoptimality of positive semidefinite matrix generated by Al-Subaihi’s method 

  Al-Subaihi’s generated *R matrix  A relatively better **R  matrix 
 

1x  
2x  3x  

4x  
5x   

1x  
2x  3x  

4x  
5x  

1x  1.0000 0.4964 0.5008 0.0011 0.0050 
 

1.0000 0.4964 0.5008 0.0007 0.0010 

2x  0.4964 1.0000 0.8819 0.7317 0.7363 
 

0.4964 1.0000 0.8819 0.7317 0.8400 

3x  0.5008 0.8819 1.0000 0.7272 0.7305 
 

0.5008 0.8819 1.0000 0.7272 0.8200 

4x  0.0011 0.7317 0.7272 1.0000 0.8432 
 

0.0007 0.7317 0.7272 1.0000 0.8400 

5x  0.0050 0.7363 0.7305 0.8432 1.0000 
 

0.0010 0.8400 0.8200 0.8400 1.0000 
  
 Table 2. Nearest correlation matrices obtained by Higham’s and LMN methods 

Higham’s original matrix   Higham’s  F̂R  matrix  Min(max norm)  m̂R matrix 
 

1x  
2x  3x   

1x  
2x  3x   

1x  
2x  3x  

1x  1.0000 1.0000 0.0000  1.00000 0.76069 0.15731  1.00000 0.78077 0.21922 

2x  1.0000 1.0000 1.0000  0.76069 1.00000 0.76069  0.78077 1.00000 0.78077 

3x  0.0000 1.0000 1.0000  0.15731 0.76069 1.00000  0.21922 0.78077 1.00000 

   
Table 3. Eigenvalues of Higham’s original matrix,  his estimated F̂R matrix m̂R matrix 

Eigenvalues 
1λ  2λ  3λ  

Higham’s original matrix  2.4142135623731 1.0000 -4.1421356237309E-01 

Higham’s estimated R̂ matrix 2.1573046934710 0.84269 5.3065290382026E-06 

Min(max norm)  R̂ matrix 2.2192126035928 0.78078 7.3964071641482E-06 
Note: Higham’s estimated matrix (see Higham, 2002,  p. 335)  has turned negative definite. We  perturbed it 
slightly on the fifth place after decimal to make it a positive definite matrix. 
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Table 4. A comparative view of nearest correlation matrices 
by Al-Subaihi’s and min(max norm) methods 

Al-Subaihi’s generated *R matrix  Ours min(max norm)  m̂R matrix 
 

1x  
2x  3x  

4x  
5x   

1x  
2x  3x  

4x  
5x  

1x  1.0000 0.4964 0.5008 0.0011 0.0050 
 

1.000000 0.477630 0.477630 0.018118 0.018118 

2x  0.4964 1.0000 0.8819 0.7317 0.7363 
 

0.477630 1.000000 0.862370 0.817630 0.817630 

3x  0.5008 0.8819 1.0000 0.7272 0.7305 
 

0.477630 0.862370 1.000000 0.817630 0.817630 

4x  0.0011 0.7317 0.7272 1.0000 0.8432 
 

0.018118 0.817630 0.817630 1.000000 0.862370 

5x  0.0050 0.7363 0.7305 0.8432 1.0000 
 

0.018118 0.817630 0.817630 0.862370 1.000000 
 

Table 5. Difference matrices obtained by Al-Subaihi’s and our proposed methods 
∆  matrix from Al-Subaihi’s *R matrix  ∆  matrix from min(max norm)  m̂R matrix 

0 0.0036 0.0008 0.0011 0.0050  0 0.022370 0.022370 0.018118 0.018118 
0.0036 0 0.0419 0.1083 0.1037  0.022370 0 0.022370 0.022370 0.022370 
0.0008 0.0419 0 0.1128 0.1095  0.022370 0.022370 0 0.022370 0.022370 
0.0011 0.1083 0.1128 0 0.0032  0.018118 0.022370 0.022370 0 0.022370 
0.0050 0.1037 0.1095 0.0032 0  0.018118 0.022370 0.022370 0.022370 0 

 
Table 6. Nearest correlation matrices obtained from Q  of  Rebonato and Jäckel , 1999,  p. 9 

The ĤR  matrix  The ŜR  martix  The m̂R  matrix 
1.00000 0.89458 0.69662  1.00000 0.89402 0.69632  1.00000 0.89513 0.69746 
0.89458 1.00000 0.30254  0.89402 1.00000 0.30010  0.89513 1.00000 0.30486 
0.69662 0.30254 1.00000  0.69632 0.30010 1.00000  0.69746 0.30486 1.00000 
 

Table 7. A comparative view of nearest correlation matrices (obtained from 
 Al-Subaihi’s matrix)  by LMN and Geometric Programming algorithms. 

m̂R  obtained by the LMN algorithm  
m̂R  obtained by the GP algorithm 

 
1x  

2x  3x  
4x  

5x   
1x  

2x  3x  
4x  

5x  

1x  
1.000000 0.477630 0.477630 0.018118 0.018118 

 1.0000 
 

0.4784 
   

0.4786 
   

0.0215 
   

0.0217 
 

2x  
0.477630 1.000000 0.862370 0.817630 0.817630 

 0.4784    
 

1.0000 
 

0.8616 
   

0.8183 
   

0.8185 
 

3x  
0.477630 0.862370 1.000000 0.817630 0.817630 

 0.4786  
   

0.8616 
   

1.0000 
 

0.8184 
   

0.8183 
 

4x  
0.018118 0.817630 0.817630 1.000000 0.862370 

 0.0215    
 

0.8183 
   

0.8184 
   

1.0000 
 

0.8617 
 

5x  
0.018118 0.817630 0.817630 0.862370 1.000000 

 0.0217 
 

0.8185 
 

0.8183 
 

0.8617 
 

1.0000 
 

The  GP  solution provided by Pietersz in his letter to the author, dated Aug. 26 & 27, 2004. 
   
 

Updated and uploaded on http://www.skmishra.owns1.com on August 28, 2004. 
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C     ---------------------PROGRAM LMN -------------------- 
C     RANDOM WALK METHOD TO FIND Min(max norm) Nearest Positive  
C     definite Marix from a given Negative Semidefinite Matrix 
C     --------------------------------------------------------------       
      INTEGER *2 IU,IV 
      DOUBLE PRECISION A(10),R(10),AR(10),XO(10,10),AA(10) 
      DOUBLE PRECISION V(10,10),W(10,10),P(10),D,RH(10,10) 
      DOUBLE PRECISION SUML,LAMBDA,EPS,F,VO,VR,VOO,RAND,CN, RNORM 
      DIMENSION MM(10) 
      CHARACTER *11 OFIL,IFIL 
C     PARAMETERS ----- MAY BE CHANGED ---------------------       
C     EPS=ITERATIVE ACCURACY: EPSL=MAIN DIAGONAL ACCURACY       
C     NITR=NO. OF TRIALS FOR RANDOM WALK SEARCH   
C     ITMAX=MAX NO. OF ITERATION FOR CONVERGENCE 
      EPS= 0.00001 
      EPSL=0.00001 
      NITR=3 
      ITMAX=100  
C     Increase in NITR slows down program but gives better results 
      WRITE(*,*)'FEED M and INPUT FILE NAME' 
      WRITE(*,*)'(M is the order of the input square matrix' 
      WRITE(*,*)'INPUT FILE NAME in single quotes)' 
      READ(*,*) M,IFIL 
      OPEN(7,FILE=IFIL) 
      DO 1 I=1,M 
    1 READ(7,*)(XO(I,J),J=1,M) 
      CLOSE(7) 
      WRITE(*,*)'FEED SEED TO GENERATE RANDOM NUMBERS' 
      WRITE(*,*)'(SEED lies between -32767 AND 32767, avoid zero)'  
      READ(*,*) IU 
      WRITE(*,*)'OUTPUT FILE ? ' 
      READ(*,*) OFIL  
      VOO=10.0**10  
      LTRY=0 
      ICO=1 
      CALL CONS(XO,P,M,ICO)  
      WRITE(*,*)'EIGEN VALUES OF THE ORIGINAL MATRIX XO ARE :' 
      WRITE(*,*)(P(I),I=1,M) 
      PAUSE 'STRIKE ENTER TO PROCEED' 
      DO 70 I=1,M 
      IF(P(I).LT.0.0) GOTO 90 
   70 CONTINUE 
      WRITE(*,*)'ALL EIGEN VALUES ARE NON-NEGATIVE' 
      STOP 
C     ======================================================== 
   90 WRITE(*,*)'SOME EIGEN VALUES ARE NEGATIVE'    
      WRITE(*,*)'THE R MATRIX AT THIS STAGE IS : ' 
      OPEN(8,FILE=OFIL, STATUS='NEW') 
      DO 789 I=1,M 
C      P(I)=1.0 
  789 WRITE(8,89)(RH(I,J),J=1,M) 
      CLOSE(8) 
      DO 788 I=1,M 
  788 WRITE(*,89)(RH(I,J),J=1,M) 
      ITEST=0 
C     PAUSE 'STRIKE ENTER TO PROCEED' 
      F=0.0 



 11 

      DO 71 I=1,M 
      IF(P(I).LE.0.0) P(I)=RAND(IU,IV) 
      F=F+P(I) 
   71 CONTINUE 
      DO 72 I=1,M  
   72 P(I)=DABS(P(I)/F*M) 
      WRITE(*,*)'EIGEN VALUES ARE FORCED TO BE ALL POSITIVE' 
      SUML=0.0 
      DO 78 I=1,M 
   78 SUML=SUML+P(I) 
      WRITE(*,*)(P(I),I=1,M),' SUM = ',SUML 
      DO 999 IIT=1,NITR 
      LAMBDA=20.0 
C     Initialisation of decision variables 
      DO 7 I=1,M 
    7 A(I)=DABS(P(I)) 
      ICO=2 
      CALL CONS(RH,P,M,ICO)  
C     --------------- FUNCTION EVALUATION --------------------- 
      F=0.0 
      DO 11 I=1,M 
      DO 11 J=1,M 
      D=DABS(XO(I,J)-RH(I,J)) 
      IF(D.GT.F) F=D 
   11 CONTINUE 
      VO=F 
C     --------------------------------------------------------- 
      IT=0 
  200 IT=IT+1 
      IF(IT.GT.1000) THEN 
      WRITE(*,*)'NO CONVERGENCE IN 1000 ITERATIONS' 
      GOTO 1000 
      ENDIF 
      LAMBDA=LAMBDA/2.0 
      IMP=0 
      DO 100 II=1,ITMAX 
C     GENERATE M UNIFORMLY DISTRIBUTED RANDOM NUMBERS (-1,1) 
  150 DO 2 I=1,M 
    2 R(I)=2.0*(RAND(IU,IV)-0.5) 
C     NORMALISE THE RANDOM NUMBERS       
      RNORM=0.0 
      DO 3 I=1,M 
    3 RNORM=RNORM+R(I)**2 
      RNORM=DSQRT(RNORM) 
      IF(RNORM.GT.1.0) GOTO 150 
      DO 4 I=1,M 
    4 R(I)=R(I)/RNORM 
C     ADD RANDOM NUMBERS TIMES LAMBDA TO A VECTOR 
      DO 5 I=1,M 
      AR(I)=A(I)+LAMBDA*R(I) 
      AR(I)=DABS(AR(I)) 
    5 CONTINUE 
C     --------------- FUNCTION EVALUATION --------------------- 
      CN=0.0 
      DO 73 I=1,M  
      CN=CN+AR(I) 
   73 CONTINUE 
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      SUML=0.0 
      DO 74 I=1,M 
      AR(I)=AR(I)/CN*M 
      SUML=SUML+AR(I) 
   74 CONTINUE 
C     WRITE(*,*) 'SUML = ',SUML 
      ICO=2 
      CALL CONS(RH,AR,M,ICO)  
      F=0.0 
      DO 13 I=1,M 
      DO 13 J=1,M 
      D=DABS(XO(I,J)-RH(I,J)) 
      IF(D.GT.F) F=D 
   13 CONTINUE 
      VR=F 
C     ---------------------------------------------------------  
      IF(VR.LT.VO) THEN 
      VO=VR 
      DO 6 I=1,M 
      A(I)=AR(I) 
    6 CONTINUE 
      IMP=1 
      ENDIF 
  100 CONTINUE 
      IF((IMP.EQ.0).OR.(LAMBDA.GT.EPS)) GOTO 200 
 1000 CONTINUE 
      IF(VOO.GT.VO) THEN 
      VOO=VO 
      DO 998 I=1,M 
      AA(I)=A(I) 
  998 CONTINUE 
      ENDIF 
  999 CONTINUE 
      DO 997 I=1,M 
      A(I)=AA(I) 
  997 CONTINUE 
      VO=VOO 
      SUML=0.0 
      DO 77 I=1,M 
      SUML=SUML+A(I) 
   77 CONTINUE 
      WRITE(*,*)'SMALLEST MAX DEVIATE = ',VO 
      WRITE(*,*)' ' 
      WRITE(*,*)' TRIAL NUMBER = ',LTRY  
      WRITE(*,*)' ' 
      DO 152 I=1,M 
      IF(DABS(RH(I,I)-1.00).GT.EPSL) THEN 
      RH(I,I)=1.0 
      ITEST=1 
      ENDIF 
  152 CONTINUE 
      IF(ITEST.EQ.1) THEN 
      CALL CONS(RH,AR,M,1)   
      LTRY=LTRY+1 
      VOO=10.0**10  
      GOTO 90 
      ENDIF 
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      Write(*,*)' ------------ Convergence achieved ---------' 
      write(*,*)' ' 
      WRITE(*,*)' NAME THE OUTPUT FILE TO STORE THE RESULT' 
      WRITE(*,*)' (OUTPUT FILE NAME IN SINGLE QUOTES)' 
      WRITE(*,*)'ESTIMATED MATRIX' 
      OPEN(8,FILE=OFIL, STATUS='NEW')    
      DO 75 I=1,M 
C      RH(I,I)=1.00 
      WRITE(*,89)(RH(I,J),J=1,M)  
      WRITE(8,89)(RH(I,J),J=1,M) 
   75 CONTINUE 
      CLOSE(8) 
   89 FORMAT(1X,6D13.5) 
      WRITE(*,*)'RESULTING MATRIX STORED IN FILE = ',OFIL  
      WRITE(*,*)'RUN THIS PROGRAM ONCE MORE ON ITS OWN OUTPUT FILE' 
      WRITE(*,*)'UNTIL IT SAYS ALL EIGENVALUES ARE NON-NEGATIVE' 
      END 
C     ---------------------------------------------------       
      SUBROUTINE CONS(A,P,M,ICO) 
C     Constructs Matrix from its eigenvectors and values       
      DOUBLE PRECISION A(10,10),B(10,10),V(10,10),W(10,10),P(10),F   
      DIMENSION MM(10) 
      IF(ICO.GT.1) GOTO 100 
      NN=1 
 1000 NADJUST=0 
      DO 10 I=1,M 
      DO 10 J=1,M 
      B(I,J)=A(I,J) 
   10 CONTINUE 
      CALL EIGEN(A,M,NN,V,W,P,MM)  
C     ==================================================== 
C     NORMALIZATION OF EIGEN VECTORS        
      DO 50 I=1,M 
      P(I)=0.0 
      P(I)=A(I,I) 
      F=0.0 
      DO 51 J=1,M 
   51 F=F+V(J,I)*V(J,I) 
      F=DSQRT(F) 
      DO 52 J=1,M 
      V(J,I)=V(J,I)/F 
   52 CONTINUE 
   50 CONTINUE 
      DO 11 I=1,M 
      DO 11 J=1,M 
      A(I,J)=B(I,J) 
   11 CONTINUE 
      RETURN 
C     ===================================================== 
  100 DO 34 J=1,M 
      DO 341 JJ=1,M 
  341 W(J,JJ)=0.0 
      W(J,J)=P(J) 
   34 CONTINUE 
C     WRITE(*,*)'NOW W IS THE DIAGONAL L MATRIX'        
      DO 36 J=1,M 
      F=0.0 
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      DO 37 I=1,M 
   37 F=F+V(I,J)*V(I,J) 
      DO 36 I=1,M 
      IF(P(J).EQ.0.0) THEN  
      V(I,J)=0.0 
      ELSE 
      V(I,J)=V(I,J)/DSQRT(F/P(J)) 
      ENDIF 
   36 CONTINUE 
      DO 35 J=1,M 
      DO 35 JJ=1,M 
      A(J,JJ)=0.0 
      DO 35 I=1,M 
      A(J,JJ)=A(J,JJ)+V(J,I)*V(JJ,I) 
   35 CONTINUE    
C     WRITE(*,*)'NOW A IS V*L*VT MATRIX'  
      RETURN 
      END 
C     ----------------------------------------------------       
      SUBROUTINE EIGEN(A,N,NN,V,W,P,MM) 
C     Computes eigenvalues and vectors of a real symmetrix matrix       
      DOUBLE PRECISION A(10,10),V(10,10),W(10,10),P(10)   
      DOUBLE PRECISION PMAX,EPLN,TAN,SIN,COS,AI,TT,TA,TB 
      DIMENSION MM(10) 
C     ------------ INITIALISATION -------------------------       
      DO 50 I=1,N 
      DO 51 J=1,N 
      V(I,J)=0.0 
   51 W(I,J)=0.0 
      P(I)=0.0 
   50 CONTINUE 
      PMAX=0 
      EPLN=0 
      TAN=0 
      SIN=0 
      COS=0 
      AI=0 
      TT=0 
      EPLN=1.0D-310 
C     ------------------------------------------------------ 
      IF(NN.NE.0) THEN 
        DO 3 I=1,N 
        DO 3 J=1,N  
        V(I,J)=0.0 
        IF(I.EQ.J) V(I,J)=1.0 
    3   CONTINUE 
      ENDIF 
    2 NR=0 
    5 MI=N-1 
      DO 6 I=1,MI 
      P(I)=0.0 
      MJ=I+1 
      DO 6 J=MJ,N 
      IF(P(I).GT.DABS(A(I,J))) GO TO 6  
        P(I)=DABS(A(I,J)) 
        MM(I)=J 
    6 CONTINUE 
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    7 DO 8 I=1,MI  
      IF(I.LE.1) GOTO 10 
      IF(PMAX.GT.P(I)) GOTO 8 
   10 PMAX=P(I) 
      IP=I 
      JP=MM(I) 
    8 CONTINUE 
C      EPLN=DABS(PMAX)*1.0D-09 
      IF (PMAX.LE.EPLN) THEN  
C      WRITE(*,*)'PMAX EPLN',PMAX, EPLN 
C      PAUSE'CONVERGENCE CRITERION IS MET' 
      GO TO 12 
      ENDIF 
      NR=NR+1 
C     WRITE(*,*)'PMAX, EPLN',PMAX,EPLN 
   13 TA=2.0*A(IP,JP) 
      TB=(DABS(A(IP,IP)-A(JP,JP))+ 
     1DSQRT((A(IP,IP)-A(JP,JP))**2+4.0*A(IP,JP)**2)) 
C       WRITE(*,*) 'TA TB = ',TA,TB 
         TAN=TA/TB   
C       WRITE(*,*) 'TAN = ',TAN 
      IF(A(IP,IP).LT.A(JP,JP)) TAN=-TAN 
   14 COS=1.0/DSQRT(1.0+TAN**2) 
      SIN=TAN*COS 
      AI=A(IP,IP) 
      A(IP,IP)=(COS**2)*(AI+TAN*(2.0*A(IP,JP)+TAN*A(JP,JP))) 
      A(JP,JP)=(COS**2)*(A(JP,JP)-TAN*(2.0*A(IP,JP)-TAN*AI)) 
      A(IP,JP)=0.0 
      IF(A(IP,IP).GE.A(JP,JP)) GO TO 15 
      TT=A(IP,IP) 
      A(IP,IP)=A(JP,JP) 
      A(JP,JP)=TT 
      IF(SIN.GE.0) GO TO 16 
      TT=COS 
      GO TO 17 
   16 TT=-COS 
   17 COS=DABS(SIN) 
      SIN=TT 
   15 DO 18 I=1,MI 
      IF(I-IP) 19, 18, 20 
   20 IF(I.EQ.JP)GO TO 18 
   19 IF(MM(I).EQ.IP) GO TO 21 
      IF(MM(I).NE.JP) GO TO 18 
   21 K=MM(I) 
      TT=A(I,K) 
      A(I,K)=0.0 
      MJ=I+1 
      P(I)=0.0 
      DO 22 J=MJ,N 
      IF(P(I).GT.DABS(A(I,J))) GO TO 22 
      P(I)=DABS(A(I,J)) 
      MM(I)=J 
   22 CONTINUE 
      A(I,K)=TT 
   18 CONTINUE 
      P(IP)=0.0 
      P(JP)=0.0 
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      DO 23 I=1,N 
      IF(I-IP) 24, 23, 25 
   24 TT=A(I,IP) 
      A(I,IP)=COS*TT+SIN*A(I,JP) 
      IF(P(I).GE.DABS(A(I,IP))) GO TO 26 
      P(I)=DABS(A(I,IP)) 
      MM(I)=IP 
   26 A(I,JP)=-SIN*TT+COS*A(I,JP) 
      IF(P(I).GE.DABS(A(I,JP))) GO TO 23 
   30 P(I)=DABS(A(I,JP))   
      MM(I)=JP 
      GO TO 23 
   25 IF(I.LT.JP) GO TO 27 
      IF(I.GT.JP) GO TO 28 
      IF(I.EQ.JP) GO TO 23 
   27 TT=A(IP,I) 
      A(IP,I)=COS*TT+SIN*A(I,JP) 
      IF(P(IP).GE.DABS(A(IP,I))) GO TO 29 
      P(IP)=DABS(A(IP,I)) 
      MM(IP)=I 
   29 A(I,JP)=-TT*SIN+COS*A(I,JP) 
      IF(P(I).GE.DABS(A(I,JP))) GO TO 23 
      GO TO 30 
   28 TT=A(IP,I) 
      A(IP,I)=TT*COS+SIN*A(JP,I) 
      IF(P(IP).GE.DABS(A(IP,I))) GO TO 31 
      P(IP)=DABS(A(IP,I)) 
      MM(IP)=I 
   31 A(JP,I)=-TT*SIN+COS*A(JP,I) 
      IF(P(JP).GE.DABS(A(JP,I))) GO TO 23 
      P(JP)=DABS(A(JP,I)) 
      MM(JP)=I 
   23 CONTINUE 
      IF(NN.EQ.0) GOTO 7  
      DO 32 I=1,N 
      TT=V(I,IP) 
      V(I,IP)=TT*COS+SIN*V(I,JP) 
      V(I,JP)=-TT*SIN+COS*V(I,JP) 
   32 CONTINUE 
      GO TO 7 
   12 RETURN    
      END 
C     ---------------------------------------------------------------- 
      FUNCTION RAND(IU,IV)  
C     Generates Rectangular (0,1) Random Numbers 
      DOUBLE PRECISION RAND 
      INTEGER *2 IU,IV 
      IV=IU*259 
      IF(IV.GE.0) GOTO 2 
      IV=IV+32767+1 
   2  RAND=IV 
      IU=IV 
      RAND=RAND*0.3051851E-04 
      RETURN 
      END     

 


