
MPRA
Munich Personal RePEc Archive

Optimal solution of the nearest
correlation matrix problem by
minimization of the maximum norm

Mishra, SK

North-Eastern Hill University, Shillong (India)

06. August 2004

Online at http://mpra.ub.uni-muenchen.de/1783/

MPRA Paper No. 1783, posted 07. November 2007 / 01:59

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Papers in Economics

https://core.ac.uk/display/7304467?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://mpra.ub.uni-muenchen.de/
http://mpra.ub.uni-muenchen.de/1783/

Optimal solution of the nearest correlation matrix problem
 by minimization of the maximum norm

SK Mishra
Dept. of Economics

NEHU, Shillong, India

1. Introduction

The nearest correlation matrix problem is to find a valid correlation matrix (positive
semidefinite (,)R m m : 1 1 ; 1 ; , 1,2,..., ; 3ij ji ii ijr r r r R i j m m− ≤ = ≤ = ∈ ∀ = ≥) that is

nearest to a given invalid (negative semidefinite) or pseudo-correlation matrix, Q with

1 1 ; 1 ; , 1,2,...,ij ji ii ijq q q q Q i j m− ≤ = ≤ = ∈ ∀ = . In the literature on this problem,

‘nearest’ is invariably defined in the sense of the least Frobenius norm .
F F

Q R∆ = −
However, it is not necessary to define ‘nearest’ in this conventional sense. The thrust of
this paper is to define ‘nearest’ in the least maximum norm (LMN),

m m
Q R∆ = − sense

and to obtain R from Q . The LMN provides the minimum range of deviations.

2. Origins of pseudo-correlation matrices

Being the quadratic form, a valid product moment correlation matrix, R , is necessarily
positive semidefinite (psd). All the successive principal minors of R are non-negative or
stated differently, all the eigenvalues of R are non-negative. Each element ijr R∈ is the

cosine of angle ijθ between the vectors .i jx and x An arbitrary real symmetric matrix, Q
(defined above), is not a genuine product moment correlation matrix obtainable from some
real X although it may appear to be so. Such negative semidefinite (nsd) or pseudo-
correlation matrices may enter into empirical investigation due to several reasons. First, the
coefficients of correlation may not be computed by the Karl Pearson’s (product moment)
formula. They might have been obtained by Spearman’s formula (of rank correlation) or
they could be the polychoric coefficients of correlation. Secondly, some of them might
have been computed from variables different in sample size (observations). Suppose

11 12

21 22

Q Q
Q

Q Q
 

=  
 

 such that 11Q is obtained from 1 1 1(,)X n m , 22Q is obtained from

2 2 2(,)X n m : 1 2n n> , and 12 21Q Q′= is obtained from 1 2 1 2 2 2[(,), (,)]X n m X n m , while

2
1

X
X X

 
=  ∅ 

, ∅ standing for ‘information not available’. Then Q could fail to be

positive semidefinite. Thirdly, when the off diagonal entries in Q are large (say ≥ 0.9) in
magnitude, but recorded with substantial error or approximation, Q may fail to be positive
semidefinite. Fourthly, when the elements of near-singular matrices are rounded off (for
reporting in research papers, etc.) without a due care taken to the possible effects of
rounding off on the status of the matrices regarding the properties such as positive

 2

semidefiniteness etc, the reported matrices may lose the properties that they originally have
had. A telling example of this is the psd matrix obtained by Higham (see Higham, 2002, p.
335 : the matrix was singular in the original). However, the reported matrix (rounded off at
the fourth place after decimal) has its determinant = -2.441038E-05 (one of the eigenvalues
is 1.343337484 05E− − , instead of zero). Surely, a negative value of the determinant is due
to rounding off. Lastly, in simulation, especially when Q is an initial approximation to R
large in dimension, the analyst has to arbitrarily fill in the values of

; , 1, 2,...,ijq i j i j m≠ ∀ = . The only restraint observed by the analyst is that 1iiq = and

1 1 , 1, 2,..., .ij jiq q i j m− ≤ = ≤ ∀ = Such an arbitrary Q may often fail to be psd. It may
also be noted that if a pseudo-correlation matrix has a non-negative determinant, it does not
imply that it is psd, since the negative eigenvalues even in number may make the
determinant positive.

3. A brief review of literature on the nearest correlation matrix problem

Rebonato and Jäckel (1999) proposed two methods to solve the nearest correlation matrix
problem. The first method is based on a hypersphere decomposition of R (a trial matrix at
every iteration). In this scheme the angular coordinates, ,ij i jθ θ∈ ∀ , are chosen on a trial

basis and from these coordinates a matrix B is obtained such that
1

1
cos sin

j

ij ij ikk
b θ θ

−

=
= Π for

1,..., 1j m= − and
1

1
sin

j

ij ikk
b θ

−

=
= Π for j m= . This is done for all 1,2,...,i m= . From B we

get R BB′= . Iteratively, the method searches for R such that
F

Q R− is minimized.

Finally, after convergence, R̂ R= . The second method is based on a spectral
decomposition and undergoes the five steps: (i)(i) (i) Calculate the eigenvalues jλ ̂ * and the

eigenvectors js of Q ; (ii) set all negative jλ ̂ * to zero to obtain jl ; (iii) multiply the vectors

js * by their associated “corrected” eigenvalues jl and arrange as the columns of *B ; (iv)

obtain B from *B by normalizing the row vectors of *B to unit length; (v) obtain
ˆ ,R BB′= which is a psd matrix and an approximation to Q , the given nsd matrix. It

appears that the second method is quite crude but simple. The nearness of R̂ to Q will
depend on the magnitude of the determinant of Q .

 Higham (2002) proposed a method to obtain R̂ from Q such that ˆ

F
Q R− is the least.

The method is very general and allows for weights to be assigned to different elements of
the distance matrix as desired by the analyst according to the level of confidence put in to
the accuracy or (rationally justified) most probable value of .ijq In that case, the weighted
norm of difference is minimized. However, for larger matrices, the method is time
consuming due to the linear convergence of the algorithm used by Higham.

Anjos et al. (2003) formulated the nearest correlation matrix problem as an optimization
problem with a quadratic objective function and semidefinite programming constraints.

 3

Using such a formulation they derived and tested a primal-dual interior-exterior-point
algorithm designed especially for robustness and handling the case where Q is sparse.
Instead of using the so-called normal equations to obtain search direction at each iteration,
their algorithm eliminates the linear feasibility equations from the start, by maintaining
exact primal and dual feasibility throughout and using a single bilinear equation to linearize
for the search direction at each iteration. The search direction is found using an inexact
Gauss-Newton method rather than a Newton method on a symmetrical system, and is
computed using a preconditioned conjugate-gradient type method. The authors considered
two types of preconditioner, an optimal diagonal preconditioner and a block diagonal
preconditioner obtained from a partial Cholesky factorization. Once the current iterate is
sufficiently close to the optimal solution, the algorithm applies a crossover technique that
sets the barrier parameter to zero and does not maintain interiority of the iterates. This
technique attributes robustness to the algorithm with asymptotic quadratic convergence and
the ability to handle warm starts simply. Through the preliminary computational results, the
authors demonstrated the robustness of the algorithm and showed that sparsity can be
successfully exploited.

In Grubisic and Pietersz (2004) geometric optimization algorithms are developed that
efficiently find the nearest low-rank correlation matrix. The algorithms are shown to be
globally convergent to a stationary point, with a quadratic local rate of convergence. The
connection with the Lagrange multiplier method is established, along with an identification
of whether a local minimum is a global minimum. The proposed methods have additional
benefits, first that any weighted norm can be applied, and second that neighborhood search
can straightforwardly be applied. The authors showed numerically that their methods
outperform the existing methods in the literature.

Pietersz and Groenen (2004) proposed a method based on majorization that finds a low-
rank correlation matrix nearest to a given (pseudo) correlation matrix. The method is
globally convergent and computationally efficient. Additionally, it is straightforward to
implement and can handle arbitrary weights on the entries of the correlation matrix. A
simulation study by the authors suggests that majorization compares favourably with
competing approaches in terms of the quality of the solution within a fixed computational
time.

Al-Subaihi (2004) proposed a modification of Kaiser-Dichman procedure (see Kaiser and
Dichman, 1962) to generate normally distributed (correlated) variates from a given
negative semidefinite Q , which, in the process, is approximated by a positive definite *R
matrix. The resulting variates satisfy the *R matrix. It appears that Al-Subaihi’s method
does not guarantee that *R is sufficiently close to Q .

We take an example from Al-Subaihi (2004, p. 11). The values of 1 1,2,3, 4,5.iiq i= ∀ =
The value of 12 21 13 31 0.5.q q q q= = = = Other elements in the first row (as well as the first
column) are all zero. The values of the off-diagonal elements 0.84ij jiq q= = for

, 2,3, 4,5 ; .i j i j= ≠

 4

Al-Subaihi generated the first matrix (call it *R , given in table 1) as an approximation to
Q , while we have simply perturbed *R to obtain **R . We find that the second matrix, **R ,
approximates Q more accurately than the first matrix, *R , generated by Al-Subaihi. Note
that neither of the two matrices (*R and **R) is optimally close to the given Q matrix.

4. The Chebyshev or maximum norm of deviations as a measure of proximity

Instead of the minimum Frobenius norm, one may opt for the Least Maximum Norm
(LMN) such that the

,
ˆmax ij iji j

q r− is minimum. The LMN gives the minimum range in

which R̂ (around Q) exists. This line of investigation may be useful since the LMN allows
for the least substitutability among the off-diagonal elements of the distance matrix

ˆ: ; , .ij ij ij ijq r i jδ δ∆ ∈ ∆ = − ∀ We accomplish this task here and for the sake of

comparison present some results. As an exercise we first take a matrix from Higham’s
(2002) paper. The results are presented in table 2. The

, ,
ˆmax() maxij ij Fiji j i j

q rδ = − produced

by Higham’s estimated F̂R is 0.23931 and
, iji j

δ∑ is 1.27186. On the other hand, the

, ,
ˆmax() maxij ij miji j i j

q rδ = − produced by LMN estimated m̂R is 0.21922 and
, iji j

δ∑ is

1.31536. The determinants of the three matrices are : 1.0− , 9.64694658E-06 and
1.28158791E-05 approximately. The eigenvalues of the three matrices are given in table 3.

Then we take a matrix from Al-Subaihi’s (2004) paper. The values of

1 1,2,3, 4,5.iiq i= ∀ = The value of 12 21 13 31 0.5.q q q q= = = = Other elements in the first
row (as well as the first column) are all zero. The values of the off-diagonal elements

0.84ij jiq q= = for , 2,3, 4,5 ; .i j i j= ≠ The results are presented in table 4. The first of
the two matrices presented in table 4 is obtained by Al-Subaihi, while we obtain the second
by minimizing the maximum norm of ∆̂ .

The Erhardt-Schmidt (or Frobenius) norm *

F
∆ of * * * * *: ; , ,ij ij ij ijq r i jδ δ∆ ∈ ∆ = − ∀

where * *
ijr R∈ (Al-Subaihi’s generated positive se midefinite matrix) and ijq Q∈ (the

negative semidefinite matrix from which *R is generated) is 0.313057 against 0.096539,
which is the ˆ

F
∆ of ˆˆ : ijδ∆ ˆˆ ˆ; ,ij ij ijq r i jδ∈ ∆ = − ∀ , while ˆ

îjr R∈ , the psd matrix

nearest to Q in the LMN sense. The corresponding maximum norms *

m
∆ and ˆ

m
∆ are

0.564 and 0.11185 respectively.

The *

, ,
max() maxij ij iji j i j

q rδ = − produced by Al-Subaihi’s *R is 0.1128 and
, iji j

δ∑ is 0.9798.

The
, ,

ˆmax() maxij ij miji j i j
q rδ = − produced by m̂R is 0.02237 and

, iji j
δ∑ is 0.430392. Thus,

 5

m̂R is an indubitably better approximation than *R . This shows that the *R matrix
generated from Q by Al-Subaihi is only sub-optimally close to Q .

As an example, let us take a matrix, Q , from Rebonato and Jäckel (1999, p.9). It is a
symmetric (negative definite) matrix with unit diagonal elements; 12 21 0.9q q= = ;

13 31 0.7q q= = and 23 32 0.3q q= = . From this Q we obtain three different positive definite

matrices, the first (ĤR) by the hypersphere decomposition, the second (ŜR) by the spectral

decomposition and the third (m̂R) by the LMN procedure, presented in table 6. The first

matrix has 2ˆ()ij Hijq r−∑∑ = 0.00972135 and the min(max(ˆij Hijq r−)) = 0.00542; the

second matrix has 2ˆ()ij Sijq r−∑∑ =0.009931042 and the min(max(ˆij Sijq r−))=0.00598

while the third matrix has the corresponding values 0.010371895 and 0.00484 respectively.

Thus we have two alternative approaches to obtain the nearest psd matrices from the given
nsd Q : the one, used conventionally, that minimizes ˆ

F
∆ and the other, proposed by us in

this paper, that minimizes ˆ
m

∆ . Use of either norm has its own justification. The LMN

minimizes the range of deviation and hence, does not allow any element
îj i j

r
≠

∈ R̂ to

deviate too much from its corresponding ijq . The min(Frobenius norm) may permit

excessive deviation of a few elements if so required to bring other element of R̂ closer to
their counterpart elements (of Q). However, to disallow any element

îj i j
r

≠
∈ R̂ to deviate

too much from its corresponding ijq amounts to place a high level of confidence on the

elements of Q .

5. The proposed algorithm to obtain the LMN correlation matrix

Our proposed LMN algorithm that generates the nearest positive semidefinite correlation
matrix from a given (fed by the user) nsd pseudo-correlation matrix, ,Q runs as follows:
1. Let 0Q be the given invalid correlation matrix. Set 0.Q Q=
2. Find all eigenvalues (L , a diagonal matrix) and eigenvectors (V) from .Q Each column

jv of V (associated with the eigenvalue jjl = diagonal element of L) has unit
Euclidean length.

3. Replace all negative values in L by zero.
4. Generate m uniformly distributed random numbers (0,1)U and add them to the diagonal

elements of L matrix. Normalize L such that its trace is equal to m .
5. By random walk method of optimization find the best possible L that characterizes trace

= m , positive determinant and a positive definite R̂ = VLV ′ closest to 0.Q

Nearness is defined in terms of the Chebyshev or maximum norm ˆ
m

∆ = 0
ˆ

m
Q R− .

 6

6. Check if all ˆ
îir R∈ are approximately unity. It would depend on tolerance level chosen.

If not, replace them by unity. Consider it as Q and go to step 2, else stop.

Note that up to step 3, our algorithm is identical to that of Rebonato and Jäckel (1999). The
difference lies in steps 4 through 6 that make adjustments in the eigenvalues to minimize
the maximum norm ˆ

m
∆ .

6. The LMN computer program

We provide here the source codes of the computer program that implements the algorithm
given above. The main program (LMN) checks if the Q matrix fed by the user is not an
nsd matrix. If Q is not a psd matrix, it is best approximated by a positive definite matrix,

R̂ . It is stored in a file named by the user. LMN invokes two subroutine subprograms and
a function subprogram. Some procedures in the computer program (especially, the one that
computes eigenvalues and eigenvectors) have been adapted from Krishnamurthy and Sen
(1976), pp. 242-247. The program may be compiled by any suitable FORTRAN compiler.
We have compiled the program by Microsoft FORTRAN Compiler.

7. Inputs to the Computer Program

When this program is run, it asks for the following parameters (and inputs). Although
sufficiently explained in the program queries, they are explained here.

Before running the program, the Q matrix should be stored in some file. This can be done
by some text editor such as EDIT.COM (of MICROSOFT). The name of this file is, say
inputfile. When the program runs, it asks for the value of m (order of the matrix) and the
inputfile name (in which Q is stored). The file name should be in single quotes ‘inputfile‘.
Then it asks for the seed to generate random numbers: with this seed the uniformly
distributed random numbers lying between (0, 1) = U(n,m) are generated. This number
should lie between –32767 and 32767, zero excluded. This is a suitable number for most
personal computers.

The program runs and if Q is not negative semidefinite, it terminates. If so, the inputfile
and the outputfile of LMN program are identical. If Q is negative semidefinite, the
program obtains R̂ and asks for the outputfile name to store it. The file name should be in
single quotes ‘outputfile‘.

LMN should be run repeatedly on its own output file to ensure that the resulting matrix is
psd. This is required because the output file stores correlation matrix with rounded off
elements. Since the output matrix is almost always near-singular, rounding off may often
make it negative definite. Note that an nsd pseudo correlation matrix, Q , is a problematic
and pathological case. It has to be handled with care and patience. It may also be borne in
mind that in numerical analysis a very small non-zero value and zero (exact) cannot be
strictly discriminated and therefore, when an acute near-singularity is met with, the
difference between singular and non-singular (regular) matrices is blurred in practice.

 7

Presently, in the codes given here, the maximum permissible m is 10. This parameter can
be increased. Accordingly, dimensions in the program may be changed before compilation.

8. Limitations and possibilities of improvement

Although theoretically there are no snags in minimizing the maximum norm of deviation of
R from ,Q our algorithm has clearly two weaknesses, (1) it fails if at any stage of iteration

the intermediate R̂ turns out to be extremely near-singular, and, for some pathological
cases of ,Q LMN program may not converge; and (2) the random walk method is a very
crude and slow method of optimization. It is easy to preclude extreme near-singularity of
R̂ at any intermediate stage. But it would be a further research work to replace the random
walk method of optimization by some more efficient method such as the Genetic
Algorithm (see Holland, 1975; Goldberg, 1989; Wright, 1991).

9. Geometric programming and the min-max nearest correlation matrix

The Geometric Programming (GP) algorithm developed by Grubisic and Pietersz (2004)
also can solve the nearest correlation matrix problem by minimization of the maximum (or
Chebyshev) norm. After reading this paper that appeared on SSRN (Mishra, 2004), Pietersz
wrote “… the idea of your paper, of using a maximum error function for rank reduction of
correlation matrices, is good, novel and testifies of original work. …Though you are the first to study
precisely this min-max problem, other algorithms than your LMN algorithm are already available for
solving it. For example, the geometric programming algorithm that I have developed with Igor
Grubisic can already solve this problem. …” Pietersz (2004), slightly modifying the GM
algorithm of Grubisic and Pietersz (2004), showed that while the optimal solutions
obtained by the LMN and GP algorithms are identical for Higham’s matrix (see table 2, 3 rd
panel) and Rebonato & Jäckel’s matrix (see table 6, 3 rd panel), the GM solution is
substantially better than the LMN solution in case of Al-Subaihi’s matrix (see table 7). The
minmax error,

, ,
ˆmax() maxij ij miji j i j

q rδ = − produced by GM algorithm is 0.0217 against

0.02237 obtained by the LMN algorithm.

References
Al-Subaihi, AA (2004). “Simulating Correlated Multivariate Pseudorandom Numbers”, At

www.jstatsoft.org/counter.php?id=85& url=v09/i04/paper.pdf&ct=1
Anjos, MF, NJ Higham, PL Takouda and H Wolkowicz (2003) “A Semidefinite

Programming Approach for the Nearest Correlation Matrix Problem”, Preliminary
Research Report, Dept. of Combanitorics & Optimization, Waterloo, Ontario.

Goldberg, DE (1989). Genetic Algorithms in Search, Optimization, and Machine
Learning, Addison Wesley, Reading, Mass.

Grubisic, I and R Pietersz (2004) “Efficient Rank Reduction of Correlation Matrices”,
Working Paper Series, SSRN, http://ssrn.com/abstract=518563

Higham, NJ (2002). “Computing the Nearest Correlation Matrix – A Problem from
Finance”, IMA Journal of Numerical Analysis, 22, pp. 329-343.

Holland, J (1975). Adaptation in Natural and Artificial Systems, Univ. of Michigan Press,
Ann Arbor.

 8

Kaiser, HF and K Dichman (1962). “Sample and Population Score Matrices and Sample
Correlation Matrices from an Arbitrary Population Correlation Matrix”, Psychometrica,
27(2), pp. 179-182.

Krishnamurthy, EV and SK Sen (1976). Computer-Based Numerical Algorithms,
Affiliated East-West Press, New Delhi.

Mishra, SK (2004) “ Optimal Solution of the Nearest Correlation Matrix Problem by
Minimization of the Maximum Norm”, Social Science Research Network (SSRN) at
http://papers.ssrn.com/sol3/papers.cfm?abstract_id=573241 August 9, 2004.

Pietersz, R (2004) Personal communication with the author, dated August 26 & 27, 2004.
Pietersz, R and PJF Groenen (2004) “Rank Reduction of Correlation Matrices by

Majorization”, Econometric Institute Report EI 2004-11, Erasmus Univ. , Rotterdam.
Rebonato, R and P Jäckel (1999) “ The Most General Methodology to Create a Valid

Correlation Matrix for Risk Management and Option Pricing Purposes”, Quantitative
Research Centre, NatWest Group, www.rebonato.com/CorrelationMatrix.pdf

Wright, AH (1991). “Genetic Algorithms for Real Param eter Optimization”, in GJE
Rawlings (ed) Foundations of Genetic Algorithms, Morgan Kauffmann Publishers, San
Mateo, CA, pp. 205-218.

Table 1. Inoptimality of positive semidefinite matrix generated by Al-Subaihi’s method

 Al-Subaihi’s generated *R matrix A relatively better **R matrix

1x
2x 3x

4x
5x

1x
2x 3x

4x
5x

1x 1.0000 0.4964 0.5008 0.0011 0.0050

1.0000 0.4964 0.5008 0.0007 0.0010

2x 0.4964 1.0000 0.8819 0.7317 0.7363

0.4964 1.0000 0.8819 0.7317 0.8400

3x 0.5008 0.8819 1.0000 0.7272 0.7305

0.5008 0.8819 1.0000 0.7272 0.8200

4x 0.0011 0.7317 0.7272 1.0000 0.8432

0.0007 0.7317 0.7272 1.0000 0.8400

5x 0.0050 0.7363 0.7305 0.8432 1.0000

0.0010 0.8400 0.8200 0.8400 1.0000

 Table 2. Nearest correlation matrices obtained by Higham’s and LMN methods

Higham’s original matrix Higham’s F̂R matrix Min(max norm) m̂R matrix

1x
2x 3x

1x
2x 3x

1x
2x 3x

1x 1.0000 1.0000 0.0000 1.00000 0.76069 0.15731 1.00000 0.78077 0.21922

2x 1.0000 1.0000 1.0000 0.76069 1.00000 0.76069 0.78077 1.00000 0.78077

3x 0.0000 1.0000 1.0000 0.15731 0.76069 1.00000 0.21922 0.78077 1.00000

Table 3. Eigenvalues of Higham’s original matrix, his estimated F̂R matrix m̂R matrix

Eigenvalues
1λ 2λ 3λ

Higham’s original matrix 2.4142135623731 1.0000 -4.1421356237309E-01

Higham’s estimated R̂ matrix 2.1573046934710 0.84269 5.3065290382026E-06

Min(max norm) R̂ matrix 2.2192126035928 0.78078 7.3964071641482E-06
Note: Higham’s estimated matrix (see Higham, 2002, p. 335) has turned negative definite. We perturbed it
slightly on the fifth place after decimal to make it a positive definite matrix.

 9

Table 4. A comparative view of nearest correlation matrices
by Al-Subaihi’s and min(max norm) methods

Al-Subaihi’s generated *R matrix Ours min(max norm) m̂R matrix

1x
2x 3x

4x
5x

1x
2x 3x

4x
5x

1x 1.0000 0.4964 0.5008 0.0011 0.0050

1.000000 0.477630 0.477630 0.018118 0.018118

2x 0.4964 1.0000 0.8819 0.7317 0.7363

0.477630 1.000000 0.862370 0.817630 0.817630

3x 0.5008 0.8819 1.0000 0.7272 0.7305

0.477630 0.862370 1.000000 0.817630 0.817630

4x 0.0011 0.7317 0.7272 1.0000 0.8432

0.018118 0.817630 0.817630 1.000000 0.862370

5x 0.0050 0.7363 0.7305 0.8432 1.0000

0.018118 0.817630 0.817630 0.862370 1.000000

Table 5. Difference matrices obtained by Al-Subaihi’s and our proposed methods
∆ matrix from Al-Subaihi’s *R matrix ∆ matrix from min(max norm) m̂R matrix

0 0.0036 0.0008 0.0011 0.0050 0 0.022370 0.022370 0.018118 0.018118
0.0036 0 0.0419 0.1083 0.1037 0.022370 0 0.022370 0.022370 0.022370
0.0008 0.0419 0 0.1128 0.1095 0.022370 0.022370 0 0.022370 0.022370
0.0011 0.1083 0.1128 0 0.0032 0.018118 0.022370 0.022370 0 0.022370
0.0050 0.1037 0.1095 0.0032 0 0.018118 0.022370 0.022370 0.022370 0

Table 6. Nearest correlation matrices obtained from Q of Rebonato and Jäckel , 1999, p. 9

The ĤR matrix The ŜR martix The m̂R matrix
1.00000 0.89458 0.69662 1.00000 0.89402 0.69632 1.00000 0.89513 0.69746
0.89458 1.00000 0.30254 0.89402 1.00000 0.30010 0.89513 1.00000 0.30486
0.69662 0.30254 1.00000 0.69632 0.30010 1.00000 0.69746 0.30486 1.00000

Table 7. A comparative view of nearest correlation matrices (obtained from
 Al-Subaihi’s matrix) by LMN and Geometric Programming algorithms.

m̂R obtained by the LMN algorithm
m̂R obtained by the GP algorithm

1x

2x 3x
4x

5x
1x

2x 3x
4x

5x

1x
1.000000 0.477630 0.477630 0.018118 0.018118

 1.0000

0.4784

0.4786

0.0215

0.0217

2x
0.477630 1.000000 0.862370 0.817630 0.817630

 0.4784

1.0000

0.8616

0.8183

0.8185

3x
0.477630 0.862370 1.000000 0.817630 0.817630

 0.4786

0.8616

1.0000

0.8184

0.8183

4x
0.018118 0.817630 0.817630 1.000000 0.862370

 0.0215

0.8183

0.8184

1.0000

0.8617

5x
0.018118 0.817630 0.817630 0.862370 1.000000

 0.0217

0.8185

0.8183

0.8617

1.0000

The GP solution provided by Pietersz in his letter to the author, dated Aug. 26 & 27, 2004.

Updated and uploaded on http://www.skmishra.owns1.com on August 28, 2004.

 10

C ---------------------PROGRAM LMN --------------------
C RANDOM WALK METHOD TO FIND Min(max norm) Nearest Positive
C definite Marix from a given Negative Semidefinite Matrix
C --
 INTEGER *2 IU,IV
 DOUBLE PRECISION A(10),R(10),AR(10),XO(10,10),AA(10)
 DOUBLE PRECISION V(10,10),W(10,10),P(10),D,RH(10,10)
 DOUBLE PRECISION SUML,LAMBDA,EPS,F,VO,VR,VOO,RAND,CN, RNORM
 DIMENSION MM(10)
 CHARACTER *11 OFIL,IFIL
C PARAMETERS ----- MAY BE CHANGED ---------------------
C EPS=ITERATIVE ACCURACY: EPSL=MAIN DIAGONAL ACCURACY
C NITR=NO. OF TRIALS FOR RANDOM WALK SEARCH
C ITMAX=MAX NO. OF ITERATION FOR CONVERGENCE
 EPS= 0.00001
 EPSL=0.00001
 NITR=3
 ITMAX=100
C Increase in NITR slows down program but gives better results
 WRITE(*,*)'FEED M and INPUT FILE NAME'
 WRITE(*,*)'(M is the order of the input square matrix'
 WRITE(*,*)'INPUT FILE NAME in single quotes)'
 READ(*,*) M,IFIL
 OPEN(7,FILE=IFIL)
 DO 1 I=1,M
 1 READ(7,*)(XO(I,J),J=1,M)
 CLOSE(7)
 WRITE(*,*)'FEED SEED TO GENERATE RANDOM NUMBERS'
 WRITE(*,*)'(SEED lies between -32767 AND 32767, avoid zero)'
 READ(*,*) IU
 WRITE(*,*)'OUTPUT FILE ? '
 READ(*,*) OFIL
 VOO=10.0**10
 LTRY=0
 ICO=1
 CALL CONS(XO,P,M,ICO)
 WRITE(*,*)'EIGEN VALUES OF THE ORIGINAL MATRIX XO ARE :'
 WRITE(*,*)(P(I),I=1,M)
 PAUSE 'STRIKE ENTER TO PROCEED'
 DO 70 I=1,M
 IF(P(I).LT.0.0) GOTO 90
 70 CONTINUE
 WRITE(*,*)'ALL EIGEN VALUES ARE NON-NEGATIVE'
 STOP
C ==
 90 WRITE(*,*)'SOME EIGEN VALUES ARE NEGATIVE'
 WRITE(*,*)'THE R MATRIX AT THIS STAGE IS : '
 OPEN(8,FILE=OFIL, STATUS='NEW')
 DO 789 I=1,M
C P(I)=1.0
 789 WRITE(8,89)(RH(I,J),J=1,M)
 CLOSE(8)
 DO 788 I=1,M
 788 WRITE(*,89)(RH(I,J),J=1,M)
 ITEST=0
C PAUSE 'STRIKE ENTER TO PROCEED'
 F=0.0

 11

 DO 71 I=1,M
 IF(P(I).LE.0.0) P(I)=RAND(IU,IV)
 F=F+P(I)
 71 CONTINUE
 DO 72 I=1,M
 72 P(I)=DABS(P(I)/F*M)
 WRITE(*,*)'EIGEN VALUES ARE FORCED TO BE ALL POSITIVE'
 SUML=0.0
 DO 78 I=1,M
 78 SUML=SUML+P(I)
 WRITE(*,*)(P(I),I=1,M),' SUM = ',SUML
 DO 999 IIT=1,NITR
 LAMBDA=20.0
C Initialisation of decision variables
 DO 7 I=1,M
 7 A(I)=DABS(P(I))
 ICO=2
 CALL CONS(RH,P,M,ICO)
C --------------- FUNCTION EVALUATION ---------------------
 F=0.0
 DO 11 I=1,M
 DO 11 J=1,M
 D=DABS(XO(I,J)-RH(I,J))
 IF(D.GT.F) F=D
 11 CONTINUE
 VO=F
C ---
 IT=0
 200 IT=IT+1
 IF(IT.GT.1000) THEN
 WRITE(*,*)'NO CONVERGENCE IN 1000 ITERATIONS'
 GOTO 1000
 ENDIF
 LAMBDA=LAMBDA/2.0
 IMP=0
 DO 100 II=1,ITMAX
C GENERATE M UNIFORMLY DISTRIBUTED RANDOM NUMBERS (-1,1)
 150 DO 2 I=1,M
 2 R(I)=2.0*(RAND(IU,IV)-0.5)
C NORMALISE THE RANDOM NUMBERS
 RNORM=0.0
 DO 3 I=1,M
 3 RNORM=RNORM+R(I)**2
 RNORM=DSQRT(RNORM)
 IF(RNORM.GT.1.0) GOTO 150
 DO 4 I=1,M
 4 R(I)=R(I)/RNORM
C ADD RANDOM NUMBERS TIMES LAMBDA TO A VECTOR
 DO 5 I=1,M
 AR(I)=A(I)+LAMBDA*R(I)
 AR(I)=DABS(AR(I))
 5 CONTINUE
C --------------- FUNCTION EVALUATION ---------------------
 CN=0.0
 DO 73 I=1,M
 CN=CN+AR(I)
 73 CONTINUE

 12

 SUML=0.0
 DO 74 I=1,M
 AR(I)=AR(I)/CN*M
 SUML=SUML+AR(I)
 74 CONTINUE
C WRITE(*,*) 'SUML = ',SUML
 ICO=2
 CALL CONS(RH,AR,M,ICO)
 F=0.0
 DO 13 I=1,M
 DO 13 J=1,M
 D=DABS(XO(I,J)-RH(I,J))
 IF(D.GT.F) F=D
 13 CONTINUE
 VR=F
C ---
 IF(VR.LT.VO) THEN
 VO=VR
 DO 6 I=1,M
 A(I)=AR(I)
 6 CONTINUE
 IMP=1
 ENDIF
 100 CONTINUE
 IF((IMP.EQ.0).OR.(LAMBDA.GT.EPS)) GOTO 200
 1000 CONTINUE
 IF(VOO.GT.VO) THEN
 VOO=VO
 DO 998 I=1,M
 AA(I)=A(I)
 998 CONTINUE
 ENDIF
 999 CONTINUE
 DO 997 I=1,M
 A(I)=AA(I)
 997 CONTINUE
 VO=VOO
 SUML=0.0
 DO 77 I=1,M
 SUML=SUML+A(I)
 77 CONTINUE
 WRITE(*,*)'SMALLEST MAX DEVIATE = ',VO
 WRITE(*,*)' '
 WRITE(*,*)' TRIAL NUMBER = ',LTRY
 WRITE(*,*)' '
 DO 152 I=1,M
 IF(DABS(RH(I,I)-1.00).GT.EPSL) THEN
 RH(I,I)=1.0
 ITEST=1
 ENDIF
 152 CONTINUE
 IF(ITEST.EQ.1) THEN
 CALL CONS(RH,AR,M,1)
 LTRY=LTRY+1
 VOO=10.0**10
 GOTO 90
 ENDIF

 13

 Write(*,*)' ------------ Convergence achieved ---------'
 write(*,*)' '
 WRITE(*,*)' NAME THE OUTPUT FILE TO STORE THE RESULT'
 WRITE(*,*)' (OUTPUT FILE NAME IN SINGLE QUOTES)'
 WRITE(*,*)'ESTIMATED MATRIX'
 OPEN(8,FILE=OFIL, STATUS='NEW')
 DO 75 I=1,M
C RH(I,I)=1.00
 WRITE(*,89)(RH(I,J),J=1,M)
 WRITE(8,89)(RH(I,J),J=1,M)
 75 CONTINUE
 CLOSE(8)
 89 FORMAT(1X,6D13.5)
 WRITE(*,*)'RESULTING MATRIX STORED IN FILE = ',OFIL
 WRITE(*,*)'RUN THIS PROGRAM ONCE MORE ON ITS OWN OUTPUT FILE'
 WRITE(*,*)'UNTIL IT SAYS ALL EIGENVALUES ARE NON-NEGATIVE'
 END
C ---
 SUBROUTINE CONS(A,P,M,ICO)
C Constructs Matrix from its eigenvectors and values
 DOUBLE PRECISION A(10,10),B(10,10),V(10,10),W(10,10),P(10),F
 DIMENSION MM(10)
 IF(ICO.GT.1) GOTO 100
 NN=1
 1000 NADJUST=0
 DO 10 I=1,M
 DO 10 J=1,M
 B(I,J)=A(I,J)
 10 CONTINUE
 CALL EIGEN(A,M,NN,V,W,P,MM)
C ==
C NORMALIZATION OF EIGEN VECTORS
 DO 50 I=1,M
 P(I)=0.0
 P(I)=A(I,I)
 F=0.0
 DO 51 J=1,M
 51 F=F+V(J,I)*V(J,I)
 F=DSQRT(F)
 DO 52 J=1,M
 V(J,I)=V(J,I)/F
 52 CONTINUE
 50 CONTINUE
 DO 11 I=1,M
 DO 11 J=1,M
 A(I,J)=B(I,J)
 11 CONTINUE
 RETURN
C ===
 100 DO 34 J=1,M
 DO 341 JJ=1,M
 341 W(J,JJ)=0.0
 W(J,J)=P(J)
 34 CONTINUE
C WRITE(*,*)'NOW W IS THE DIAGONAL L MATRIX'
 DO 36 J=1,M
 F=0.0

 14

 DO 37 I=1,M
 37 F=F+V(I,J)*V(I,J)
 DO 36 I=1,M
 IF(P(J).EQ.0.0) THEN
 V(I,J)=0.0
 ELSE
 V(I,J)=V(I,J)/DSQRT(F/P(J))
 ENDIF
 36 CONTINUE
 DO 35 J=1,M
 DO 35 JJ=1,M
 A(J,JJ)=0.0
 DO 35 I=1,M
 A(J,JJ)=A(J,JJ)+V(J,I)*V(JJ,I)
 35 CONTINUE
C WRITE(*,*)'NOW A IS V*L*VT MATRIX'
 RETURN
 END
C --
 SUBROUTINE EIGEN(A,N,NN,V,W,P,MM)
C Computes eigenvalues and vectors of a real symmetrix matrix
 DOUBLE PRECISION A(10,10),V(10,10),W(10,10),P(10)
 DOUBLE PRECISION PMAX,EPLN,TAN,SIN,COS,AI,TT,TA,TB
 DIMENSION MM(10)
C ------------ INITIALISATION -------------------------
 DO 50 I=1,N
 DO 51 J=1,N
 V(I,J)=0.0
 51 W(I,J)=0.0
 P(I)=0.0
 50 CONTINUE
 PMAX=0
 EPLN=0
 TAN=0
 SIN=0
 COS=0
 AI=0
 TT=0
 EPLN=1.0D-310
C --
 IF(NN.NE.0) THEN
 DO 3 I=1,N
 DO 3 J=1,N
 V(I,J)=0.0
 IF(I.EQ.J) V(I,J)=1.0
 3 CONTINUE
 ENDIF
 2 NR=0
 5 MI=N-1
 DO 6 I=1,MI
 P(I)=0.0
 MJ=I+1
 DO 6 J=MJ,N
 IF(P(I).GT.DABS(A(I,J))) GO TO 6
 P(I)=DABS(A(I,J))
 MM(I)=J
 6 CONTINUE

 15

 7 DO 8 I=1,MI
 IF(I.LE.1) GOTO 10
 IF(PMAX.GT.P(I)) GOTO 8
 10 PMAX=P(I)
 IP=I
 JP=MM(I)
 8 CONTINUE
C EPLN=DABS(PMAX)*1.0D-09
 IF (PMAX.LE.EPLN) THEN
C WRITE(*,*)'PMAX EPLN',PMAX, EPLN
C PAUSE'CONVERGENCE CRITERION IS MET'
 GO TO 12
 ENDIF
 NR=NR+1
C WRITE(*,*)'PMAX, EPLN',PMAX,EPLN
 13 TA=2.0*A(IP,JP)
 TB=(DABS(A(IP,IP)-A(JP,JP))+
 1DSQRT((A(IP,IP)-A(JP,JP))**2+4.0*A(IP,JP)**2))
C WRITE(*,*) 'TA TB = ',TA,TB
 TAN=TA/TB
C WRITE(*,*) 'TAN = ',TAN
 IF(A(IP,IP).LT.A(JP,JP)) TAN=-TAN
 14 COS=1.0/DSQRT(1.0+TAN**2)
 SIN=TAN*COS
 AI=A(IP,IP)
 A(IP,IP)=(COS**2)*(AI+TAN*(2.0*A(IP,JP)+TAN*A(JP,JP)))
 A(JP,JP)=(COS**2)*(A(JP,JP)-TAN*(2.0*A(IP,JP)-TAN*AI))
 A(IP,JP)=0.0
 IF(A(IP,IP).GE.A(JP,JP)) GO TO 15
 TT=A(IP,IP)
 A(IP,IP)=A(JP,JP)
 A(JP,JP)=TT
 IF(SIN.GE.0) GO TO 16
 TT=COS
 GO TO 17
 16 TT=-COS
 17 COS=DABS(SIN)
 SIN=TT
 15 DO 18 I=1,MI
 IF(I-IP) 19, 18, 20
 20 IF(I.EQ.JP)GO TO 18
 19 IF(MM(I).EQ.IP) GO TO 21
 IF(MM(I).NE.JP) GO TO 18
 21 K=MM(I)
 TT=A(I,K)
 A(I,K)=0.0
 MJ=I+1
 P(I)=0.0
 DO 22 J=MJ,N
 IF(P(I).GT.DABS(A(I,J))) GO TO 22
 P(I)=DABS(A(I,J))
 MM(I)=J
 22 CONTINUE
 A(I,K)=TT
 18 CONTINUE
 P(IP)=0.0
 P(JP)=0.0

 16

 DO 23 I=1,N
 IF(I-IP) 24, 23, 25
 24 TT=A(I,IP)
 A(I,IP)=COS*TT+SIN*A(I,JP)
 IF(P(I).GE.DABS(A(I,IP))) GO TO 26
 P(I)=DABS(A(I,IP))
 MM(I)=IP
 26 A(I,JP)=-SIN*TT+COS*A(I,JP)
 IF(P(I).GE.DABS(A(I,JP))) GO TO 23
 30 P(I)=DABS(A(I,JP))
 MM(I)=JP
 GO TO 23
 25 IF(I.LT.JP) GO TO 27
 IF(I.GT.JP) GO TO 28
 IF(I.EQ.JP) GO TO 23
 27 TT=A(IP,I)
 A(IP,I)=COS*TT+SIN*A(I,JP)
 IF(P(IP).GE.DABS(A(IP,I))) GO TO 29
 P(IP)=DABS(A(IP,I))
 MM(IP)=I
 29 A(I,JP)=-TT*SIN+COS*A(I,JP)
 IF(P(I).GE.DABS(A(I,JP))) GO TO 23
 GO TO 30
 28 TT=A(IP,I)
 A(IP,I)=TT*COS+SIN*A(JP,I)
 IF(P(IP).GE.DABS(A(IP,I))) GO TO 31
 P(IP)=DABS(A(IP,I))
 MM(IP)=I
 31 A(JP,I)=-TT*SIN+COS*A(JP,I)
 IF(P(JP).GE.DABS(A(JP,I))) GO TO 23
 P(JP)=DABS(A(JP,I))
 MM(JP)=I
 23 CONTINUE
 IF(NN.EQ.0) GOTO 7
 DO 32 I=1,N
 TT=V(I,IP)
 V(I,IP)=TT*COS+SIN*V(I,JP)
 V(I,JP)=-TT*SIN+COS*V(I,JP)
 32 CONTINUE
 GO TO 7
 12 RETURN
 END
C --
 FUNCTION RAND(IU,IV)
C Generates Rectangular (0,1) Random Numbers
 DOUBLE PRECISION RAND
 INTEGER *2 IU,IV
 IV=IU*259
 IF(IV.GE.0) GOTO 2
 IV=IV+32767+1
 2 RAND=IV
 IU=IV
 RAND=RAND*0.3051851E-04
 RETURN
 END

