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Abstract

I propose an S-shaped utility function of consumption which, com-
bined with an heterogeneous agents and external habit setting, fits
well the first order moments of the American financial and macroeco-
nomic time series relevant for the equity premium puzzle in the second
half of XX century. The average relative risk aversion of the agents
remains in the 0-3 range. A "black swan"-kind phenomenon makes
two of the 50 years considered (the two oil shocks) responsible for half
the average of the stochastic discount factor, thus bringing the annual
subjective discount factor to a very low level, around 0.5, which solves
the risk-free puzzle. The shape of the relative risk aversion function
of consumption suggests an explanation for the 2008 suprime crash
akin to the breaking of waves on a beach in a lifecycle overlapping
generations model.
KEYWORDS: financial puzzles, subprime crash, black swan, S-

shaped utility
JEL classification: C0,C5,D1,D53,D91,E44,G12

1 Introduction

Friedman and Savage (1948) already called attention to the puzzle that con-
sisted on people buying lottery tickets (whose expected return is less than

∗I am grateful to my advisor, Joe Akira Yoshino, for many valuable comments. Copy-
right 2008 by J.J. Farias Neto.
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what is paid) and, at the same time, contracting insurance (paying more
for it than the expected value of the damage); in the former case, there is
a risk seeking behavior, whilst, in the later, a risk aversion; in accordance,
they proposed the use of utility functions that contained local convexities.
Markowitz (1952) goes a bit further and proposes that the point that sepa-
rates the convex from the concave parts of the utility be dependent upon the
level of wealth.
Kahneman and Tversky (1979) proposed the so-called prospect theory.

It presupposes that people make decisions based upon goals, defined by a
mean and a variance of a target value; in this case, whenever the subjective
probability density function of that target value is unimodal, the correspond-
ing utility function will be S-shaped, which is explained as a predisposition
of people to run risks, in order to reach a goal, and a risk aversion, when
the task is to go beyond it. Another way to see it is the tendency of people
to smooth their consumption time series, avoiding great oscillations, which
presupposes the existence of a level with which they feel comfortable.
Friedman (1989) proposes that, due to bounded rationality, individuals

don’t know their true utility function (which would be concave) and distort
it, so that they end up by using an S-shaped subjective utility. The distortion
would stem from the concentration of the lotteries available for him in a small
range, that is, in his words, he will choose as if maximizing expected value
for a value function V that in some sense is between his "true" fully con-
sidered function U and the cumulative distribution function F of prospective
opportunities to increment wealth.
Tummers (1992) uses an S-shaped "welfare function of income" to analyse

subjective poverty line models.
The greater or smaller disposition to run risks depends upon not only the

proposed lottery, but also on how many times one can play (or how many
tickets you can buy); if infinite, risk neutrality is the logical consequence.
That depends on the money one has: the value at risk is an important factor
to be considered in investments. Worldwide, most people seem to be risk
seeking, when the sum at risk is small compared to their personal wealth.
Benartzi and Thaler (1995) call attention to this kind of phenomenon, which
they call myopic loss aversion and propose an S-shaped utility centered on
the consumption value of the immediately preceding period (ct−1).
Hamo and Heifetz (2001) propose an explanation to the rising of sponta-

neous S-shaped utilities among members of a population, using evolutionary
game theory. They show mathematically that society stirs its members to
invest part of their resources in actuarially losing activities, because this
decreases the systemic risk of the collective bet in a common direction, al-
though at the expenses of the increase of the idiosyncratic risk to which
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the individual is exposed. The appearance of such S-shaped subjective util-
ity functions would stem, at the individual level, from family tradition and
would be collectively manifested by the dynamics of the evolutionary game
between individuals with the most diverse types of utilities resulting on the
gradual elimination of other kinds of utilities, so that, in the long run, 100%
of the population would have that particular utility function.
Ternström (2001) posits a logistic utility of consumption, to analyze the

tragedy of the commons. Neilson (2002) says that the hypothesis that indi-
viduals base their decisions on final wealth is rejected by the data and agrees
with prospect theory in that what matters are gains and losses from a ref-
erence point; he characterizes mathematically the notion of "more S-shaped
than". Levy, Giorgi, and Hens (2003) prove that the security market line
theorem of the CAPM remains valid in the context of cumulative prospect
theory. Levy and Levy (2004) show that the portfolio selected by the mean-
variance approach belongs to the efficient set defined by prospect theory,
whenever diversification between assets is allowed.
A doubt that could arise is if this class of utilities would destroy the

general equilibrium, since most of the theorems in the theory use concave
utilities. Xi (2007) proves that the operation point of each agent being beyond
the point of tangency between the utility and the straight line that passes
through the origin (0,0) is a sufficient condition for the existence of the Arrow-
Debreu equilibrium, when the utility is S-shaped. Hagströmer, Anderson,
Binner, Elger, and Nilsson (2007) use a combination of power utilities, to
build an S-shaped utility of portfolio return and show that, in this case, the
full-scale optimization approach is better then the mean-variance one.
Gerasymchuk (2007) analyses cumulative normal, logistics and arctangent

as possible formulas for S-shaped utilities and relates them with attitudes
towards diversification of portfolios. Gerasymchuk (2008) chooses arctangent
and shows that the resulting dynamic equations for the evolution of wealth
and the risky asset return exhibit chaotic regimen in a subset of its parametric
space. Netzer (2008) justifies the use of S-shaped value functions (as in
prospect theory) as an evolutionary adaptation. Bostian (2008) explores
models of learning and utility using two experimental designs and concludes
that "there is some evidence of an S-shaped utility function, suggesting that
risk attitudes may change for gains and losses".
I introduce here a new utility and argue that, as it, in a way, solves the

equity premium puzzle (as is empirically shown in the following sections),
the case for S-shaped utility functions is reinforced. The full details can be
found in de Farias Neto (2007).
The framework of the present paper is not the one of prospect theory, but

what is called "reference-dependent expected utility". Plus, the reference
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point is supposed to be the same for all agents - the per capita consumption
level of the country - only changing with time.
In section 2, I introduce my utility function and show some of its prop-

erties. Section 3 establishes the general framework in which the empirical
work is done. Section 4 shows that the model can be narrowed. Section 5
considers the narrowed model and gets the main results. Section 6 shows
results for the Brazilian market, that confirm the main conclusion obtained
for the American market (namely, that my utility solves the equity premium
puzzles, if, instead of considering the RRA of the average consumer, I con-
sider the average RRA of the consumers). Section 7 draws some conclusions
and comments on the results and some of their possible implications.

2 Utility function

I propose that the i-th household have the following utility function (cumu-
lated modified Cauchy distribution):1
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a, b, κ being the same for all households, ς t being the time-smoothed mean
consumption level of all the households in the country and ς it being the time-
smoothed mean consumption level of household i. Equation 2 is inspired by
Abel (2007), who, using a different utility, gives it the flexibility of represent-
ing external and internal habit formation and combinations of both. Formula
1 has closed definite integral; using it, my utility can be expressed as
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1Allegations that this is an ad hoc formula are void, since all utility functions in eco-
nomic theory are ad hoc. The final decision about which one to use will be taken according
to their explanation powers.
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Figure 1: Constantinides-Campbell-Cochrane’s utility for γ = 2 and X = 30.

In section 4, I group sets of households by income level, using the quintiles
published by the American Bureau of Labor Statistics in the period 1984-
2005; thus i = 1, 2, 3, 4, 5 will denote those groups of consumer units. I use
annual data.
I say that this utility generalizes and regularizes the one of Constantinides-

Campbell-Cochrane for the following reasons:
Constantinides-Campbell-Cochrane’s utility is

U(Ct, Xt) =
(Ct −Xt)

1−γ − 1
1− γ

(4)

If γ = 2 and Xt = 30, it has the graph of figure 1.

Utility 1 with Xt = 30 and b = 1 is plotted in figure 2.

The difference between figures 1 and 2 is eliminated if the right branch of
the former is lifted and the vertical asymptotes are united (the resulting S-
shaped graph can be shifted vertically and re-scalled to match 2). This way,
the incoherence of having U(C1) > U(C2) for C1 < X and C2 > X, which
violates one of the axioms of utility functions (the monotonicity condition),
is eliminated; so is the need to use tricks to guarantee that Ct > Xt , as
well as the interpretation of Xt as a subsistence level instead of habit. Abel
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Figure 2: Our utility function.

(2007) calls attention to this problem and proposes an utility (different from
ours) that remedies it. 2

Worse problems occur in the left branch of utility 4 when γ is not an even
integer. In the odd case, that branch is decreasing. For rational noninteger
values of γ (for instance, 2.372 - the value estimated in the 1995 version
of Campbell and Cochrane’s paper), the left branch of U(C) is not stable
under infinitesimal changes in γ, shifting from increasing to decreasing at an
infinite frequency, when γ is continuously changed. For irrational values of
γ, U(C) /∈ R in that branch.
The functional form of the RRA, denoted here by s(C), shows the simi-

larities between utilities 1 and 4.

For utility 4, one has:

s(C) =
γC

(C −Xt)
(5)

2Campbell and Cochrane arrive at a steady state X=0.95c, where c is the per capita
consumption. If X is to be interpreted as a subsistence level, this means the Census Bu-
reau is counting 150 million nonexistent Americans, since the median of the consumption
distribution is around 0.7c. Alegations that X is the subsistence level of the representative
agent, instead of that of a randomly chosen American, are discarded, since those authors
state explicitly that theirs is an external habit model.

6



5037.52512.50

100

50

0

-50

-100

c

s(c)

c

s(c)

Figure 3: RRA function of Constantinides-Campbell-Cochrane utility.

For utility 1, this function is:

s(C) = 4C
(C −Xt)

3

(C −Xt)
4 + b4

(6)

So, for b = 0, the RRA function of my utility is equivalent to that of
utility 4 with γ = 4. For b 6= 0, the discontinuity at C = X disappears and
s(C) becomes a smooth function in R+. Now, whilst

R X
0

γC
(C−X)dC =∞ andR∞

X
γC

(C−X)dC =∞, my s(C) function is integrable in all of R+. Figures 3 and
4 exhibit their graphs.

The absolute prudence, as defined in Kimball (1990), is

P (C) = −u
000(C)
u00(C)

= 8
(C −Xt)

3

b4 + (C −Xt)
4 −

3

(C −Xt)
(7)

It’s behavior for my utility - with a = 0.92, b = 0.6, κ = 0 and ςt = 25 -
is in figure 5. It has a discontinuity on the inflexion point of the utility.
From 6, it is easy to see that limC→∞ s(C) = 4. The same happens in 5,

for γ = 4.
The stochastic discount factor
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Figure 5: Absolute prudence of our utility.
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Mt+1 = βQt+1 (8)

where β ∈ (0, 1) is a subjective discount factor and

Qt+1 =
U 0(Ct+1)

U 0(Ct)
(9)

is also generalized from 4 to 1, since Qt+1 corresponding to 4 is

Qt+1 =
(Ct −Xt)

γ

(Ct+1 −Xt+1)
γ (10)

while, for my utility,

Qt+1 =
(ct −Xt)

4 + b4

(ct+1 −Xt+1)
4 + b4

(11)

Equation 9 is valid here for any combination of internal and external
habit, because the model is of two times (as opposed to an infinite series,
which requires dynamic programming) and I presuppose the use eqs. 16-18,
that, as is mentioned there, estimates ςt as a function of {ct−2, ct−3, ...}. In
section 5, this is not needed and 9 is always valid, as Campbell and Cochrane
(1999) argue in their paper.

3 General framework

Starting with a representative agent framework, I tested my utility function
in a two-times (one period) model (Cochrane (2001), chapter 1):

max
ξ

u = U(ct) + βEt[U(ct+1)] (12)

subject to
½

ct = et − ptξ
ct+1 = xt+1ξ

(13)

where β is the subjective discount factor, et is the initial endowment that
the agent has, pt is the price per share of the asset, xt+1is the payoff per
share (new price plus dividends in the period) and ξ is the number of shares
that the agent decides to buy (thus reducing his present consumption). In
equilibrium, this is valid for any asset.
The well known solution is the standard asset pricing equation:

E[Mt+1Rt+1|It] = 1 (14)

9



where Rt+1 is the return of the investment (
xt+1
pt
), M is defined in equa-

tions 8 and 9 and It is the information set available at the moment of the
decision.
Subtracting equations 14 for two different assets, an equation for excess

return is obtained:

E[Mt+1R
e
t+1|It] = 0 (15)

where Re
t+1 = Ri

t+1 −Rj
t+1, i and j being the assets.

I used Fama and French’s 25 book to market portfolio and their three
factors (MKT, SMB and HML) published in French’s page

<http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/> to estimate
the parameters of my utility in equations 15. In the representative agent
framework, eq. 2 is reduced to Xt = aςt. Care must be exerted, when using
a habit formation utility: if the habit level ς t estimation includes variables
affected by the decision variable (in this case, ξ), the mathematics becomes
very complicated. In order to avoid this burden, I estimate ς t using only
the series {ct−2, ct−3, ...}. The smoothing equations are those of the double
exponential method (see the time series literature):

ς t = ς
(1)
t−2 + 2ς

(2)
t−2 (16)

ς
(1)
t = ct − (1− α)2(ct − ς

(1)
t−1 − ς

(2)
t−1) (17)

ς
(2)
t = ς

(2)
t−1 + α2(ct − ς

(1)
t−1 − ς

(2)
t−1) (18)

Nevertheless, as the pricing equation cannot distinguish between different
methods of smoothing, in many instances I used methods that use ct, ct+1
and even ct+2,ct+3, ..., like Hodrick-Prescott filter and an exponential curve
adjusted to the whole consumption series (for instance: ς t = 9e0.02(t−1950)),
for reasons of convenience and/or to test the robustness of my results.
As remarked in Parker and Julliard (2005) and Belo (2007), care must be

taken with respect to the time matching between returns and consumption
flow. I used NIPA 1.1.5 table ( personal consumption expenditures - total)
from the US Bureau of Economic Analysis for aggregate consumption data
and French’s site for returns; the correct matching demands a lagging in nom-
inal time of consumption (as this is a flow, convention about when computing
it - at the start or at the end of the period - varies); in de Farias Neto (2007),
figs. 20-22, the CRRA utility is used to establish the correct lagging. All
historical series were deflated by the CPI-U (consumer price index - urban).
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Now, as conditional expectation is not available, I use the time average
of equation 15, that is, the unconditional expectation:

E[Mt+1R
e
t+1] = 0 (19)

The excess return of asset j is Re,j = Rj − Rf , where Rf is the return
of the risk-free asset (one month t-bills). Now, M = βQc̄(a, b), where c̄
represents the smoothing method used for the consumption series and a and
b are the parameters of my utility function (see eqs. 1 and 2). Instead of eq.
19, I used eq. 20 below

Ê(Re,j) = −cov(Q,R
e,j)

E(Q)
, j = 1, 2, ...25 (20)

to fit the model to Fama and French’s portfolio, that is, parameters (a, b)
are found minimizing

F% =

q
1
25

P25
i=1∆

2
i

1
25

P25
i=1E(R

i
e)

(21)

where ∆i = E(Re,j)− Ê(Re,j )̇.
I also computed, as another fitting measure,

R2 = 1− var(∆)

var [E(Ri
e)]

(22)

Now notice that β is not present in eqs. 20. It is calibrated to turn true
the equation

β =
1

E(QRf)
(23)

In the period considered (1951-2001), the mean annual risk premium was
E(Rmkt − Rf) = 7.87% and E(Rf) = 1.22%. The mean interest rate in the
period is estimated by

E(Rf) =
1
β
− cov(Q,Rf)

E(Q)
(24)

using β given by eq. 23, with Q = Qc̄(a
∗, b∗).
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4 Full model

In the full model (eqs. 1 and 2), the RRA varies according to the consumption
level of the agent (person or household).
In order to estimate parameter κ, I downloaded the quintiles of annual

household expenditures series from http://www.bls.gov/ in the available pe-
riod (1984-2005) and aggregated the corresponding stochastic discount fac-
tors M i, which is allowed as a consequence of adding eqs. 19 for different
consumer units:

M̄t+1 =
1

5

5X
i=1

M i
t+1 (25)

To estimate (a, b, κ) , I sought values that minimized J% as defined in 26.

J% = 100

vuuuuuuuut
1
15

5X
i=1

3X
j=1

h
E(Re

j)− Êi(Re
j)
i2

1
3

3X
j=1

E(Re
j)
2

(26)

The results are a = 0.9, b = 0.2, κ = 0, min J% = 6.9%. Smoothed
series {ς it} were obtained by applying the Hodrick-Prescott filter with default
values of the E-views software package. This establishes the model as one of
pure external habit, which is also the interpretation given by Campbell and
Cochrane (1999) to theirs. Figures 6, 7 and 8 show the behavior of J%.

Figures 9 and 10 show the behavior of the local RRA for each quintile.
In either cases, it is calculated at the average consumption level of each year
of the corresponding quintile.

In accordance to figure 4, figure 10 shows that the RRA at the operation
point is positive for the upper two quintiles and negative for the lower two; it
is also very stable, for these quintiles. The interesting discovery here is that
the middle quintile appears to be psychologically bipolar, oscillating between
extreme risk aversion and extreme risk seeking; this is a result of its situation
in the middle of the abyss of figures 2 and 4, making it extremely sensible to
any small variation of its annual consumption.
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Figure 6: J% versus a, with b = 0.2 and κ = 0.
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Figure 7: J% versus b, with a = 0.9 and κ = 0.
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Figure 8: J% versus κ, with a = 0.9 and b = 0.2.
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Figure 9: The third quintile’s local RRA varies wildly, compared to the other
four.
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Figure 10: Behavior of the local RRA for the quintiles, excluded the third
one.

5 External habit

Having established, in the precedent section, that κ = 0, I can restrict the
research to the simpler model, called in the literature external habit forma-
tion.
Table of figure 11 shows the results, using four different ways of consump-

tion smoothing. The relatively low values of β are due to the oil shocks in
the period considered (1974, 1979 and 1991), which are revealed as peaks in
the time series of the pricing kernel (Mt); this is how the low probability of
disastrous events is internalized in my model.
Estimating the parameters by applying GMM (generalized method of

moments) to Euler equations 19, with Re,j, j=MKTRF,SMB and HML (the
three factors of Fama and French), I got a = 0.924 ± 0.02, b = 0.59 ± 0.16
and J=0.0090. Now, recalling that the period considered was 1951-2001, I
have 50J ' χ20.5(1), so the model passes the overidentification test, that is,
the three equations are not mutually incompatible. The p-values are 0.0000,
for a, and 0.0005, for b.
The parameters of the last line of the table in figure 11 (which is the best

fitting) were used to obtain the scatter plot of figure 12. For comparison,
points corresponding to Fama and French’s three factor models are in the
graph. M FF uses the standard pricing equations E[Mt+1R

e
t+1] = 0, that is,

with M and R contemporaneous, and pricing kernel defined by

Mt = b1R
e,mkt
t + b2R

smb
t + b3R

hml
t (27)
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Figure 11: Results with our utility function.

where Re,mkt
t = Rmkt

t −Rf
t (all R’s taken from French’s page).

FF regres uses the arbitrage regression

Ri
e(t) = ai1R

e
mkt(t) + ai2Rsmb(t) + ai3Rhml(t) (28)

i=1,2,...,25, which has 75 free parameters estimated by ordinary least squares.
Figures 13 and 14 show the best fitting of power and recursive utility to

Fama and French’s portfolio. Their pricing capabilities are visibly poorer
than the one of my utility function.

The RRA calculated at the per capita consumption level (that is, at the
representative agent’s level) is exhibited in figure 22. Notice how its mean
level is about the same as the one of Campbell and Cochrane (1999). Thus,
in the representative agent framework, the equity premium puzzle persists;
the risk free puzzle disappeared, since both those authors and us succeeded
in explaining the historical mean interest rate with β ∈ (0, 1) (in my case,
β ≈ 0.5 , as shown in the table of figure 11).
Figures 15 and 16 show the situation for 2004: the representative agent

operates at the edge.

5.1 Main result

Dragulesco and Yakovenko (2001) show that the cross-sectional distribution
of income in US can be well modelled by the usual exponential; Husby (1971)
exhibits a linear equation relating consumption with income:
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Figure 12: Fitting to Fama and French’s portfolio. Results as good as the
two models based upon the three factors of those authors.
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Figure 13: Best feasible (β < 1) fitting of power utility. RRA=80, F%=50%,
R2 = 0.17.
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Figure 14: The best fitting of Epstein-Zin-Weil utility that allows β < 1:
RRA=87. β = 0.84 ==> Ê(Rf) = 1.22%. F%=31%. R2 = 0.35.

Figure 15: The operation point is near the edge of the cliff. This graph shows
that, in 2004, Xi’s condition is satisfied, since the operation point is beyond
the tangency point.
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Figure 16: The operation point in 2004 corresponds to RRA∼ 50.

C = 3.64 + 0.9016Y (29)

Eq. 29 is expressed in aggregate values of 1961; in per capita values,
using dollars of the year 2000, the intercept 3.64 represents about US$400
per year, against a per capita consumption of about US$10,000 in 1961. Thus,
the intercept can be despised and I can adopt the exponential distribution
for consumption too, that is:

f(C) =
1

µ
e−

C
µ (30)

where µ = c = per capita annual consumption.
Averaging the RRA function s(C) over this distribution, that is, taking

E[s(c)] =

Z ∞

0

1

c
e−

ζ
c 4ζ

(ζ −X)3

(ζ −X)4 + b4
dζ (31)

results in the graphs of figure 23. The average RRA remains in the (0,3)
interval! Considering the intercept, the consumption distribution becomes
a shifted exponential and, according to my simulations, the average RRA
drops a little. Notice the robustness of the main result with respect to the
smoothing method used to estimate the habit level, thus showing that the
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exact form of equations 16-18 is not very important; the same can be said
about the general level of risk aversion at the consumption level of the rep-
resentative agent: figure 22 shows its robustness relative to the smoothing
equations.
Figure 25 shows that the operating point of the representative agent os-

cillates around Xi’s threshold.
Figure 20 shows that, except around the second oil shock (∼1980), the

habit level is above the per capita consumption level.
Figure 26 shows that the pricing kernel has anomalies at the oil shocks.

Fama and French’s kernel doesn’t, since it is built as a function of the porfolio
returns.
Figures 28 to 32 show the behavior of FF% and of the time average of

E[s(c)] in the parametric space.
The worksheets with the calculations and graphs can be freely downloaded

from http://www.geocities.com/joaojfn/economia.html

6 Brazilian market

For some time, there has been a polemic about the existence or not of an
equity premium puzzle in Brazil, which was finally settled down by Cysne
(2006) and confirmed by us: it does exist. With quarterly data from 1993
to 2003, the usual CRRA utility (u(c) = c1−γ

1−γ ) demands γ = 35. As in the
American market, here again there is a lag problem between consumption
nominal time and returns; the correct lagging is the same in both markets
(see fig. 74 of de Farias Neto (2007)).
In order to test if the low average RRA (fig. 23) was an exclusive property

of the American market, I used Brazilian data (from IBGE, FGV and IPEA).
Figure 19 shows that, here too, the average RRA remains in the acceptable
range.
First of all, it is useful to compare the two economies; figure 17 shows

the difference.

Figure 18 shows the RRA computed at the per capita consumption level.

7 Conclusions

Although a large proportion of the households (∼ 70%) operate at the risk-
seeking region (below the external habit level, trying to "catch up with the
joneses"), the representative agent is risk-averse and operates above the habit
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Figure 17: On the left side, USA. In the right side Brazil. Besides the higher
levels of interest rates and inflation, there is a difference between almost
senoidal behaviour in the former and chaos in the later. American inflation
data: CPI-U. American interest rate: bank prime loan rate. Brazilian infla-
tion: INPC IBGE. Brazilian interest rate: OVER/SELIC FGV/ANDIMA.
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Figure 18: Brazilian RRA at the per capita consumption level. Hodrick-
Prescott filter used to smooth consumption (C → ς).
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Figure 19: RRA integrated over the Brazilian consumption distribution, su-
posed to be exponential with mean equal to the per capita consumption level.
Hodrick-Prescott filter used to smooth consumption (C → ς).

level X = aς most of the time, thus guaranteeing the general equilibrium.
The mix between risk-seeking and risk-averse agents is such that, as a whole,
the economy can still find its equilibrium.
As U(C) is the utility of annual consumption, its convexity below the

habit level only means that agents operating in that region prefer to throw
a coin and, next year, consume c+ ε, if it turns out head, or c− ε, if it turns
out tail (ε small compared to c), instead of a guaranteed consumption of c.
It doesn’t mean that they would behave like this when confronted with any
lottery offering immediate payoff of money or other benefit. They are trying
to catch up with the long run standard of living of the representative agent,
not necessarily seeking immediate rewards, although it is a known fact that
the lower classes tend to buy (actuarially disadvantageous) lottery tickets
more frequently than the upper classes....
Due to the convexity of the lower part of the utility function, consumers

who operate in that part and are not close enough to the per capita consump-
tion level maximize their utility not by satisfying the first order condition (eq.
14), but by restricting their consumption at t=0 to the subsistence minimum
and investing all the rest, that is, for them the subsistence level is binding.
As a consequence, they are willing to accept any amount of credit they are
offered.
Figures 26 and 27 show the spikes in 1974 and 1980 corresponding to

the two oil shocks (and a smaller one corresponding to the firs Gulf War);
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notice how they are present in the models that use power (CRRA) utility
and Epstein-Zin too. They alone are responsible for half of E(Q) in the
period considered (1951-2001), which is the hallmark of the socalled "black
swan" phenomenon, as popularized by Nassim Taleb (see, for instance, Taleb
(2008a) and Taleb (2008b)) and put in doubt some of the basic assumptions
of the class of models considered in the present article (and most of the
literature on the equity premium puzzles).
Figures 4 and 5 suggest that, as people are born and progressively have

their income raised, they behave like waves that hit a beach (the central
bump), thus prone to breaking and generating turbulence and, as a conse-
quence, financial bubbles; notice that this wouldn’t happen with the usual
power utility (CRRA), whose RRA function is a constant horizontal line.
Thus, pressure from the risk-seeking new generation driving the government
to support bad credit loans via Fannie Mae and Freddy Mac (the prosaic
case of the Californian strawberries picker who made US$14K per year and
was offered a US$700K mortgage became a saloon anedocte) may be the
ultimate responsible for the crash; further research should confirm or reject
the hypothesis that all major financial crashes are caused essencialy by this
shock of generations phenomenon.
The RRA function of my utility corresponds to what is observed in animal

psychology: coming from higher to lower consumption values, the represen-
tative agent is first taken by panic (increased RRA), then despair (negative
RRA) and, thus, disposition to risk everything, and finally desolation (neg-
ative RRA, but small in module).
The implied fact, by the final model (external habit), that ∼70% of the

population has negative RRA, may be an explanation for the high debt levels
that this extract is willing to take, which, by its turn, could explain phenom-
ena like the so-called "credit feast" in Brazil and the "real state credit crunch"
in US.
The model economy of this paper works at the edge of chaos (in a loose

sense), since the operating point of the representative agent oscillates around
Xi’s threshold for the existence of equilibrium, with the two points being
statistically indistinguishable (the sample average of their difference is within
one standard deviation from zero). The median income households operate in
the chaotic regime, the representative agent barely escaping this by operating
slightly above the third quintile, except around the second oil shock (Iranian
revolution and Iran-Iraq war). These features are in accordance with a power
law behaviour for the tail of the probability distribution of the pricing kernel
and the existence of very influencial spikes present in its time series.
The fact that an S-shaped utility function can, in a way, solve the equity

premium puzzle pushes the research direction towards models of the economy
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akin to neural networks, in which neurons are fired whenever a threshold of
excitation is crossed. If this is the right direction, only future works can say.
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8 Figures
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Figure 20: Consumption smoothing.
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Figure 21: Fitting to Fama and French’s 25 size and book-to-market portfolio.
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Figure 22: RRA of the representative agent.
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Figure 23: Expected value of the RRA over the consumption distribution.
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Figure 24: Consumption of the representative agent over the habit level
X = aς.
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Figure 25: Consumption of the representative agent over Xi’s threshold Ctg.
When C > Ctg, the general equilibrium is guaranteed to exist.
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Figure 26:

Figure 27: Q=M/β (pricing kernel over the subjective discount factor).
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Figure 28: Parametric space. Parameter a of our utility runs horizontally
from 0 to 1 towards the right. Parameter b runs vertically from 0 to 10
towards the bottom. The stain is the region where FF% < 70%.

Figure 29: Parametric space. The vertical axis shows the average of E[RRA]
in the period 1946-2004. The roughly horizontal one, shows parameter b
running from 0 to 10 (1 to 49 in the figure). The depth axis shows parameter
a running from 0 to 1 (série1 to série 41 in the figure).
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Figure 30: Parametric space. Parameter a of our utility runs horizontally
from 0.7 to 1 towards the right. Parameter b runs vertically from 0 to 2
towards the bottom. The stain is the region where FF% < 30%.

Figure 31: The precedent mapping using the vertical axis to represent FF%.
The best fit to Fama-French portfolio is in the central depression (lowest
FF%). Parameter b runs from 0 to 2 in the roughly horizontal axis. Para-
meter a runs from 0.7 to 1 in the depth axis (0.7 to S43).
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Figure 32: Parametric space. The vertical axis shows the average of E[RRA]
in the period 1946-2004. The roughly horizontal one, shows parameter b
running from 0 to 2 . The depth axis shows parameter a running from 0.7
to 1 (0.7 to S49 in the figure).
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