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Estimation and Model Specification Testing in Nonparametric
and Semiparametric Econometric Models

Jiti Gao1 and Maxwell King

School of Mathematics and Statistics, The University of Western Australia, Crawley WA 6009, Australia;

and Faculty of Business and Economics, Monash University, Clayton VIC 3800, Australia

Abstract. This paper considers two classes of semiparametric nonlinear regression models, in which
nonlinear components are introduced to reflect the nonlinear fluctuation in the mean. A general
estimation and testing procedure for nonparametric time series regression under the α–mixing con-
dition is introduced. Several test statistics for testing nonparametric significance, linearity and
additivity in nonparametric and semiparametric time series econometric models are then construc-
ted. The proposed test statistics are shown to have asymptotic normal distributions under their
respective null hypotheses. Moreover, the proposed testing procedures are illustrated by several
simulated examples. In addition, one of the proposed testing procedures is applied to a continuous-
time model and implemented through a set of the US Federal interest rate data. Our research
suggests that it is unreasonable to assume the linearity in the drift for the given data as required
by some existing studies.

JEL classification: Primary C52; Secondary C14

Keywords: Estimation; Model specification; Semiparametric Error Correction Model; Stochastic

Process.

1. Introduction and motivation

The problem of estimating nonlinear econometric models has gained much attention in

recent years. This is mainly due to the recent development in nonparametric and semipara-

metric econometrics. See Pagan and Ullah (1999) for a recent survey up to 1999. Due to

the curse of dimensionality, however, nonparametric multivariate smoothing techniques are

in practice not very useful when there are more than two or three predictor variables [see

Chapter 7 of Fan and Gijbels (1996)]. In recent years, nonparametric and semiparametric

approaches have been proposed to deal with the curse of dimensionality problem and some

related problems as well. These include the construction of consistent model specification

tests and additive nonparametric and semiparametric regression modelling. For the case of

model specification tests, interest focuses on tests for a parametric model versus a nonpara-

metric model, tests for a semiparametric (partially linear or single-index) model against a

nonparametric model, and tests for the significance of a subset of regressors. For example,

Härdle and Mammen (1993) have developed consistent tests for a parametric specification

1Correspondence to: Professor Jiti Gao, School of Mathematics and Statistics, The University of Western
Australia, Crawley WA 6009, Australia. Tel: 618 9380 3354; Fax: 618 9380 1028; Email: jiti.gao@uwa.edu.au.
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by employing the kernel regression estimation technique; Hong and White (1995), Gao and

Liang (1997), Gao and Shi (1997), and Gao, Tong and Wolff (2002a, 2002b) have applied

the method of series estimation to consistent testing for a parametric regression model;

Shively, Kohn and Ansley (1994) consider testing for linearity in a semiparametric regres-

sion model based on the stochastic interpretation of spline smoothing given in Wahba (1978);

Wooldridge (1992), Yatchew (1992), Gozalo (1993), Samarov (1993), Whang and Andrews

(1993), Horowitz and Härdle (1994), Fan and Li (1996), Lavergne and Vuong (1996), Zheng

(1996), Li (1999), and Lavergne and Vuong (2000) have developed consistent tests for a

semiparametric model (partially linear or single-index) versus a nonparametric alternative

for either the independent and identically distributed (i.i.d.) case or the time series case.

Other related references include Robinson (1989), Eubank and Spiegelman (1990), Eubank

and Hart (1992), Hjellvik and Tjøstheim (1995), Jayasuriva (1996), Kreiss, Neumann and

Yao (1997), Hjellvik, Yao and Tjøstheim (1998), Li and Hsiao (1998), Li and Wang (1998),

Härdle and Kneip (1999), and Härdle, Liang and Gao (2000). More recently, Aı̈t-Sahalia,

Bickel and Stoker (2001), Chen, Härdle and Li (2001), Fan and Huang (2001), Fan, Zhang

and Zhang (2001), Gozalo and Linton (2001), Horowitz and Spokoiny (2001), and Lavergne

(2001) further consider nonparametric and semiparametric test problems for either the i.i.d.

case or the fixed design case.

For the case of additive nonparametric and semiparametric modelling, Fan, Härdle and

Mammen (1998) have provided an efficient and direct way to deal with the dimensional-

ity reduction problem. In practice, however, before applying the additive nonparametric

regression technique to model real sets of data, a crucial problem is whether an additive

nonparametric regression model is appropriate for a given set of data. In other words, we

should test for nonparametric additivity before using an additive nonparametric regression

to model a given set of data. When an additive nonparametric regression model is not

appropriate for a given set of data, one needs to find alternative methods to solve the di-

mensionality reduction problem. As an alternative, one suggests using the additive partially

linear regression to deal with the dimensionality reduction problem. In theory, one can

assume that the process (Yt, Xt) satisfies the following model

Yt = E[Yt|Xt] + et = m(Xt) + et = U τ
t β + g(Vt) + et, (1.1)

where Xt = (U τ
t , V τ

t )τ , m(Xt) = E[Yt|Xt], and et = Yt − E[Yt|Xt] is the error process and

allowed to depend on Xt. In model (1.1), Ut and Vt are allowed to be two different time

series. For example, Ut could be a vector of endogenous time series while Vt could be a vector

of exogenous time series. In practice, a crucial problem is how to identify Ut and Vt before

applying model (1.1) to model real sets of data. For some cases, the identification problem

can be solved easily by using empirical studies. For example, when modelling electricity

sales, it is natural to assume the impact of temperature on electricity consumption to be
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nonlinear, as both high and low temperatures lead to increased consumption, whereas a

linear relationship may be assumed for other regressors. See Engle, Granger, Rice and Weiss

(1986). Similarly, when modelling the dependence of earnings on qualification and labour

market experience variables, our research [see Härdle, Liang and Gao (2000)] shows that the

impact of qualification on earnings to be linear, while the dependence of earnings on labour

market experience appears to be nonlinear. For many other cases, however, the identification

problem should be solved theoretically before using model (1.1). More recently, Härdle, Liang

and Gao (2000, §6.2) have extended the discussion of Chen and Chen (1991) for the i.i.d.

case to the time series case, and therefore the identification problem for both the i.i.d. case

and the time series case has been solved.

A selective review of the recent development of model (1.1) can be found in Härdle, Liang

and Gao (2000).

We now consider a new class of partially linear models of the form

Yt = Xτ
t β + g(Xt) + et, (1.2)

where Xt = (Xt1, · · · , Xtp)
τ is a vector of time series, β = (β1, · · · , βp)

τ is a vector of unknown

parameters, g(·) is an unknown function and can be viewed as a misspecification error, and

et may be interpreted as a measurement error. In model (1.2), the error process et is allowed

to depend on Xt. Obviously, model (1.2) cannot be viewed as a special form of model (1.1).

The main motivation for systematically studying model (1.2) is that the partially linear

regression model (1.2) can play a significant role in modelling some nonlinear problems,

although the linear regression normally fails to appropriately model nonlinear phenomena.

We therefore suggest using the semiparametric partially linear regression (1.2) to model

nonlinear phenomena, and then determine whether the nonlinearity is significant for a given

data set (Xt, Yt). In addition, some special cases of model (1.2) have already been considered

by econometricians. In Section 2 below, one can see that some special forms of model (1.2)

have already been used to model economic and financial data.

This paper then considers some estimation and model specification testing procedures

for models (1.1) and (1.2), in particular, the model specification testing for the nonparamet-

ric component involved in models (1.1) and (1.2), as one needs to determine whether the

nonlinear component is significant before applying either model (1.1) or (1.2) to fit a given

set of data. For example, before using a stochastic differential equation to model a given

financial data, one needs to determine whether the linearity in the drift is appropriate for

the given financial data. This is particularly important as pointed out by some authors [see

Aı̈t-Sahalia (1996a); Ahn and Gao (1999)], the linearity of the drift imposed in the literature

appears to be the main source of misspecification.

The rest of the paper is organised as follows. Section 2 presents some important examples.

Section 3 discusses estimation and model specification testing procedures for models (1.1) and
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(1.2). Examples of implementation and applications of the procedures to economic models

and financial data are given in Section 4. Section 4 further considers some extensions and

generalizations. Mathematical details are relegated to Appendices A–C.

2. Examples and models

Before proposing our estimation and model specification testing procedures, we present

some interesting examples and models, which are either special forms or extended forms of

models (1.1) and (1.2).

2.1. Special and extended forms of model (1.1)

Example 2.1 (Partially linear autoregressive models): Let u1, u2, . . . be an endogenous time

series, Yt = ut, Ut = (ut−1, . . . , ut−r)
τ , and Vt = (vt1, . . . , vtq)

τ be a vector of exogenous time

series. Now model (1.1) is a partially linear autoregressive model of the form

ut =
r∑

i=1

βiut−i + g(vt1, . . . , vtq) + et. (2.1)

Example 2.2 (Partially nonlinear autoregressive models): Let v1, v2, . . . be an endogenous

time series, Yt = vt, Vt = (vt−1, . . . , vt−q)
τ , and Ut = (ut1, . . . , utr)

τ be a vector of exogenous

variables. Then model (1.1) is a partially nonlinear autoregressive model of the form

vt =
r∑

i=1

αiuti + g(vt−1, . . . , vt−q) + et. (2.2)

Some estimation results for models (2.1) and (2.2) can be found from the literature. See

for example, Robinson (1988), Teräsvirta, Tjøstheim and Granger (1994), Gao and Liang

(1995), Gao (1998), Li and Hsiao (1998), Härdle, Liang and Gao (2000), and Gao, Tong and

Wolff (2002a, 2002b).

In recent years, some other semiparametric regression models have also been discussed.

We now review two related models, which are given in Examples 2.3–2.4.

Example 2.3: Consider a linear regression with a nonparametric error model of the form

Yt = Xτ
t β + ut, ut = g(ut−1) + εt, (2.3)

where Xt and β are p-dimensional column vectors, Xt is stationary with finite second mo-

ments, Yt and ut are scalars, g(·) is an unknown function, possibly nonlinear, and is such

that ut is at least stationary with zero mean and finite variance i.i.d. innovations εt.

Model (2.3) was proposed by Hidalgo (1992) and then estimated by a kernel based pro-

cedure.
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Example 2.4: Consider a nonparametric regression with an AR(1) error model of the form

Yt = g(Xt) + ut, ut = θut−1 + εt, (2.4)

where (Xt, Yt) is a bivariate stationary time series, θ, satisfying |θ| < 1, is an unknown

parameter, g(·) is an unknown function, and εt is i.i.d. with zero mean and finite variance

0 < σ2 < ∞.

Truong and Stone (1994) proposed an estimation procedure for model (2.4).

In addition to the application of models (2.1)–(2.4) in economics and finance, one can

extend models (2.1)–(2.4) to derive some very useful models such as semiparametric error

correction models (SECMs). Before our derivation, we review a class of parametric error

correction models (PECMs).

Parametric error correction models have been discussed extensively in the literature. See

for example, Phillips and Loretan (1991), Mills (1993, §6.5–§6.6), and van Dijk and Franses

(2000). We now consider one general parametric error correction model discussed in Phillips

and Loretan (1991).

Example 2.5: Consider a parametric error correction model of the form

Yt = Xτ
t β +

q∑
s=1

γτ
s 5Xt−s + εt, (2.5)

where Xt = (Xt1, . . . , Xtp)
τ is a vector of endogenous time series, β = (β1, . . . , βp)

τ is a vector

of unknown parameters, 5Xt = Xt−Xt−1, γs is another vector of unknown parameters, and

εt is a white noise error term.

Model (2.5), as discussed in Mills (1993), can be used to model financial relations, such

as the relationship between equity prices, dividends and gilt yields. In practical applications,

however, whether the dependence of Yt on 5Xt is linear cannot be known for some data sets,

in particular, the financial data. Therefore, one would suggest using some nonparametric

models in practice and let the data speak for themselves.

For convenience, we first consider the case of p = 1 and introduce the following notation.

ut = Yt −Xtβ, vts = 5Xt−s, and vt = (vt1, . . . , vtq)
τ .

Example 2.6 (Semiparametric error correction model): If the pair (ut, vt) satisfies model

(2.1), then a semiparametric form of model (2.5) can be written as

Yt = Xtβ + ut, ut = g(vt1, . . . , vtq) + εt. (2.6)

As can be seen from model (2.6), in order to determine whether leads of 5Xt are being

included in model (2.6), it suffices to test whether the null hypothesis H0 : g = 0 holds.
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For model (2.6), the absence of the nonlinearity in 5Xt implies that the error process

ut = Yt−Xtβ is just white noise. Obviously, model (2.7) without nonlinearity is much simpler

in theory and may be more applicable in practice. Thus, one would suggest determining

whether the simpler model is appropriate before applying model (2.6) to actual data.

As in Phillips and Loretan (1991), Xt in (2.5) is a vector of endogenous time series, one

needs to consider the following extension.

For the case where Xt = (Xt1, . . . , Xtp)
τ is a vector of endogenous time series, model

(2.5) can be extended to the following additive semiparametric error correction model

Yt = Xτ
t β +

q∑
j=1

p∑
i=1

gij(5Xt−j,i) + εt, (2.7)

where {gij : 1 ≤ i ≤ p, 1 ≤ j ≤ q} are unknown functions defined on R1 and the others are

as defined before.

As this paper mainly considers applications of the proposed model specification testing

procedures to model (2.6), estimation and testing procedures associated with model (2.7)

will not be detailed. We leave them for future research.

2.2. Special and extended forms of model (1.2)

Example 2.9: Model (1.2) has some special forms. This example considers the case where

p = 1, both Xt and et are i.i.d., and et is independent of Xt with E[et] = 0 and E[e2
t ] < ∞.

Consider a partially linear model of the form

Yt = Xtβ + g(Xt) + et. (2.8)

For the discussion of model (2.8) in the i.i.d. case, see Eubank and Spiegelman (1990),

Eubank and Hart (1992), Chen (1994), Shively, Kohn and Ansley (1994), and Jayasuriva

(1996).

Example 2.10 (Partially linear ARCH models): For the case where p = 1, Yt is a sequence

of time series, Xt = Yt−1, and et depends on Yt−1, model (1.2) is a partially linear ARCH

model of the form

Yt = βYt−1 + g(Yt−1) + et, (2.9)

where et is assumed to be stationary, both β and g are identifiable, and σ2(y) = E[e2
t |Yt−1 =

y] is a smooth function of y. Hjellvik and Tjøstheim (1995), and Hjellvik, Yao and Tjøstheim

(1998) considered testing for linearity in model (2.9). Granger, Inoue and Morin (1997) have

considered some estimation problems for the case of β = 1 in model (2.9).
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Example 2.11 (Nonparametric stochastic differential equations): This example involves using

model (1.2) to approximate a continuous-time process of the form

drt = µ(rt)dt + σ(rt)dBt, (2.10)

where µ(·) and σ(·) > 0 are respectively the drift and volatility functions of the process, and

Bt is standard Brownian motion. We now consider a discretized version of model (2.10) of

the form

rt∆ − r(t−1)∆ = µ(r(t−1)∆)∆ + σ(r(t−1)∆)[Bt∆ −B(t−1)∆], t = 1, 2, · · · , (2.11)

where ∆ is the time between successive observations. In practice, ∆ is small but fixed, as

most continuous-time models in finance are estimated with monthly, weekly, daily, or higher

frequency observations.

Suppose that data are sampled at time t∆ for t = 1, 2, · · · , T . Let

Yt = (rt∆ − r(t−1)∆)/∆, Xt = r(t−1)∆ and µ(Xt) = βXt + g(Xt),

where both β and g(·) are identifiable. Model (2.11) now can be written as

Yt = Xtβ + g(Xt) + σ(Xt)εt, (2.12)

where εt is a Gaussian random error with E[εt] = 0 and var[εt] = ∆−1. Obviously, model

(2.12) is a special form of model (1.2).

In Section 4 below, we will use model (2.12) to fit a given set of financial data.

As mentioned earlier, when p in model (1.2) is more than two or three, model (1.2) itself

is not very feasible in practice due to the curse of dimensionality. As an alternative, one can

use either

Yt = Xτ
t β + g(Xs

t ) + et (2.13)

or

Yt = Xτ
t β +

p∑
j=1

gj(Xtj) + et, (2.14)

where Xs
t is a sub-vector of Xt and each gj is an unknown function defined on R1. As both β

and gj are required to be identifiable, some orthogonality conditions on gj are needed. The

null hypothesis H0 : g(·) = 0 has not been considered yet. When each gj is approximated

by a series of orthogonal functions as used in Gao, Tong and Wolff (2002a, 2002b), a test

statistic for testing H0 : gj = 0 can be constructed and its asymptotic distribution can be

established. In general, each gj can be estimated by using the so-called marginal integration

method [see Linton and Härdle (1996); Linton (1997, 2000); Sperlich, Tjøstheim and Yang
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(2002)] and then a test statistic can be constructed. As the detail is lengthy and extremely

technical, it will not be given in this paper.

3. Estimation and model specification testing procedures

This section first considers an estimation and model specification procedure for a general

nonparametric regression model. Specific applications of the proposed procedure to some of

the above models are discussed later.

3.1. Estimation and testing in a general model

Suppose that (X, Y ) is a p + 1-dimensional process with X = (X1, . . . , Xp)
τ ∈ Rp and

Y ∈ R1. Consider a general nonparametric regression model of the form

Y = E[Y |X] + e = m(X) + e, (3.1)

where m(x) = E[Y |X = x] is an unknown function, e is an error process with mean zero

and allowed to depend on X.

We first consider a general testing problem of the form

H0 : m(x) = 0.

As the choice of a test statistic depends on not only the type of estimator used for m(·) but

also the type of distance measure, we suggest using a distance measure of the form

π0 = E{Y E[Y |X]f(X)} = E{[E(Y |X)]2f(X)} ≥ 0, (3.2)

where f(·) is the density function of X. It follows that π0 ≡ 0 holds if and only if H0 is true.

This section then constructs a test statistic for testing H0. In order to do so, one needs

to estimate the unknown function m(·) first.

Let {(Xt, Yt) : 1 ≤ t ≤ T} be a set of observations, T be the number of observations,

and W be a T × T matrix depending on (X1, . . . , XT ) and T . Let m̂(·) denote the general

nonparametric estimator of m(·). Assume that

M̂ = (m̂(X1), . . . , m̂(XT ))τ = WY, (3.3)

where Y = (Y1, . . . , YT )τ and W depends mainly on the type of nonparametric estimator

used.

Assume that there are two sequences {pst} and {dst} with min1≤s,t≤T dst > 0 such that

the s × t element, wst, of W can be represented by wst = pst

dst
. Now equations (3.1)–(3.3)

suggest using the following test statistic

LT =

∑T
t=1

∑
s 6=t pstYsYt

ŜT

, (3.4)
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where Ŝ2
T = 2

∑T
t=1

∑T
s=1 p2

stY
2
s Y 2

t . Note that the explicit form of W depends on the type of

nonparametric estimator used in (3.3).

Before establishing the asymptotic distribution of (3.4), we consider the following ex-

amples.

Example 3.1 [Nonparametric kernel method]: Let K be a kernel function on Rp and h be a

bandwidth parameter depending on T with h = hT → 0 as T → ∞. In this example, we

consider estimating m(·) by either the PC (see Priestley and Chao 1972) kernel estimator

m̂(x) =
1

Thp

T∑
s=1

Kh(x−Xs)Ys

or the Nadaraya–Watson (NW) kernel estimator [see equation (2.4) of Fan and Gijbels (1996)]

m̂(x) =
1

Thp

∑T
s=1 Kh(x−Xs)Ys

1
Thp

∑T
s=1 Kh(x−Xs)

.

Thus, in (3.4) one can choose

pst =
1

Thp
Kh(Xs −Xt) and dst ≡ 1

for the PC case, and

pst =
1

Thp
Kh(Xs −Xt) and dst =

1

Thp

T∑
u=1

Kh(Xs −Xu) (3.5)

for the NW case, where Kh(·) = K(·/h).

Remark 3.1. Note that LT is similar to that proposed in Li (1999). In Li (1999), the author

considers testing the hypothesis H0 : E[e|X] = 0 in model (3.1) and uses the Nadaraya–

Watson kernel estimator of the form

m̂(x) =

∑T
t=1 Kh(x−Xt)Yt∑T
t=1 Kh(x−Xt)

and then constructs test statistics based on Kst = Kh(Xs − Xt). In order to avoid the

random denominator problem, the author chooses a modified test statistic of the form

L̃T =

∑T
t=1

∑
s 6=t Kstêtf̂têsf̂s

S̃T

,

where S̃2
T = 2

∑T
t=1

∑T
s=1 K2

stê
2
t f̂

2
t ê2

sf̂
2
s , êt = Yt − m̂(Xt), and f̂t = f̂(Xt) = 1

Thp

∑T
s=1 Kts.

The next example involves the nonparametric series estimation method.

Example 3.2 [Nonparametric series method]: Assume that there are a sequence of series

functions {zi(·) : 1 ≤ i ≤ k} and a vector of unknown parameters {γi : 1 ≤ i ≤ k}
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such that m(x) can be approximated by
∑k

i=1 zi(x)γi. Let Z(x) = (z1(x), . . . , zk(x))τ , Z =

(Z(X1), . . . , Z(XT ))τ , γ = (γ1, . . . , γk)
τ and W = Z(ZτZ)+Zτ , in which k = kT is an integer,

k = kT →∞ as T →∞, and (·)+ denotes the Moore-Penrose inverse.

It can be shown that the least squares estimator of γ is given by γ̂ = (ZτZ)+ZτY . The

nonparametric series estimator of m(·) is defined as m̂(x) = Z(x)τ γ̂.

We now have

M̂ = (m̂(X1), . . . , m̂(XT ))τ = Z(ZτZ)+ZτY = WY.

Without loss of generality, assume c2
i = E[z2

i (Xs)] = 1 for all i ≥ 1. Define the diagonal

matrix I =diag(1, · · · , 1). Let dst be the s× t element of the matrix

D =
(
I + T (ZZτ )+

(
Z(ZτZ)+Zτ − T−1ZZτ

))+
.

For the series method, one chooses

pst =
1

T

k∑
i=1

zi(Xs)zi(Xt) and wst =
pst

dst

(3.6)

in (3.4).

Remark 3.2. One can consider using the following test statistic directly

LT =

∑T
t=1

∑
s 6=t wstYsYt

ST

, (3.7)

where S
2

T = 2
∑T

t=1

∑T
s=1 w2

stY
2
s Y 2

t , in which wst is the s× t element of W = Z(ZτZ)+Zτ .

In theory, it can be shown that LT of (3.7) is asymptotically equivalent to LT of (3.4)

with pst defined by (3.6). In practice, however, one would prefer to use LT , as it avoids the

random denominator problem.

We conclude the examples by pointing out that one can consider the case where m(·) is

approximated by the B–spline. We shall not detail this case, as our experience shows that

for the dependent time series observations the B–spline approximation is very difficult to be

implemented in practice.

We now establish the first result of this paper.

Theorem 3.1. Assume that Assumptions A.1, A.2 and A.4 listed in Assumption A hold.

Then under H0

LT →D N(0, 1) as T →∞.

Furthermore, under H1 : m(·) 6= 0, we have limT→∞ P (LT ≥ CT ) = 1, where CT is any

positive, nonstochastic sequence with CT = o(Tq−1/2), in which q = qT → ∞ as T → ∞ is

as defined in Assumption A.2.
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Remark 3.1. Theorem 3.1 establishes the asymptotic distribution of the proposed statistic

LT of (3.4). It extends Theorem 3.1 of Li (1999) from the β–mixing condition to the α–

mixing case. In addition, the test statistic LT doesn’t depend on a particular nonparametric

estimation method, although one needs to identify the form of {pst} when implementing the

test statistic in practice.

For Examples 3.1 and 3.2, we have the following corresponding results.

Corollary 3.1. (i) Let pst in (3.4) be defined by (3.5). Assume that Assumptions A.1, A.4

and A.5 hold. Then the conclusions of Theorem 3.1 remain true.

(ii) Let pst in (3.4) be defined by (3.6). Assume that Assumptions A.1, A.4 and A.6 hold.

Then the conclusions of Theorem 3.1 remain true.

The proofs of Theorem 3.1 and Corollary 3.1 are relegated to Appendix B.

3.2. Testing for nonparametric significance and linearity

As the test statistics for some models are similar to those for others, one will only consider

testing for nonparametric significance and linearity for some special forms of models (1.1)

and (1.2).

3.2.1. Testing for nonparametric significance

Before discussing model (1.1), we consider a general nonparametric regression model of

the form

Yt = m(Xt) + et = m(Ut, Vt) + et, (3.8)

where Xt = (U τ
t , V τ

t )τ , and Ut = (Ut1, · · · , Utd)
τ (d ≤ p − 1) and Vt = (Vt1, · · · , Vtc)

τ (c =

p − d) are allowed to be two different time series. For example, Ut could be a vector of

endogenous time series while Vt could be a vector of exogenous time series. Due to the curse

of dimensionality problem arising from using nonparametric regression modelling, before

applying model (3.8) in practice one needs to consider whether Yt depends only on the time

series Ut. In other words, one needs to test whether the null hypothesis H0 : E[Yt|Xt] −
E[Yt|Ut] = 0 holds.

Under Assumption A.3, one can estimate m1(Ut) = E[Yt|Ut] by

m̂1(Ut) =
T∑

s=1

w1tsYs,

where w1st = p1st

c1st
is as defined in Assumption A.3(ii).

Thus one can estimate m2(Xt) = m(Xt)−m1(Ut) by

m̂2(Xt) =
T∑

s=1

wtsYs −
T∑

s=1

w1tsYs. (3.9)
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This suggests using the following test statistic

L1T =

∑T
t=1

∑
s 6=t pstŶsŶt

Ŝ1T

, (3.10)

where Ŷt = [Yt − m̂1(Ut)]d1Tt, d1Tt = 1
T

∑T
s=1 c1ts, and Ŝ2

1T = 2
∑T

t=1

∑T
s=1 p2

stŶ
2
s Ŷ 2

t .

When model (3.8) is a nonparametric additive model of the form

Yt = m1(Ut) + m2(Vt) + et, (3.11)

one can use (3.10) to test the nonparametric hypothesis H0 : m2 = 0.

Remark 3.3. The test statistic L1T of (3.10) is similar to that of (6) of Li (1999). For the

NW case, L1T is actually identical to that of (6) of Li (1999). An empirical study of the test

statistic for testing H0 : m2 = 0 is given in Example 4.1.

For model (3.8), we now consider the null hypothesis H0 : m2(Xt) = 0 versus the

alternative H1 : m2(Xt) 6= 0. For model (3.11), we consider the null hypothesis H0 :

m2(Vt) = 0 versus the alternative H1 : m2(Vt) 6= 0.

Theorem 3.2. Let Xt = (U τ
t , V τ

t )τ . Assume that (Xt, Yt) and et satisfy Assumption A.1. In

addition, suppose that Assumptions A.3 and A.4 hold. Then the conclusions of Theorem 3.1

hold for L1T .

As a special case of model (3.11), one can consider model (1.1) given by

Yt = U τ
t β + g(Vt) + et.

For model (1.1), one can estimate the nonparametric component g(·) and then define the

estimators of β and g(·) by [see Härdle, Liang and Gao (2000, §1.2)],

β̂1 = (Ũ τ Ũ)+Ũ τ Ỹ and ĝ(Vt) =
T∑

s=1

w2ts(Ys − U τ
s β̂1),

respectively, where Ũ = (I − W2)U , U = (U1, . . . , UT )τ , Ỹ = (I − W2)Y , W2 = {w2st}
is a T × T matrix with w2st as its s × t element, and the definition of w2st = p2st

c2st
with

min1≤s≤T c2st > 0 is similar to that of w1st.

Similar to (3.10), one can construct the following test statistic

L2T =

∑T
t=1

∑
s 6=t p2stŶsŶt

Ŝ2T

,

where Ŝ2
2T = 2

∑T
t=1

∑T
s=1 p2

2stŶ
2
s Ŷ 2

t and Ŷt = Yt − U τ
t β̂1.

For model (1.1), we now have the following result for the null hypothesis H0 : g = 0

versus the alternative H1 : g 6= 0.

12



Theorem 3.3. Let Xt = (U τ
t , V τ

t )τ . Assume that (Xt, Yt) and et satisfy Assumption A.1. In

addition, suppose that Assumptions A.3 and A.4 hold. Then the conclusions of Theorem 3.1

hold for L2T .

For the series method case, Theorem 3.3 is similar to Theorem 2.3 of Gao, Tong and

Wolff (2002a). The proofs of Theorems 3.2 and 3.3 are relegated to Appendix B.

Corollary 3.2. As models (2.1), (2.2), (2.4) and (2.6) are special cases of model (1.1), the

corresponding test statistics and their asymptotic distributions follow immediately.

Corollary 3.3. For model (2.3), one needs to construct the following test statistic

L3T =

∑T
t=1

∑
s 6=t p̂stŶsŶt

Ŝ3T

,

where Ŝ2
3T = 2

∑T
t=1

∑T
s=1 p̂2

stŶ
2
s Ŷ 2

t , Ŷt = Yt−Xτ
t β̂2, p̂st = p(Ŷs−1, Ŷt−1), and β̂2 is the solution

of

min
β

T∑
t=1

[
ut −

T∑
s=1

p(ut−1, us−1)

]2

,

where ut = Yt −Xτ
t β.

Under some additional conditions on the nonparametric estimation function pst, the

asymptotic normality of L3T can be established, although the detail is extremely technical.

3.2.2. Testing for linearity in model (1.2)

Consider a generalized form of model (1.2) given by

Yt = α + Xτ
t β + g(Xt) + et, (3.12)

where α, β and g(·) are identifiable.

It follows that the least squares estimators of α and β can be defined as

α̂ = Ȳ − X̄τ β̂3,

β̂3 =

(
T∑

t=1

(Xt − X̄)(Xt − X̄)τ

)+ T∑
t=1

(Xt − X̄)(Yt − Ȳ ),

where X̄ = 1
T

∑T
t=1 Xt and Ȳ = 1

T

∑T
t=1 Yt.

One can now suggest the following test statistic for testing H0 : g = 0,

L4T =

∑T
t=1

∑
s 6=t pstŶsŶt

Ŝ4T

,

where Ŝ2
4T = 2

∑T
t=1

∑T
s=1 p2

stŶ
2
s Ŷ 2

t , Ŷt = Yt − α̂−Xτ
t β̂3, and pst is as defined in (3.4).

We now have the following result for the null hypothesis H0 : g = 0 versus the alternative

H1 : g 6= 0.

13



Theorem 3.4. Assume that Assumptions A.1, A.2 and A.4 hold. In addition, suppose that

α, β and g(·) are identifiable. Then the conclusions of Theorem 3.1 hold for L4T .

The proof of Theorem 3.4 is relegated to Appendix B.

Corollary 3.4. As models (2.8), (2.9) and (2.12) are special cases of model (1.2), the corres-

ponding test statistics and their asymptotic distributions for the models can be established

immediately.

For model (2.10), we will use model (2.12) to approximate it and then apply model (2.10)

to fit a set of financial data in Section 4.3. In the meantime, some alternative estimators for

both the drift and the diffusion are also provided and compared in some detail.

4. Implementation and applications

This section illustrates the proposed estimation and testing procedure by three simulated

examples and one real data analysis. We consider only small sample studies and applications

for a nonparametric additive model and some special cases of model (1.2) due to the following

reasons:

(i) Small sample studies for model (1.1) are similar to those for the additive model and model

(1.2);

(ii) some special cases of model (1.1) have already been discussed [see Härdle, Liang and

Gao (2000, §6.2)]; and

(iii) model (1.2) has econometric applications.

4.1. Testing for nonparametric significance

In this section, we illustrate the test statistic L1T of (3.10) by a simulated example.

Rejection rates of the test statistic L1T are detailed in Example 4.1. Let X ∼ U(a, b) denote

that X is uniformly distributed over [a, b], and e ∼ N(µ, σ2) denote that e is normally

distributed with mean µ and variance σ2.

Example 4.1. Consider a nonparametric additive model of the form

Yt = 0.3 cos(Ut) + φ sin(Vt) + et, t = 1, 2, . . . , T, (4.1)

Ut = −0.5Ut−1 + εt, Vt = 0.5Vt−1 + ζt, et = σ0ηt

√
0.25 + 0.5U2

t ,

where 0 ≤ φ ≤ 1 is a constant, {εt : t ≥ 1}, {ζt : t ≥ 1} and {ηt : t ≥ 1} are mutually

independent and identically distributed, {Ut : t ≥ 1} and {Vt : t ≥ 1} are independent,

{εt : t ≥ 1} are independent of U0, {ζt : t ≥ 1} are independent of V0, εt ∼ U(−0.5, 0.5),

ζt ∼ U(−0.5, 0.5), U0 ∼ U(−1, 1), V0 ∼ U(−1, 1), ηt ∼ N(0, 1), and σ0 > 0 is to be specified.

It is clear from (4.1) that Assumption A.1 holds.
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This example then considers the small sample behaviour of the proposed test statistic

L1T =

∑T
t=1

∑
s 6=t pstŶsŶt

Ŝ1T

,

where

Ŷt = [Yt − m̂1(Ut)]f̂t, f̂t =
T∑

s=1

p1ts, m̂1(Ut) =
T∑

s=1

w1tsYs, Ŝ2
1T = 2

T∑
t=1

T∑
s=1

p2
stŶ

2
s Ŷ 2

t ,

pst =
1

Th
Kh(Xs −Xt), p1st =

1

Th
Kh(Us − Ut), w1st =

1
Th

Kh(Us − Ut)∑T
t=1

1
Th

Kh(Us − Ut)
,

K(x) =
1√
2π

e−
x2

2 , and h−1 = 2T 1/4.

Obviously, Assumptions A.4 and A.5 hold. For Example 4.1, we use the asymptotic

critical value L0 = 1.65 at the 5% level. For model (4.1) we consider the cases where T = 50,

150 and 250. The simulation results were performed 1500 times and the rejection rates are

tabulated in Table 4.1 below.

Table 4.1. Rejection Rates For Example 4.1

Sample bandwidth variance Rejection rate of L1T

T h σ2
0 φ = 0 φ = 0.1 φ = 0.25 φ = 0.5

50 0.1871 0.5 0.000 0.020 0.073 0.520

150 0.1426 0.5 0.000 0.273 0.960 1.000

250 0.1256 0.5 0.006 0.706 1.000 1.000

50 0.1871 1.0 0.000 0.000 0.026 0.300

150 0.1426 1.0 0.000 0.046 0.460 1.000

250 0.1256 1.0 0.006 0.106 0.926 1.000

50 0.1871 1.5 0.000 0.000 0.013 0.120

150 0.1426 1.5 0.000 0.006 0.226 0.993

250 0.1256 1.5 0.006 0.040 0.666 1.000

Remark 4.1. Table 4.1 shows that the rejection rates seem relatively sensitive to the values of

T , φ, and σ0. The power increased as φ increased while the power decreased as σ0 increased

for almost all cases. This shows that the rejection rates depend strongly on the values of σ2
0

as well as φ. In addition, Table 4.1 shows that the overall rejection rate is high. For example,

for the case where φ = 0.25, σ2
0 = 0.5 and T = 250, the rejection rate is already 100%. In the

meantime, our small sample studies show that the test statistic is very sensitive in accepting

the null hypothesis for the case of φ = 0. For example, almost all acceptance rates for the

case of φ = 0 are 100%. We think that the reason why the test statistic is very sensitive in
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terms of accepting or rejecting the hypothesis is probably because the test statistic suggested

by Li (1999) overcomes the random denominator problem, which could slow the rejection

rates. We also computed the rejection rates for a modified form of the test statistic L1T with

Ŷt = [Yt−m̂1(Ut)]f̂t in L1T replaced by Ỹt = Yt−m̂1(Ut). Our small sample studies show that

the rejection rates of L1T are always higher than those of the modified form. Theoretically,

however, we haven’t been able to show that the test statistic L1T is more powerful than the

modified form.

4.2. Testing for linearity

In this section, we illustrate the test statistic L4T by a simulated example. Rejection

rates of the test statistic L4T are detailed in Example 4.2.

Example 4.2. Consider a state-space model of the form

Yt = 0.3Xt + φX2
t + et, t = 1, 2, . . . , T, (4.2)

Xt = 0.5Xt−1 + εt, et = σ0ηt

√
0.5 + 0.25X2

t ,

where 0 ≤ φ ≤ 1 is a constant, both {εt : t ≥ 1} and {ηt : t ≥ 1} are mutually independent

and identically distributed, the {εt : t ≥ 1} are independent of X0, the {ηt : t ≥ 1} are

independent of X0, εt ∼ U(−0.5, 0.5), X0 ∼ U(−1, 1), ηt ∼ N(0, 1), and σ0 > 0 is to be

specified.

First, it is clear from (4.2) that Assumption A.1 holds. Second, in the calculation of L4T ,

we choose the following quantities

pst =
1

Th
Kh(Xs −Xt), K(x) =

1√
2π

e−
x2

2 , and h−1 = 4T 1/5.

Obviously, Assumptions A.4 and A.5 hold. For Example 4.2, we use the asymptotic

critical value L0 = 1.65 at the 5% level. For model (4.2) we consider the cases where T = 50,

150, 250 and 350. The simulation results were performed 1500 times and the rejection rates

are tabulated in Table 4.2 below.

Table 4.2. Rejection Rates For Example 4.2

T h σ2
0 φ = 0 φ = 0.10 φ = 0.25 φ = 0.50

50 0.114 0.15 0.026 0.026 0.106 0.386

150 0.091 0.15 0.026 0.080 0.433 0.993

250 0.083 0.15 0.033 0.140 0.700 1.000

350 0.077 0.15 0.046 0.226 0.880 1.000

50 0.114 0.10 0.026 0.033 0.153 0.573

150 0.091 0.10 0.026 0.100 0.606 1.000

250 0.083 0.10 0.033 0.206 0.880 1.000

350 0.077 0.10 0.046 0.273 0.973 1.000
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Remark 4.2. Table 4.2 shows that the rejection rates seem relatively sensitive to the choice of

T , φ, and σ0. The power increased as φ increased while the power decreased as σ0 increased

for the case of φ 6= 0. This shows that the rejection rates depend strongly on the choice

of σ2
0. For example, the rejection rate for model with φ = 0.25, σ2

0 = 0.10 and T = 350 is

already 97.3%. Moreover, the rejection rates for the case where σ2
0 = 0.15 and φ = 0.10 or

0.25 are higher than those for the case where σ2
0 = 0.10 and φ = 0.10 or 0.25. For the case

where φ = 0, however, the rejection rates for the case of σ2
0 = 0.15 are indistinguishable

to those for the case of σ2
0 = 0.10. Similarly, we computed the rejection rates for the case

where the distribution of ηt is replaced by U(−1, 1). Our simulation results show that the

performance of L4T under the normal error is better than that under the uniform error.

For examples 4.1 and 4.2, we also computed the rejection rates for the series based test

statistics, and the simulation results are similar to those based on the kernel method.

4.3. Implementation and application in financial models

Recently, several researchers have used nonparametric techniques to estimate continuous-

time diffusion processes that are observed at discrete intervals. For example, Aı̈t-Sahalia

(1996a) estimated the diffusion function (or volatility function) nonparametrically, given a

linear specification for the drift function. Stanton (1997) constructed a family of approx-

imations to the drift and diffusion of a diffusion process, and estimated the approximations

nonparametrically. Fan and Yao (1998) considered using the local linear kernel method

to estimate both the drift and the diffusion of a class of discrete time series models, and

presented asymptotic properties as well as practical applications.

While estimating the diffusion function nonparametrically is quite reasonable, it is too

restrictive to impose the linearity on the drift as there is evidence of substantial nonlinearity

in the drift [see Aı̈t-Sahalia (1996b) for example]. As pointed out by Ahn and Gao (1999),

the linearity of the drift imposed in the literature appears to be the main source of misspe-

cification. To avoid misspecification for the drift function, it would be better to consider

a model specification problem before determining whether one should impose the linearity

on the drift. Aı̈t-Sahalia (1996b) already considered testing the parametric specification of

diffusion processes. Pritsker (1998) conducted the finite sample simulation of one of Aı̈t-

Sahalia (1996b) nonparametric tests of continuous time models of the short-term riskless

rate. See also Jiang and Knight (1997), and Chapman and Pearson (2000).

Consider model (2.10). It follows from Aı̈t-Sahalia (1996a) and Stanton (1997) that

µ(x) =
1

2π(x)

d

dx
[σ2(x)π(x)] (4.3)

and

σ2(x) =
2

π(x)

∫ x

0
µ(u)π(u)du, (4.4)
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where π is the stationary density of Xt.

Equation (4.3) allows us to estimate the drift function nonparametrically, given a non-

parametric estimate of the stationary density, π, but only if we know the diffusion, σ. Con-

versely, equation (4.4) allows us to estimate the diffusion function nonparametrically, given

a nonparametric estimate of the stationary density, π, but only if we know the drift, µ.

Aı̈t-Sahalia (1996a) assumed a linear drift

µ(x) = κ[θ − x] (4.5)

in (4.4) and then estimated σ2 nonparametrically. As argued by Stanton (1997) and some

other authors, however, there is mounting evidence that condition (4.5) is not suitable.

In order to determine the linearity in the drift, we suggest testing the null hypothesis

H0 : µ is linear versus H1 : µ is nonlinear.

As can be seen from models (2.10) and (2.12), in order to test whether the drift function

is linear, it suffices to test whether H0 : g(·) = 0 holds in model (2.12).

Before using our test statistic L4T in practice, we review some related estimation and

testing methods. It follows from (4.3) and (4.4) that the estimator of σ2(·) can be constructed

based on the estimator of µ(·), and vice versa. As mentioned earlier, Aı̈t-Sahalia (1996a)

uses (4.4) to estimate σ(·) based on the linear estimator of µ(·). Jiang and Knight (1997)

estimated σ(·) and then use (4.3) to estimate µ(·). More recently, Chapman and Pearson

(2000) conducted small sample studies for the estimators proposed in Aı̈t-Sahalia (1996a)

and Stanton (1997). Their conclusion is that there is no definitive answer to the question

that the drift function of short-term interest rate data is nonlinear.

Thus we suggest using the test statistic L4T for testing the linearity. Unlike the testing

procedure proposed in Aı̈t-Sahalia (1996b), we test for linearity in the drift rather than in

both the drift and the diffusion. As pointed out by Aı̈t-Sahalia (1996b), in order to test both

the drift and the diffusion, it suffices to test whether the stationary density π(·) belongs to

a specific family of density functions.

In this section, we then illustrate Theorem 3.4 using one simulated example and one real

example. Rejection rates of the test statistic are detailed in Example 4.3.

Example 4.3. Consider the interest rate model proposed by Ahn and Gao (1999),

drt = κ(θ − rt)rtdt + σr1.5
t dBt, t = 1, 2, · · · , (4.6)

with parameter values κ > 0, θ > 0 and σ > 0, where Bt is standard Brownian motion.

Model (4.6) was proposed by Ahn and Gao (1999). The authors show that the necessary

and sufficient conditions for stationarity of the process are κ > 0 and θ > 0 [see Appendix
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A of Ahn and Gao (1999)]. The authors also consider estimating the parameters κ, θ and σ

[see Table 3 of Ahn and Gao (1999)].

Assume that the initial interest rate is r0 = 0.06. In this example, we consider the

discretized model (2.12)

Yt = βXt + g(Xt) + σ(Xt)εt, (4.7)

where εt ∼ N(0, ∆−1),

Yt =
rt∆ − r(t−1)∆

∆
and Xt = r(t−1)∆,

µ(Xt) = κ(θ −Xt)Xt = βXt + g(Xt) and σ(Xt) = σX1.5
t ,

in which both β = κθ and g(Xt) = −κX2
t are identifiable. In the following small sample

study, we consider three different choices of ∆: ∆ = 1
250

(daily), ∆ = 5
250

(weekly), and

∆ = 20
250

(monthly).

In this example, one considers using the series approximation to g(·). The family of

orthogonal series used here is

{cos(πv), · · · , cos(kπv)}, (4.8)

where k = 4
[
T

1
5

]
and v ∈ [−1, 1].

First, it is clear that Assumption A.1 holds. See for example, Lu (1998). Second, applying

the property of trigonometric functions, we have

E[cos(iπVs) cos(iπVt)] = 0 and E[cos(iπVt) cos(jπVt)] = 0

for all i 6= j and s 6= t, where Vt = 100(Xt − X) and X = 1
T

∑T
t=1 Xt. As the simulated

values of rt are generally small, we use Vt instead of Xt in the sample simulation. Therefore

Assumption A.6 holds. Finally, as pointed out by Hong and White (1995), Eumunds and

Moscatelli’s (1977) results can be applied to show that non-periodic functions can still be

approximated by the family of trigonometric series (4.8). Thus Assumption A.6 holds with

µ = 1. Moreover, the optimum convergence rate given in Assumption A.6(i) is obtained as

in the periodic case.

Based on (3.6) and (4.6)–(4.8), we can now compute L4T . For the calculation of rejection

rates of the null hypothesis H0, one needs to use the asymptotic critical value L0 = 1.65 at

the 5% level.

This example uses κ = 3.5, θ = 0.08 and σ = 1.28 [see Table 3 of Ahn and Gao (1999)]

for the detailed simulation. The simulation results below were performed 1500 times and

the rejection rates are tabulated in Table 4.3 below.

Table 4.3. Rejection Rates For Example 4.3
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T k ∆ = 1
250

∆ = 5
250

∆ = 20
250

50 8 0.280 0.240 0.272

500 13 0.439 0.448 0.424

1050 16 0.700 0.600 0.409

1550 17 0.900 0.666 0.474

Remark 4.3: Table 4.3 shows that the rejection rates seem relatively sensitive to the choice

of both k and ∆, although the choice of k is not so significant for the case of ∆ = 20
250

. For

the case where T = 1050 or 1550, the rejection rates decrease as the values of ∆ increase.

This demonstrates that the rejection rates depend heavily on how the continuous process rt

is discretised. When T = 1550 and ∆ = 1
250

, the rejection rate is as high as 90%.

Example 4.4: This example considers using model (2.10) to fit the US Federal interest rate

data, monthly from January 1963 through December 1998. Let rt denote the interest rate

data, Xt = 100rt and Yt = (Xt+1 −Xt)/∆ for t = 1, 2, · · · , 431, where ∆ = 20/250.

This example considers using the test statistic of L4T to determine whether nonlinearity

in the drift is appropriate for the interest rate data. In the calculation of L4T , we choose the

following quantities

pst =
1

Th
Kh(Xs −Xt), K(x) =

1√
2π

e−
x2

2 , and h−1 = 4 · T 1/5.

In this example, we estimate σ2(·) by

σ̂2(Xt) = ∆ ·
T∑

s=1

wts[Ys −Xsβ̂3 − ĝ(Xs)]
2,

where wts = Kh(Xt−Xs)∑T

u=1
Kh(Xt−Xu)

and ĝ(Xt) =
∑T

s=1 wts(Ys −Xsβ̂3).

By computing L4T for model (4.7), we obtain that

L4T = 2.66 > 1.65,

which is the asymptotic critical value at the 5% level. This conclusion is the same as Gao

(2000), who considered using the series based test statistic. As suggested by some other

existing studies [see Aı̈t-Sahalia (1996a); Stanton (1997)], our research suggests that it is

unreasonable to assume the linearity in the drift. Moreover, as one can see from the plots,

the drift function appears to be nonlinear while the diffusion looks neither linear, nor like

a square root function, but appears closer to the r1.5 given in Example 4.3. The model

was suggested by Ahn and Gao (1999). Some other studies already show that parametric

nonlinear models can also be used to fit the data. See for example, Aı̈t-Sahalia (1999).

5. Conclusion
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In this paper, we consider the general nonparametric time series regression model (3.1),

estimate the mean by the nonparametric weight function (3.3), and then propose the model

specification testing statistic (3.4) for testing the mean under the α–mixing condition. As an

application of the model specification procedure, we consider testing for nonparametric sig-

nificance in the nonparametric time series regression model (3.8). Testing for nonparametric

additivity and linearity has also been discussed. The results for nonparametric time series

regression models under the α–mixing condition complement some existing results under the

β–mixing condition. See for example, Li (1999). In order to deal with the α–mixing condi-

tion, we establish some general results for moment inequalities [see Lemma C.2] and limit

theorems [see Lemma B.1] for degenerate U–statistics of strongly dependent processes. Both

Lemmas B.1 and C.2 are applicable to some other nonparametric estimation and testing of

time series with the α–mixing condition. In addition, we consider testing for linearity in the

partially linear regression model (1.2). Applications of the estimation and model specifica-

tion procedure for model (1.2) to three simulated examples and one real data set are given

in some detail.

The main drawback of the proposed model specification testing procedures is that the

smoothing parameter q involved in the procedures is nonrandom and fixed. In the examples,

we use some theoretically optimum values for the bandwidth parameter h and the truncation

parameter k. In theory, we hope to show that the conclusions of Theorems 3.1–3.4 remain

unchanged when q is replaced by a random data-driven q̂. More recently, Gao and Tong

(2001b) suggest that for the series case asymptotic normality of series based test statistics

remains true when the truncation parameter k is replaced by a random data-driven k̂. The-

orem 3 of Lavergne (2001) states that it is also true for the kernel case. As the detailed

discussion is extremely technical, we do not discuss the problem any further in this paper.

The results given in this paper can be extended in a number of directions. First, it is

possible to consider testing for linearity for models (2.7) and (2.14). Second, the results of

this paper for the short-range dependent time series case can be extended to the long-range

dependent time series case, for which one needs to modify Lemmas B.1 and C.2 given below.

Third, one probably can relax the strict stationarity and the mixing condition, as the recent

work by Karlsen and Tjøstheim (2001) indicates that it may be possible to do such work

without the stationarity and the mixing condition. This part is particularly important for

the two reasons: (i) for the long-range dependent case one needs to avoid assuming both

the long-range dependence and the mixing condition, as they contradict each other; and

(ii) some important models are nonstationary. For example, when β = 1, model (2.9) is

nonstationary. Some of the issues are left for possible future research.

A. Appendix A
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This appendix lists the necessary assumptions for the establishment and the proof of the main
results given in Section 3.

Assumption A.1. (i) Assume that the process (Xt, Yt) is strictly stationary and α-mixing with the
mixing coefficient α(t) ≤ Cαα

t defined by

α(t) = sup{|P (A ∩B)− P (A)P (B)| : A ∈ Ωs
1, B ∈ Ω∞

s+t}

for all s, t ≥ 1, where 0 < Cα < ∞ and 0 < α < 1 are constants, and Ωj
i denotes the σ-field

generated by {(Xt, Yt) : i ≤ t ≤ j}.
(ii) Assume that et = Yt − E[Yt|Xt] satisfies for all t ≥ 1

E[et|Ωt−1] = 0,

where Ωt = σ{(Xs+1, Ys) : 1 ≤ s ≤ t} is a sequence of σ-fields generated by {(Xs+1, Ys) : 1 ≤ s ≤ t}.
(iii) In addition, assume

E[|e4+ξ
t |] <∞ and E

[∣∣∣ei1t1ei2t2 · eiltl∣∣∣1+η
]
<∞

for some small ξ > 0 and η > 0, where 2 ≤ l ≤ 4 is an integer, 0 ≤ ij ≤ 4 and
∑l

j=1 ij ≤ 8.

Assumption A.2. (i) There are two measurable functions {pst} and {dst} with min1≤s,t≤T dst > 0
such that the s × t element, wst, of W can be represented by wst = pst

dst
. Moreover, assume that

pst = p(Xs, Xt) is a symmetric and continuous function of (Xs, Xt). There is a positive number q
such that

max
1≤s,t≤T

|pst| ≤
C0q

T
,

where q = qT satisfies qT →∞ as T →∞.
(ii) Let σ2

ij = var(espstet) and σ2
T =

∑
1≤s<t≤T σ

2
ij . Assume that

lim
T→∞

q4

Tσ4
T

= 0 and lim
T→∞

q3

TσT
= 0.

(iii) For 1 ≤ i, j ≤ T , let P (Xi) and P (Xi, Xj) be the probability measures of Xi and (Xi, Xj),
respectively. Define σ2(x) = E[e2t |Xt = x],

ψ(Xi, Xj) =
∫
σ2(x)p(x,Xi)p(x,Xj)dP (x),

C1T = max
1≤i<j<k≤T

{
E
[
|pikpjk|(1+δ)(1+δ1)

]
,

∫ ∫ ∫
|pikpjk|(1+δ)(1+δ1)dP (Xi)dP (Xj , Xk)

}
,

C2T = max
1≤i<j≤T

{
E|ψ(Xi, Xj)|2(1+δ),

∫ ∫
|ψ(Xi, Xj)|2(1+δ)dP (Xi)dP (Xj)

}
,

C3T = E|ψ(Xi, Xj)|2,

where 0 < δ < 1 and 0 < δ1 < 1 satisfy 1+δ
3−δ < δ1 <

1−δ
1+δ . Assume that as T →∞

T 2C
1

(1+δ)(1+δ1)

1T

σ2
T

→ 0,
T 2C

1
2(1+δ)

2T

σ2
T

→ 0,
T 2C

1
2
3T

σ2
T

→ 0.
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Assumption A.3. (i) Assumptions A.2(i)–A.2(iii) hold.
(ii) Assume that there are two measurable functions {p1st} and {c1st} with min1≤s,t≤T c1st > 0

such that the s × t element, w1st, of L1T can be represented by w1st = p1st

c1st
. Moreover, assume

that p1st = p1(Us, Ut) is a symmetric and continuous function of (Us, Ut). Let d1Ts = 1
T

∑T
t=1 c1st.

Assume that there is a positive, continuous and bounded function d1s = d1(Us) such that as T →∞

d1Ts − d1s →p 0

uniformly in s ≥ 1.
(iii) Let δ1t = m1(Ut)−m̂1(Ut) and η1t = d1Tt−d1t. In addition to Assumption A.3(ii), suppose

that as T →∞
1
σ1T

∑
1≤s<t≤T

E
[
e2sη

2
1s|pst|

]
→ 0,

1
σ1T

∑
1≤s<t≤T

E
[
e2sδ

2
1sd

2
1Ts|pst|

]
→ 0,

and
1
σ2

1T

∑
1≤s<t≤T

E
[
δ21sd

2
1Tsδ

2
1td

2
1Ttp

2
st

]
→ 0,

where σ2
1T = 2

∑T
t=1

∑T
s=1E

[
p2

ste
2
se

2
td

2
1sd

2
1t

]
.

Assumption A.4. (i) Let σ2(x) = E[e2t |Xt = x] and µ4(x) = E[e4t |Xt = x]. Assume that σ2(x) and
µ4(x) satisfy some Lipschitz conditions:∣∣∣σ2(u+ v)− σ2(u)

∣∣∣ ≤ D(u)||v|| and |µ4(u+ v)− µ4(u)| ≤ D(u)||v||

with v ∈ S (a compact set of Rq) and E
[
|D(Xt)|2+ζ

]
<∞ for some small ζ > 0, where || · || denotes

the Euclidean norm.
(ii) Assume that the first two derivatives of m(·) and m1(·) exist and are bounded.
(iii) Let fτ1,τ2,···,τl

(·) be the joint probability density of (X1+τ1 , . . . , X1+τl
) (1 ≤ l ≤ 4). Assume

that fτ1,τ2,···,τl
(·) exists and satisfies the following Lipschitz condition:

|fτ1,τ2,···,τl
(x1 + v1, · · · , xl + vl)− fτ1,τ2,···,τl

(x1, · · · , xl)| ≤ Dτ1,···,τl
(x1, · · · , xl)||v||

for v ∈ S, where S is a compact subset and Dτ1,···,τl
(x1, · · · , xl) is integrable and satisfies the

following conditions ∫
Dτ1,···,τl

(x1, · · · , xl)||x||2θdx < M1 <∞,∫
Dτ1,···,τl

(x1, · · · , xl)fτ1,τ2,···,τl
(x1, · · · , xl)dx < M2 <∞

for some θ > 1 and constants M1 > 0 and M2 > 0.

Assumption A.5. (i) Assume that the univariate kernel function k(·) is bounded and symmetric
with

∫
k(u)du = 1,

∫
uk(u)du = 0 and

∫
u2k(u)du < ∞. In addition, k(x) is continuous on

R1 = (−∞,∞). This paper considers using

K(x1, · · · , xp) =
p∏

i=1

k(xi).
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(ii) The bandwidth parameter h satisfies that

lim
T→∞

Th
5p
2 = ∞ and lim sup

T→∞
Th5p <∞.

Before introducing the following assumption, we need to give some notation.
Let m(µ) be the µ-order derivative of function m(·) and C0 be a constant. Define

Mµ =
{
m :

∣∣∣m(µ)(s1)−m(µ)(s2)
∣∣∣ ≤ C0||s1 − s2||

}
,

where s1, s2 ∈ S and S is a compact subset of Rp.

Assumption A.6. (i) For m ∈ Mµ and {zj(·) : j = 1, 2, . . .} given above, there exists a vector of
unknown parameters γ = (γ1, . . . , γk)τ such that for a constant C0 (0 ≤ C0 < ∞) independent of
T

k2(µ+1)+pE

 k∑
j=1

zj(Xt)γj −m(Xt)

2

≈ C0

where µ+ 1 > p.
(ii) The truncation parameter k is chosen as k =

[
h−1

]
with h defined in Assumption A.5.,

where [x] ≤ x denotes the largest integer part of x.
(iii) Z is of full column rank k. Each zi(x) is continuous with sup(x,i) |zi(x)| <∞.

(iv) Assume that 0 < c2i = E[z2
i (Xt)] <∞ exists and that

E[zi(Xs)zi(Xt)] = 0 and E[zi(Xt)zj(Xt)] = 0

for all i ≥ 1, i 6= j and s 6= t.

Some detailed remarks on the assumptions are relegated to Appendix D.

B. Appendix B

This appendix lists a very general lemma for the proof of the main results given in Section
3. The lemma establishes central limit theorems for degenerate U–statistics of strongly dependent
processes.

B.1. A technical lemma

Lemma B.1. Let ξt be a r-dimensional strictly stationary and strong mixing (α–mixing) stochastic
process. Let θ(·, ·) be a symmetric Borel function defined on Rr ×Rr. Assume that E[θ(ξs, ξt)] = 0
for all 1 ≤ s, t ≤ T and further that for any fixed x, y ∈ Rr, E[θ(ξ1, y)] = E[θ(x, ξ1)] = 0. Let
θst = θ(ξs, ξt) and σ2

T =
∑

1≤s<t≤T Var[θst]. For some small constant 0 < δ < 1, let

MT1 = max
1≤i<j<k≤T

max
{
E|θikψjk|1+δ,

∫
|θikθjk|1+δdP (ξi)dP (ξj , ξk)

}
,

MT21 = max
1≤i<j<k≤T

max
{
E|θikθjk|2(1+δ),

∫
|θikθjk|2(1+δ)dP (ξi)dP (ξj , ξk)

}
,
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MT22 = max
1≤i<j<k≤T

max
{∫

|θikθjk|2(1+δ)dP (ξi, ξj)dP (ξk),
∫
|θikθjk|2(1+δ)dP (ξi)dP (ξj)dP (ξk)

}
,

MT3 = max
1≤i<j<k≤T

E|θikθjk|2, MT4 = max
1 < i, j, k ≤ 2T
i, j, k different

{
max

P

∫
|θ1iθjk|2(1+δ)dP

}
,

where the maximization over P in the equation for MT4 is taken over the four probability meas-
ures P (ξ1, ξi, ξj , ξk), P (ξ1)P (ξi, ξj , ξk), P (ξ1)P (ξi1)P (ξi2 , ξi3), and P (ξ1)P (ξi)P (ξj)P (ξk), where
(i1, i2, i3) is the permutation of (i, j, k) in ascending order;

MT51 = max
1≤i<j<k≤T

max

{
E

∣∣∣∣∫ θikθjkθikθjkdP (ξi)
∣∣∣∣2(1+δ)

}
,

MT52 = max
1≤i<j<k≤T

max

{∫ ∣∣∣∣∫ θikθjkθikθjkdP (ξi)
∣∣∣∣2(1+δ)

dP (ξj)dP (ξk)

}
,

MT6 = max
1≤i<j<k≤T

E

∣∣∣∣∫ θikθjkdP (ξi)
∣∣∣∣2 , MT7 = max

1≤i<j<T
E
[
|θij |1+δ

]
.

Assume that all the M ′
T s are finite. Let

MT = max
{
T 2M

1
1+δ

T1 , T 2M
1

2(1+δ)

T51 , T 2M
1

2(1+δ)

T52 , T 2M
1
2
T6

}
,

NT = max
{
T

3
2M

1
2(1+δ)

T21 , T
3
2M

1
2(1+δ)

T22 , T
3
2M

1
2
T3, T

3
2M

1
2(1+δ)

T4 , T
3
2M

1
1+δ

T7

}
.

If limT→∞
max{MT ,NT }

σ2
T

= 0, then

1
σT

∑
1≤s<t≤T

θ(ξs, ξt) →D N(0, 1) as T →∞.

Remark B.1. Lemma B.1 establishes central limit theorems for degenerate U–statistics of strongly
dependent processes. The lemma extends and complements some existing results for the β–mixing
case. See for example, Lemma 3.2 of Hjellvik, Yao and Tjøstheim (1998) and Theorem 2.1 of Fan
and Li (1999). It should be pointed out that the conclusion of Lemma B.1 remains true when
the usual martingale assumption that E[φ(ξi, ξj)|Ij ] = 0 for any i < j is removed, where It is a
sequence of σ–field generated by {ξs : 1 ≤ s ≤ t}. Such a martingale assumption is used only for a
direct application of an existing central limit theorem (CLT) for martingales.

Proof of Lemma B.1: For a given constant 0 < ρ0 ≤ 1
4 , choose q = [T ρ0 ] > 2 as the largest integer

part of T ρ0 . Obviously,
∑∞

T=1 e
−d0qT < ∞ for any given d0 > 0. Recall the notation of θst and

define
φst = θst − E [θst|It−q] and ψst = E [θst|It−q] . (B.1)

Observe that

LT =
T∑

t=2

t−1∑
s=1

θst =
T∑

t=q+1

t−q∑
s=1

φst +
T∑

t=q+1

t−q∑
s=1

ψst

+
T∑

t=2

t−1∑
s=t+1−q

φst +
T∑

t=2

t−1∑
s=t+1−q

ψst ≡
4∑

j=1

LjT . (B.2)
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To establish the asymptotic distribution of LT , it suffices to show that as T →∞

L1T

σT
→ N(0, 1) and

LjT

σT
→p 0 for j = 2, 3, 4. (B.3)

Let Vt =
∑t−q

s=1 φst. Then E[Vt|It−q] = 0. This implies that Vt is a martingale difference with
respect to It−q. We now start proving the first part of (B.3). Applying a central limit theorem for
martingale sequences (see Theorem 1 of Chapter VIII of Pollard 1984), in order to prove the first
part of (B.3), it suffices to show that

1
σ2

T

T∑
t=q+1

V 2
t →p 1 and

1
σ4

T

T∑
t=q+1

E
[
V 4

t

]
→ 0. (B.4)

To verify (B.4), we first need to calculate some useful quantities. Recall the definition of Vt and
observe that

V 2
t =

t−q∑
s=1

φ2
st + 2

t−q∑
s1=2

s1−1∑
s2=1

φs1tφs2t

T∑
t=q+1

E[V 2
t ] =

T∑
t=q+1

t−q∑
s=1

E[φ2
st] + 2

T∑
t=q+2

t−q∑
s1=2

s1−1∑
s2=1

E [φs1tφs2t] ≡ σ2
1T + ∆1T . (B.5)

We now show that as T →∞

σ2
1T = σ2

T (1 + o(1)) and ∆1T = o
(
σ2

T

)
. (B.6)

By Lemma C.1 (with η1 = φs1t, η2 = φs1t, l = 2, pi = 2(1 + δ) and Q = 1
1+δ ),

E |φs1tφs2t| ≤ 10M
1

1+δ

T1 β
δ

1+δ (s1 − s2).

Therefore,

∆1T ≤ 10T 2M
1

1+δ

T1

T∑
i=1

α
δ

1+δ (i) ≤ CT 2M
1

1+δ

T1 (B.7)

using
∑∞

i=1 α
δ

1+δ (i) < ∞. This, together with the conditions of Lemma B.1, impliles that ∆1T =
o
(
σ2

T

)
as T →∞.

We now start to verify the first part of (B.6). Let σ2
st = E[φ2

st]. Observe that

E

 T∑
t=q+1

V 2
t − σ2

1T

2

≤ 2E


T∑

t=q+1

t−q∑
s=1

[
φ2

st − σ2
st

]
2

+ 8E


T∑

t=q+2

t−q∑
s1=2

s1−1∑
s2=1

φs1tφs2t


2

≡ Q1T +Q2T . (B.8)

In the following, we first show that as T →∞

Q2T = o
(
σ4

T

)
. (B.9)
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Using Lemma C.1 again, we can show that as T →∞

Q2T = 8E


T∑

t=q+2

t−q∑
s1=2

s1−1∑
s2=1

φs1tφs2t


2

≤ 8

∑
t1 6=t2

∑
s1 6=s2

∑
r1 6=r2

|E [φs1t1φs2t1φr1t2φr2t2 ]|


≤ 8 max

{
M2

T , N
2
T

}
= o

(
σ4

T

)
under the conditions of Lemma B.1.

Let Cφ =
∫
φ2

12φ
2
34dP1(ξ1)dP1(ξ2)dP1(ξ3)dP1(ξ4), where P1(ξi) denotes the probability measure

of ξi.
Using Lemma C.1 repeatedly, we have that for different i, j, k, l∣∣∣E [φ2

ijφ
2
kl

]
− Cφ

∣∣∣ ≤ 10 {α(∆(i, j, k, l))}1− 1
1+δ M

1
1+δ

T4

= 10M
1

1+δ

T4 {α(∆(i, j, k, l))}
δ

1+δ , (B.10)

where ∆(i, j, k, l) is the minimum increment in the sequence which is the permutation of i, j, k, l in
ascending order.

Similarly to (B.10), we can have for all different i, j, k, l∣∣∣σ2
ijσ

2
kl − Cφ

∣∣∣ ≤ 10M
1

1+δ

T4 {α(∆(i, j, k, l))}
δ

1+δ . (B.11)

Therefore, using (B.10) and (B.11),

Q1T = 2E


T∑

t=q+2

t−q∑
s=1

[
φ2

st − σ2
st

]
2

≤ 2

∑
t1,t2

∑
s1,s2

∣∣∣E [φ2
ijφ

2
kl

]
− σ2

ijσ
2
kl

∣∣∣


≤ 2

∑
t1,t2

∑
s1,s2

∣∣∣E [φ2
ijφ

2
kl

]
− Cφ

∣∣∣+ ∣∣∣Cφ − σ2
ijσ

2
kl

∣∣∣


≤
{
O

(
T 3M

1
1+δ

T4

)
+O

(
T 3MT3

)}
= o(σ4

T ). (B.12)

It now follows from (B.8)–(B.12) that for any ε > 0

P


∣∣∣∣∣∣ 1
σ2

1T

T∑
t=q+1

V 2
t − 1

∣∣∣∣∣∣ ≥ ε

 ≤ 1
σ4

T ε
2
E

 T∑
t=q+1

V 2
t − σ2

1T

2

→ 0. (B.13)

Thus, the first part of (B.4) is proved.
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Note that for q + 1 ≤ k ≤ T ,

E[V 4
k ] = E


k−q∑
i=1

φ2
it + 2

∑
1≤i<j<k−q

φikφjk


2

= E


k−q∑
i=1

φ4
ik + 6

∑
1≤i<j<k−q

φ2
ikφ

2
jk + 4

k−q∑
l=1

∑
1≤i<j<k−q

φ2
lkφikφjk


+ 4E

 ∑
q≤i<j<k,1≤s<t<k−q,(i,j) 6=(s,t)

φikφjkφskφtk


= 4

k−q∑
l=1

∑
1≤i<j<k−q

E
[
φ2

lkφikφjk

]
+ 4

∑
1≤i<j<k−q, 1≤s<t<k−q,(i,j) 6=(s,t)

E [φikφjkφskφtk]

+ O
(
T 2MT3

)
. (B.14)

It is easy to see that∫
|φikφjkφskφtk|1+δ dP ≤

{∫
|φikφjk|2(1+δ) dP

∫
|φskφtk|2(1+δ) dP

}1/2

≤MT4.

Similarly to (B.10), we can have for any (i, j) 6= (s, t),

|E[φikφjkφskφtk]| ≤ 10M
1

1+δ

T4 {α(∆(i, j, s, t))}
δ

1+δ , (B.15)

where ∆(·) is as defined before.
Consequently,

T∑
k=q+1

E[V 4
k ] = O

(
T 3M

1
1+δ

T4

)
= o(σ4

T ). (B.16)

This finishes the proof of the first part of (B.4), and therefore the proof of (B.4).

Applying Lemma C.3 implies that as T →∞

E |L2T | ≤
T∑

t=q+1

t−q∑
s=1

E |E [θst|It−q]| ≤ C

(
TqM

1
1+δ

T7

)
= o(σ2

T ) (B.17)

using the conditions of Lemma B.1.

The second part of (B.3) for L4T follows from the conditions of Lemma B.1 and

E |L4T | ≤
T∑

t=2

t−1∑
s=t+1−q

E (E [|θst| |It−q])

=
T∑

t=2

t−1∑
s=t+1−q

E [|θst|] ≤
(
TqM

1
1+δ

T7

)
= o(σ2

T ) (B.18)

We finally prove the second part of (B.3) for L3T . Similarly, using Lemma C.1, we can show
that as T →∞∣∣∣∣∣∣

T∑
t=2

t−1∑
s1=t+1−q

t−1∑
s2 6=s1,s2=t+1−q

E [φs1tφs2t]

∣∣∣∣∣∣ ≤
T∑

t=2

t−1∑
s1=t+1−q

t−1∑
s2 6=s1,s2=t+1−q

E [|φs1tφs2t|]
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≤ o
(
T 2q MT3

)
,∣∣∣∣∣∣

T∑
t1=3

t1−1∑
t2=t1+1−q

t1−1∑
s1=t1+1−q

t2−1∑
s2=t2+1−q

E [φs1t1φs2t2 ]

∣∣∣∣∣∣ ≤ o
(
T 2q2 MT3

)
. (B.19)

Using (B.19) implies that as T →∞

E
[
L2

3T

]
=

T∑
t=2

t−1∑
s=t+1−q

E
[
φ2

st

]
+

T∑
t=2

t−1∑
s1=t+1−q

t−1∑
s2 6=s1,s2=t+1−q

E [φs1tφs2t]

+ 2
T∑

t1=q+2

t1−q∑
t2=2

t1−1∑
s1=t1+1−q

t2−1∑
s2=t2+1−q

E [φs1t1φs2t2 ]

+ 2
T∑

t1=2

t1−1∑
t2=t1+1−q

t1−1∑
s1=t1+1−q

t2−1∑
s2=t2+1−q

E [φs1t1φs2t2 ] (B.20)

=
T∑

t=2

t−1∑
s=t+1−q

E
[
φ2

st

]
+

T∑
t=2

t−1∑
s1=t+1−q

t−1∑
s2 6=s1,s2=t+1−q

E [φs1tφs2t]

+ 2
T∑

t1=3

t1−1∑
t2=t1+1−q

t1−1∑
s1=t1+1−q

t2−1∑
s2=t2+1−q

E [φs1t1φs2t2 ]

= O
(
T 3MT3

)
+O

(
T 2q2MT3

)
= o

(
σ4

T

)
noting that the third term of (B.20) is zero because of E[φs2t2φs1t1 |It1−q] = 0. This completes the
proof of Lemma B.1.

B.2. Proof of Theorem 3.1

Let ξt = (et, Xτ
t ), θ(ξs, ξt) = psteset and σ2

T =
∑

1≤s<t≤T Var(psteset), where pst = p(Xs, Xt) is
a symmetric and continuous function as defined in Assumption A.3.

In order to apply Lemma B.1, one needs to justify the conditions of Lemma B.1 hold for
θ(ξs, ξt) = psteset. We now verify only the following condition listed in Lemma B.1,

max{MT , NT }
σ2

T

→ 0 as T →∞,

as the other conditions can be justified similarly.
For the MT part, one justifies only

T 2M
1

1+δ

T1

σ2
T

→ 0 as T →∞.

The others follow similarly.
It follows that for some 0 < δ < 1 and 1 ≤ i < j < k ≤ T

E
[
|θikθjk|1+δ

]
= E

[
|eieje2kpikpjk|1+δ

]
≤
{
E
[
|eieje2k|2(1+δ)(1+δ2)

]} 1
2(1+δ2)

{
E
[
|pijpik|(1+δ)(1+δ1)

]} 1
(1+δ1) .
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Since 0 < δ1 < 1 and 0 < δ2 < 1 satisfy 1
1+δ1

+ 1
2(1+δ2) = 1 and 1+δ

3−δ < δ1 <
1−δ
1+δ , we have that

1 < ζ = (1 + δ)(1 + δ2) < 2 and 1 < η = (1 + δ)(1 + δ1) < 2.

By the second part of Assumption A.1(iii) and Assumption A.2(iii), one can have

T 2M
1

1+δ

T1

σ2
T

→ 0 as T →∞.

Similarly, one can verify the above is true for the second part of MT1.
For the NT part, one needs only to use Assumptions A.1(iii) and A.2(i)(ii) to show that

NT

σ2
T

→ 0 as T →∞.

We consider the first part of MT21 for example. For 1 ≤ i < j < k ≤ T and 0 < δ < 1

E
[
|θikθjk|2(1+δ)

]
= E

[
|eieje2kpikpjk|2(1+δ)

]

≤ C

(
q

T

)4(1+δ)

E
[
|eieje2k|2(1+δ)

]
using Assumption A.2(i).

Thus as T →∞
T

3
2M

1
2(1+δ)

T21

σ2
T

≤ C
T

3
2

σ2
T

(
q

T

)2

= C
q2√
Tσ2

T

→ 0

using Assumptions A.1(iii) and A.2(ii).
Analogously, one can verify the other parts of NT .
It follows that the conditions of Lemma B.1 hold. Thus as T →∞∑

1≤s<t≤T psteset

σT
→D N(0, 1). (B.9)

Thus, in order to finish the proof of Theorem 3.1, it suffices to show that as T →∞

σ̂2
T

σ2
T

− 1 →p 0, (B.10)

where σ̂2
T =

∑
1≤s<t≤T p

2
ste

2
se

2
t .

In view of the definition of σ̂2
T and σ2

T , in order to prove (B.10), it suffices to show that

σ−2
T

∑
1≤s<t≤T

{
p2

ste
2
se

2
t − E

[
p2

ste
2
se

2
t

]}
→p 0. (B.11)

The proof of (B.11) is the same as that of the first part of (B.4). This finally finishes the proof of
Theorem 3.1.

B.3. Proof of Theorems 3.2–3.4.
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Let wt = Yt − U τ
t β, ut = Yt −Xτ

t β,

L̃2T =
∑T

t=1

∑
s 6=t p2stwswt

σ̃2T
and L̃4T =

∑T
t=1

∑
s 6=t pstusut

σ̃4T
,

where σ̃2
2T = 2

∑T
t=1

∑T
s=1 p

2
2stw

2
sw

2
t and σ̃2

4T = 2
∑T

t=1

∑T
s=1 p

2
stu

2
su

2
t .

In order to prove Theorems 3.3–3.4, one needs first to show that

L2T = L̃2T + op(1) and L4T = L̃4T + op(1). (B.12)

The remainder of the proof follows from Theorem 3.1. As the proof of (B.12) is much simpler than
that of Theorem 3.2, we give only the proof of Theorem 3.2 in some detail.

Let η1t = d1Tt − d1t and δ1t = m1(Ut)− m̂1(Ut). Note that

Ŷt = [et + δ1t]d1Tt = etd1t + etη1t + δ1td1Tt,

ŶsŶt = esetd1sd1t + esetη1sη1t + δ1sd1Tsδ1td1Tt

+esetη1sd1t + esetd1sη1t + δ1sd1Tsetd1t + d1Tsδ1setη1t + d1Ttδ1tesη1s + d1Ttδ1tesη1s

≡ esetd1sd1t + esetη1sη1t + δ1sd1Tsδ1td1Tt + rst,

where

rst = esetη1sd1t + esetd1sη1t + δ1sd1Tsetd1t + d1Tsδ1setη1t + d1Ttδ1tesη1s + d1Ttδ1tesη1s.

Now one can have the following decomposition

L1T =
[
L̃1T + ∆1T

] σ̂1T

Ŝ1T

,

where

L̃1T =
1
σ̂1T

∑
s 6=t

pstesetd1sd1t and ∆1T =
1
σ̂1T

∑
s 6=t

pst [esetη1sη1t + δ1sd1Tsδ1td1Tt + rst] . (B.13)

In view of (B.13), in order to prove

L1T = L̃1T + op(1),

it suffices to show that as T →∞

∆1T →p 0 and
σ̂1T

Ŝ1T

→p 1. (B.14)

Let εt = etd1t, σ̂1T = 2
∑T

s=1

∑T
t=1 p

2
stε

2
sε

2
t and σ2

1T = 2
∑T

s=1

∑T
t=1E

[
p2

stε
2
sε

2
t

]
. In view of (B.13)

and (B.14), it suffices to show that∑
s 6=t pstesetη1sη1t

σ1T
→p 0,

∑
s 6=t pstδ1sd1Tsδ1td1Tt

σ1T
→p 0,

∑
s 6=t pstrst

σ1T
→p 0, (B.15)
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Ŝ2
1T − σ̂2

1T

σ2
1T

→p 0 and
σ̂2

1T

σ2
1T

→p 1. (B.16)

We then prove only the first two parts of (B.15) and (B.16). The proof of the third part of
(B.15) is similar to that of the first part of (B.15).

Obviously,

E

∣∣∣∣∣∣
∑
s 6=t

pstesetη1sη1t

∣∣∣∣∣∣ ≤
∑
s 6=t

E |pstesetη1sη1t|

≤ 1
2

T∑
t=1

T∑
s=1, 6=t

E
{[
e2sη

2
1s + e2t η

2
1t

]
|pst|

}
=

T∑
t=1

T∑
s=1, 6=t

E
{
e2sη

2
1s|pst|

}
= o(σ1T )

using Assumption A.3(iii). This implies that the first part of (B.15) holds.
Similarly, one can have

E

∣∣∣∣∣∣
∑
s 6=t

pstδ1sd1Tsδ1td1Tt

∣∣∣∣∣∣ ≤
∑
s 6=t

E |pstδ1sd1Tsδ1td1Tt|

≤ 1
2

T∑
t=1

T∑
s=1, 6=t

E
{[
δ21sd

2
1Ts + δ21td

2
1Tt

]
|pst|

}
=

T∑
t=1

T∑
s=1, 6=t

E
{
δ21sd

2
1Ts|pst|

}
= o(σ1T )

using Assumption A.3(iii). This implies that the second part of (B.15) holds.
In view of the definition of σ̂2

1T and σ2
1T , in order to prove (B.16), it suffices to show that

σ−2
1T

∑
1≤s<t≤T

{
p2

st

[
Ŷ 2

s Ŷ
2
t − ε2sε

2
t

]}
→p 0 (B.17)

and
σ−2

1T

∑
1≤s<t≤T

{
p2

stε
2
sε

2
t − E

[
p2

stε
2
sε

2
t

]}
→p 0, (B.18)

where εt = etd1t.
The proof of (B.18) follows similarly from that of (B.11). In view of the definition of Ŷt, in

order to prove (B.17), one proves only

J1T =
∑

1≤s<t≤T

p2
ste

2
sη

2
1se

2
t η

2
1t = op(σ2

1T ) (B.19)

and
J2T =

∑
1≤s<t≤T

p2
stδ

2
1sd

2
1Tsδ

2
1td

2
1Tt = op(σ2

1T ), (B.20)

as the other parts follow similarly.
The proof of (B.19) follows from

J1T ≤ max
1≤t≤T

∣∣∣∣d1Tt

d1t
− 1

∣∣∣∣4 ∑
1≤s<t≤T

p2
ste

2
sd

2
1se

2
td

2
1t = op(σ2

1T )

using Assumption A.3(ii). The proof of (B.20) follows from

E[J2T ] =
∑

1≤s<t≤T

E
[
p2

stδ
2
1sd

2
1Tsδ

2
1td

2
1Tt

]
= o(σ2

1T )
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using Assumption A.3(iii). The proof of

L̃1T → N(0, 1)

follows from that of Theorem 3.1. This finally finishes the proof of Theorem 3.2.

B.4. Proof of Corollaries 3.1–3.4.

The proof of Corollary 3.1 follows from that of Theorem 3.1 immediately, as either Assumptions
A.4 and A.5 or Assumptions A.4 and A.6 implies Assumption A.3.

The proof of Corollary 3.2 follows from Theorem 3.2 immediately. For the proof of Corollary
3.3, one needs to follow the proof of (B.10) to show that

L̃2T = L2T + op(1),

where L̃2T =
∑T

t=1

∑
s 6=t

p(us−1,ut−1)usut

S̃2T
, S̃2

2T = 2
∑T

t=1

∑T
s=1 p(us−1, ut−1)2u2

su
2
t , and us = Ys−Xτ

s β.
In the detailed proof, the continuity of the nonparametric function p(u, v) is used.
The proof of Corollary 3.4 follows from Theorem 3.3 immediately. We now finish the proof of

the main results given in Section 3.

Appendix C

The following two technical lemmas have already been used in the proof of Lemma B.1 and
the proof of Theorem 3.1. The two lemmas are of general interest and can be used for other
nonparametric estimation and testing problems associated with the α–mixing condition.

Lemma C.1. Suppose that Mn
m are the σ-fields generated by a stationary α-mixing process ξi with

the mixing coefficient α(i). For some positive integers m let ηi ∈ M ti
si

where s1 < t1 < s2 < t2 <

· · · < tm and suppose ti − si > τ for all i. Assume further that

||ηi||pi
pi

= E|ηi|pi <∞,

for some pi > 1 for which

Q =
l∑

i=1

1
pi
< 1.

Then ∣∣∣∣∣E
[

l∏
i=1

ηi

]
−

l∏
i=1

E[ηi]

∣∣∣∣∣ ≤ 10(l − 1)α(τ)(1−Q)
l∏

i=1

||ηi||pi .

Proof. See Roussas and Ionnides (1987).

Lemma C.2. (i) Let ψ(·, ·, ·) be a symmetric Borel function defined on Rr×Rr×Rr. Let the process
ξi be defined as in Lemma B.1. Assume that for any fixed x, y ∈ Rr, E[ψ(ξ1, x, y)] = 0. Then

E

 ∑
1≤i<j<k≤T

ψ(ξi, ξj , ξk)


2

≤ CT 3M
1

1+δ ,
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where 0 < δ < 1 is a small constant, C > 0 is a constant independent of T and the function ψ,
M = max{M1,M2,M3}, and

M1 = max
1<i<j≤T

max
{
E|ψ(ξ1, ξi, ξj)|2(1+δ),

∫
|ψ(ξ1, ξi, ξj)|2(1+δ)dP (ξ1)dP (ξi, ξj)

}
,

M2 = max
1<i<j≤T

max
{∫

|ψ(ξ1, ξi, ξj)|2(1+δ)dP (ξj)dP (ξ1, ξi)
}
,

M3 = max
1<i<j≤T

max
{∫

|ψ(ξ1, ξi, ξj)|2(1+δ)dP (ξ1)dP (ξi)dP (ξj)
}
. (C.1)

(ii) Let φ(·, ·) be a symmetric Borel function defined on Rr × Rr. Let the process ξi be defined
as in Lemma B.1. Assume that for any fixed x ∈ Rr, E[φ(ξ1, x)] = 0. Then

E

 ∑
1≤i<j≤T

φ(ξi, ξj)


2

≤ CT 2M
1

1+δ

4 ,

where δ > 0 is a constant, C > 0 is a constant independent of T and the function φ, and

M4 = max
1<i<j≤T

max
{
E|φ(ξ1, ξi)|2(1+δ),

∫
|φ(ξ1, ξi)|2(1+δ)dP (ξ1)dP (ξi)

}
. (C.2)

Remark C.1. Lemma C.2 is useful in itself for providing moment inequalities for strictly stationary
and mixing processes.

Proof: As the proof of (ii) is similar to that of (i), one proves only (i). Let i1, . . . , i6 be distinct
integers and 1 ≤ ij ≤ T , let 1 ≤ k1 < · · · < k6 ≤ T be the permutation of i1, . . . , i6 in ascending
order and let dc be the c–th largest difference among kj+1 − kj , j = 1, · · · , 5. Let

H(k1, · · · , k6) = ψ(ξi1 , ξi2 , ξi3)ψ(ξi4 , ξi5 , ξi6).

By Lemma C.1 (with η1 = ψ(ξi1 , ξi2 , ξi3), η2 = ψ(ξi4 , ξi5 , ξi6), l = 2, pi = 2(1 + δ) and Q = 1
1+δ ),

|E[H(k1, · · · , k6)]| ≤

 10M
1

1+δα
δ

1+δ (k6 − k5) if k6 − k5 = d1

10M
1

1+δα
δ

1+δ (k2 − k1) if k2 − k1 = d1.

Thus, ∑
1 ≤ k1 < · · · < k6 ≤ T

k2 − k1 = d1

|E[H(k1, · · · , k6)]|

≤
T−5∑
k1=1

∑
k2=k1+maxj≥3{kj−kj−1}

T−3∑
k3=k2+1

· · ·
T∑

k6=k5+1

{
10M

1
1+δα

δ
1+δ (k2 − k1)

}

≤ 10M
1

1+δ

T−5∑
k1=1

T−4∑
k2=k1+1

(k2 − k1)2α
δ

1+δ (k2 − k1)

≤ 10TM
1

1+δ

T∑
k=1

k4α
δ

1+δ (k) ≤ CTM
1

1+δ . (C.2)
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Similarly, ∑
1 ≤ k1 < · · · < k6 ≤ T

k2 − k1 = d1

|E[H(k1, · · · , k6)]| ≤ CTM
1

1+δ . (C.3)

Analogously, it can be shown in a similar way that∑
1 ≤ k1 < · · · < k6 ≤ T

k6 − k5 = d2 or k2 − k1 = d2

|E[H(k1, · · · , k6)]| ≤ CT 2M
1

1+δ , (C.4)

∑
1 ≤ k1 < · · · < k6 ≤ T

k6 − k5 = d3 or k2 − k1 = d3

|E[H(k1, · · · , k6)]| ≤ CTM
1

1+δ . (C.5)

On the other hand, if {k6 − k5, k2 − k1} = {d4, d5}, by using Lemma C.1 three times we have
the inequality

|E[H(k1, · · · , k6)]| ≤ 10M
1

1+δ

3∑
i=1

α
δ

1+δ (di).

Hence, ∑
1 ≤ k1 < · · · < k6 ≤ T

{k6 − k5, k2 − k1} = {d4, d5}

|E[H(k1, · · · , k6)]|

≤
∑

1 ≤ k1 < · · · < k6 ≤ T

max{k6 − k5, k2 − k1}
≤ min2≤j≤4{kj+1 − kj}

{
10M

1
1+δ

[
α

δ
1+δ (k3 − k2) + α

δ
1+δ (k4 − k3) + α

δ
1+δ (k5 − k4)

]}

≤ 30M
1

1+δ

∑
1 ≤ k1 < · · · < k6 ≤ T

max{k6 − k5, k2 − k1} ≤ d3

α
δ

1+δ (d3) ≤ 30CT 3M
1

1+δ . (C.6)

It follows from (C.2)–(C.6) that∑
1 ≤ i, j, k, r, s, t ≤ T

i, j, k, r, s, t different

|E[ψ(ξi, ξj , ξk)ψ(ξr, ξs, ξt)]| ≤ CT 3M
1

1+δ . (C.7)

Similar to (C.7), one can show that∑
1 ≤ i, j, k, r, s, t ≤ T

i, j, k, s, t different

|E[ψ(ξi, ξj , ξk)ψ(ξi, ξs, ξt)]| ≤ CT 3M
1

1+δ , (C.8)
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∑
1 ≤ i, j, k, l ≤ T

i, j, k, l different

|E[ψ(ξi, ξj , ξk)ψ(ξi, ξj , ξl)]| ≤ CT 3M
1

1+δ . (C.9)

Finally, it is easy to see that∑
1≤i<j<k≤T

E[ψ(ξi, ξj , ξk)2] ≤ T 3 max
1<i<j

E[ψ(ξ1, ξi, ξj)2]. (C.10)

The conclusion of Lemma C.2(i) follows immediately from (C.7)–(C.10).

Lemma C.3. Let φ(·, ·) be a symmetric Borel function defined on Rr × Rr. Let the process ξi be
defined as in Lemma C.2. Assume that for any fixed x, y ∈ Rr, E[φ(x, ξ1)] = E[φ(ξ1, y)] = 0. Then
for 1 ≤ i < j ≤ T ,

|E [φ(ξi, ξj)|Ii]| ≤ Cα
δ

1+δ (j − i)
(
E
[
|φ(ξi, ξj)|1+δ

]) 1
1+δ ,

where 0 < δ < 1 is some constant such that max1≤i<j≤T E
[
|φ(ξi, ξj)|1+δ

]
<∞.

Proof: See Yoshihara (1989) or Roussas and Ionnides (1987).

Appendix D

This appendix gives the verification of Assumptions A.1–A.6 listed in Appendix A. It can be
seen that the assumptions are justifiable for both the kernel method and the series case.

Remark D.1. (i) Assumption A.1(i) is quite common in the α-mixing case. Assumption A.1(ii)
imposes some necessary conditions on the error process. Assumption A.1(iii) is adopted from
Condition A1(iii) of Li (1999).

(ii) The justifications of Assumptions A.2 and A.3 are relegated to Remark D.2 and Remark
D.3 respectively.

(iii) Assumption A.4 is similar to Conditions A1(iii) and A1(iv) of Li (1999).
(iv) Assumption A.5(i) is similar to Condition A2(i) of Li (1999). Assumption A.5(ii) is quite

natural for the kernel method.
(v) Assumption A.6 is the corresponding version of Assumption A.5 for the series case. As the

orthogonality conditions are assumed in Assumption A.5, we don’t need to assume k4(µ+1)+p

T 2p →∞
as used in Theorem 3.1 of Hong and White (1995). More justifications for Assumption A.6 can be
found in Gao and Tong (2001b).

Remark D.2. (i) Assumption A.2(i) is a general condition for the form of pst. It holds automatically
when the form of pst is chosen as either the kernel based weight function or the series based weight
function.

(ii) Assumption A.2(ii) imposes some conditions on σ2
T and q. This assumption can be justified

for the kernel method with q = h−p and and the series method with q = kp. The detailed
justification follows from (iii) and (iv) below.

(iii) We now verify Assumption A.2(iii) in some detail. We first consider the kernel case.
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Let pst = 1
ThpK

(
Xs−Xt

h

)
as in (3.5) and η = (1+δ)(1+δ1). It follows that for 1 ≤ i < j < k ≤ T ,

E[|pikpjk|η] =
1

(Thp)2η

∫ ∫ ∫ ∣∣∣∣K (
u− w

h

)∣∣∣∣η ∣∣∣∣K (
v − w

h

)∣∣∣∣η f(u, v, w)dudvdw

=
h2p

(Thp)2η

∫ ∫ ∫
|K(x)K(y)|ηf(xh+ z, yh+ z, z)dxdydz ≤ C1

h2p

(Thp)2η
(D.1)

under Assumptions A.4 and A.5(i).
Similarly, one can find∫ ∫ ∫

|pikpjk|ηdP (Xi)dP (Xj , Xk) ≤ C2
h2p

(Thp)2η
=

1
T 2η

h2p(1−η). (D.2)

Let σ2
s = σ2(Xs) = E[e2s|Xs]. It follows similarly that

σ2
1T ≡

∑
1≤s<t≤T

E[σ2
sσ

2
t p

2
st] =

∑
1≤s<t≤T

1
(Thp)2

∫ ∫
σ2(u)σ2(v)K2

(
u− v

h

)
f(u, v)dudv

=
T (T − 1)
(Thp)2

hp
∫ ∫

σ2(xh+ y)σ2(y)K2(x)f(xh+ y, y)dxdy = C3h
−p(1 + o(1)) (D.3)

as T →∞.
Finally, it can be shown that as T →∞

σ2
T − σ2

1T

σ2
1T

→ 0. (D.4)

Equations (D.1)–(D.4) imply as T →∞

T 2M
1
η

1T

σ2
T

≤ C4h
(2−η)p

η → 0. (D.5)

Similarly, one can verify the others.
(iv) For the series case, without loss of generality one can choose c2i ≡ 1 and

pst =
1
T

k∑
i=1

zi(Xs)zi(Xt).

As the justification of Assumption A.2(iii) depends on the choice of {zi(·)}, we now consider
the case where p = 1 and zi(x) = cos(ix). Similarly, one can verify the case where zi(x) = sin(ix)
and zj(x) = cos(jx) for i 6= j.

Observe that

k∑
i=1

cos(ix) cos(iy) =
1
2

k∑
i=1

cos((x+ y)i) +
1
2

k∑
i=1

cos((x− y)i).

It follows that for any real number u

k∑
i=1

cos(iu) sin(u/2) =
1
2

k∑
i=1

{
sin
(
iu+

u

2

)
− sin

(
iu− u

2

)}
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=
1
2

{
sin
(
ku+

u

2

)
− sin

(
u

2

)}
= cos

(
(k + 1)u

2

)
sin
(
k

2
u

)
.

For u = Xs+Xt
2 or Xs−Xt

2 , let

Ik(u) =
1
2

cos((k + 1)u) sin(ku)
sin(u)

.

Then
pst =

1
T
Ik

(
Xs +Xt

2

)
+

1
T
Ik

(
Xs −Xt

2

)
.

Similar to (D.1), one can have for the same η

Mη = E [|pikpjk|η]

≤ Cη

T 2η

∫ ∫ ∫ {∣∣∣∣Ik (u+ w

2

)
Ik

(
v + w

2

)∣∣∣∣η} f(u, v, w)dudvdw

+
Cη

T 2η

∫ ∫ ∫ {∣∣∣∣Ik (u+ w

2

)
Ik

(
v − w

2

)∣∣∣∣η} f(u, v, w)dudvdw

+
Cη

T 2η

∫ ∫ ∫ {∣∣∣∣Ik (u− w

2

)
Ik

(
v + w

2

)∣∣∣∣η} f(u, v, w)dudvdw

+
Cη

T 2η

∫ ∫ ∫ {∣∣∣∣Ik (u− w

2

)
Ik

(
v − w

2

)∣∣∣∣η} f(u, v, w)dudvdw

≡M1η +M2η +M3η +M4η. (D.6)

In the following, we consider M4η only and the others follow similarly.

M4η =
Cη

T 2η

∫ ∫ ∫ ∣∣∣∣Ik (u− w

2

)
Ik

(
v − w

2

)∣∣∣∣η f(u, v, w)dudvdw

=
Cη

22ηT 2η

∫ ∫ ∫ ∣∣cos
(
(k + 1)

(
u−w

2

))
sin
(
k
(

u−w
2

))∣∣η∣∣sin (u−w
2

)∣∣η
∣∣cos

(
(k + 1)

(
v−w

2

))
sin
(
k
(

v−w
2

))∣∣η∣∣sin (v−w
2

)∣∣η
·f(u, v, w)dudvdw

=
Dη

T 2η

∫ ∫ ∫ |cos((k + 1)x) sin(kx)|η

|sin(x)|η
|cos((k + 1)y) sin(ky)|η

|sin(y)|η
f(2x+ z, 2y + z, z)dxdydz

=
Dη

(k + 1)2T 2η

∫ ∫ ∫ ∣∣∣cos(x1) sin
(
x1 − x1

k+1

)∣∣∣η∣∣∣sin ( x1
k+1

)∣∣∣η
∣∣∣cos(x2) sin

(
x2 − x2

k+1

)∣∣∣η∣∣∣sin ( x2
k+1

)∣∣∣η
·f
(
x3 +

2x1

k + 1
, x3 +

2x2

k + 1
, x3

)
dx1dx2dx3

=
Dη(k + 2)2η

(k + 1)2T 2η

∫ ∫ ∫ ∣∣∣cos(x1) sin
(
x1 − x1

k+1

)∣∣∣η
|x1|η |ψk(x1)|η

∣∣∣cos(x2) sin
(
x2 − x2

k+1

)∣∣∣η
|x2|η |ψk(x2)|η

·f
(
x3 +

2x1

k + 1
, x3 +

2x2

k + 1
, x3

)
dx1dx2dx3

≡ Dη
(k + 1)2(η−1)

T 2η
Cη(k),
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where ψk(x) =
sin( x

k+1)
x

k+1
, 0 < Dη <∞ is a constant independent of k, and Cη(k) is a function of k.

Hence, using properties of the trigonometric series and Assumption A.3, one can have as T →∞

M4η = O

(
(k + 1)2(η−1)

T 2η

)
. (D.7)

Thus it can be seen that M4η has the same order as (D.1) when p = 1 and k = h−1.
Analogously, one can find the corresponding versions of (D.2)–(D.5) for the series case. There-

fore, it can be shown that Assumption A.2(iii) is justifiable for both the kernel case and the series
case.

Before justifying Assumption A.3 for the kernel method, one needs to introduce the following
assumption.

Assumption D. In addition to Assumption A.5, assume that
(i) the univariate kernel function k(·) is of bounded variation on R1 = (−∞,∞);
(ii) there is a second kernel function l(·) that satisfies the same conditions as k(·) does; and
(iii) there is a second bandwidth parameter h1 such that for 0 < η < 7p

8

h = O
(
T−η) , h1 → 0 as T →∞, lim

T→∞

hp

h2d
1

= 0 and lim
T→∞

Thp/2h4
1 = 0.

Assumption D(i) is required for the uniform convergence of d1Ts assumed in Assumption A.3
(ii). Assumption D(ii)(iii) is taken from Condition (A2) of Li (1999).

Remark D.3. (i) This remark needs only to justify Assumption A.3(ii)(iii). Assumption A.3(ii)
holds for both the kernel method and the series case. As can be seen from Remark D.2(iv), it
suffices to verify the kernel case. For the kernel method, one can take

d1Tt =
1
Thd

1

∑
s 6=t

Lh(Ut − Us) and d1t = f1(Ut),

which is the density function of Ut, where Lh1(·) = L(·/h1) and L(u1, · · · , ud) =
∏d

i=1 l(ui). Under
Assumptions A.5(i)(ii) and D(i), one can show that maxt≥1 |d1Tt − d1t| = op(1). See Lemmas A.1
and A.3 of Härdle, Liang and Gao (2000) for example.

(ii) For both the kernel method and the series case, one can justify the following three equations

1
σ1T

∑
1≤s<t≤T

E
[
e2sη

2
1s|pst|

]
→ 0,

1
σ1T

∑
1≤s<t≤T

E
[
e2sδ

2
1sd

2
1Ts|pst|

]
→ 0,

and
1
σ2

1T

∑
1≤s<t≤T

E
[
δ21sd

2
1Tsδ

2
1td

2
1Ttp

2
st

]
→ 0.
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For the kernel case, by Assumption D, Lemma C.3 of Li (1999) can be used for the justification.
For this case, one can use

pst =
1
Thp

∑
s 6=t

Kh(Xs −Xt) and
∑

s=1, 6=t

pst = f̂(Xt)

as an estimate to f(Xt) in the first two equations. For the kernel case, one can compute that
σ2

1T = Ch−p(1 + o(1)) using Assumption A.4.
For both the second equation and the third equation, one can substitute δ1td1Tt by

δ1td1Tt =

[
m1(Ut)−

T∑
s=1

w1tsYs

]
d1Tt = −

T∑
s=1

p1tses +

[
m1(Ut)−

T∑
s=1

w1tsm1(Us)

]
d1Tt

= −
T∑

s=1

p1tses +

[
m1(Ut)−

T∑
s=1

w1tsm1(Us)

]
d1t +

[
m1(Ut)−

T∑
s=1

w1tsm1(Us)

]
η1t

≡ −
T∑

s=1

p1tses + η2td1t + η2tη1t,

where η1t = d1Tt − d1t and η2t = m1(Ut)−
∑T

s=1w1tsm1(Us).
For the first part, one can use Lemma C.1 again to estimate the order. Assumptions A.4(ii),

A.5 and D can be used to estimate the order of the second and third parts. For the series case, by
Assumption A.6 and Remark D.2(iv) one can verify Assumption A.3(iii).

Remark D.4. (i) As one can see, Assumption A.2(iii) is a necessary condition, but its justification
depends heavily on the explicit form of {pst}. If one replaces σ2

T by

Σ2
T = σ2

T + 2
∑

1≤s<t<u≤T

cov(espsueu, etptueu), (D.8)

Assumption A.2(iii) is not required. Certainly, one needs to ensure that infT Σ2
T > 0.

For this case, the test statistics proposed need to be modified. For example, LT of (3.4) needs
to be replaced by

L̃T =
∑T

t=1

∑
s 6=t pstYsYt

S̃T

,

where S̃2
T = 2

∑T
t=1

∑T
s=1 p

2
stY

2
s Y

2
t + 4

∑T
t=1

∑T
s=1

∑T
u=1 psuptuYsYtY

2
u .

As can be seen from the proof of (B.4) and (B.5), Assumption A.2(iii) is not required for this
case.

For the form of (D.8) itself, one needs to point out that (D.8) is of general interest. For example,
when et is a long-range dependent process, the second part of (D.8) cannot be estimated by using
the α–mixing condition and Lemma C.1, as the long-range dependence and the α–mixing condition
contradict each other. For the long-range dependent case, the second part of (D.8) therefore needs
to be included.
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(ii) For the short-range dependent case, in order to aviod using Assumption A.2(iii), one may
further impose some conditions on the structure of et to ensure that the second term of (D.8) equals
to zero. That is

E[esetpsuptue
2
u] = 0 for any s 6= t 6= u.

This holds for example when et = h(Xt, Yt−1)εt, h(·, ·) is a measurable function, and εt satisfies

E[εt|Ωt−1] = 0 and E[εsεtε2u|Ωv−1] = 0 for any s 6= t 6= u,

where v = max{s, t, u} and Ωt is as defined in Assumption A.1. For the independence case, this
holds automatically.
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Härdle, W., Mammen, E., 1993. Comparing nonparametric versus parametric regression fits. The Annals of

Statistics 21, 1926–1947.

Hidalgo, F. J., 1992. Adaptive semiparametric estimation in the presence of autocorrelation of unknown

42



form. Journal of Time Series Analysis 13, 47–78.

Hjellvik, V., Tjøstheim, D., 1995. Nonparametric tests of linearity for time series. Biometrika 82, 351–368.

Hjellvik, V., Yao, Q., Tjøstheim, D., 1998. Linearity testing using local polynomial approximation. Journal

of Statistical Planning and Inference 68, 295-321.

Hong, Y., White, H., 1995. Consistent specification testing via nonparametric series regression. Economet-

rica 63, 1133–1159.
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