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1 Introduction

Until now, many studies have investigated linear and non-linear dependency in financial data sets, at weekly, daily
and intradaily frequencies.

At the univariate level, it is now well established that returns contain little serial correlation, in agreement with
the efficient market theory1. However, the absence of autocorrelation does not imply independence over time. In
effect, from the series of absolute value of daily log-returns, we can clearly see the observation of Mandelbrot [24]
and Fama [15] that large absolute returns are more likely than small absolute returns to be followed by a large
absolute return. Ding, Granger and Engle [11] observe this effect for up to 10 years. This stylized fact is referred
to as the volatility clustering and argues against serial independence in financial time series. To reproduce such
an empirical behaviour, practitioners have developed a lot of econometric models. ARCH [14] and GARCH [3]
models have been seeds of a flourishing literature since the 90’s.

In a multivariate framework, it makes sense to observe cross-dependencies since assets may have similar risk
exposure. In general, the linear correlation is used as a measure of dependence between financial instruments.
This measure lies at the heart of traditional asset pricing models like the Capital Asset Pricing Model (CAPM)
or the Arbitrage Pricing Theory (APT) and is founded on the assumption of multivariate normally distributed
observations. However, in a non-Gaussian world, this measure can be misleading and does not completely describe
dependencies [13, 12]. The fashionable copula methodology has given new insight on dependencies across data
and has allowed to shed light on extreme co-movements previously hidden by usual measures [4, 26, 6].

Most of empirical studies on time- or cross-dependencies are based on daily observations. Surprisingly, when
we switch to lower frequencies of data sets, that is monthly or quarterly intervals, few analyses have been made
so far. It is of common practice to assume that monthly and longer time span observations are independent over
time. However, this issue is important since certain companies, insurance companies for instance, base their risk
management system on a longer time span than one day or one week. The independence assumption can have a
non-negligible impact on risk estimations. The lack of observations often leads to using resampling techniques as
proposed in [28] but such methodologies are not consistent if any time-dependencies in data are highly present.

In this paper, we empirically test the presence of dependencies in monthly observations. The analysis is applied
to major markets stock indices, bond indices, short-term interest rates and foreign exchange rates. We extend
the analysis by adding an implied volatility index and two real estate indices. In parallel to the usual log-return
exploration, we develop a more complex proxy for interest rates and foreign exchange rates. For long-term analysis
there are other elements that enter into the characterization of the risk. To that purpose, we introduce the notion
of innovation. We enhance dependence measures’ accuracy by the use of the overlapping technique and use non-
parametric correlation to get rid of underlying distributional assumptions. We want to emphasize the fact that our
study is not model-centered. By applying standard tools to our data sets, we just want to detect dependencies:
in the end, data decide by themselves. Main results of univariate and bivariate analyses can be summarized as
follows:

univariate:

� The profile of dependencies is different between asset classes. Whereas autocorrelation is negligible for
stock and bond indices, interest rates exhibit significant time-dependencies.

� GARCH effects are still present in monthly observations and ARMA-GARCH models give a better perfor-
mance in terms of Akaike information criterion.

1In effect, if price changes exhibit a significant correlation, this correlation may be used to conceive a simple strategy with positive expected
earnings. Such strategies will tend to reduce as the market reacts to new information.
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bivariate:

� We observe significant dependencies within data classes, as expected.

� The one-month lead-lag analysis does not support any leader across data classes, apart US stock indices that
lead the volatility index. This is also natural since market participants change their volatility expectation
according to past movements.

� The tail dependencies analysis shows a strong presence of extreme co-movements between assets, especially
for interest rates.

Univariate results warn us against the independence assumption. Even if autocorrelation is weak over 1-month
time spans, GARCH effects are present and GARCH type models can be used to model innovations over time. For
interest rates, both autocorrelation and volatility clustering are present. Therefore, the assumption of independence
should not be applied like a simple rule of thumb. In addition to univariate results, bivariate findings strongly
suggest incorporating tail dependencies measures in a monthly risk management framework.

The paper continues as follows: section 2 presents the data sets and introduces the notion of innovation. In section
3 we review the standard tools used in the empirical analysis to test dependencies. Section 4 presents the results
for the time dependency analysis whereas section 5 gives the results for the bivariate analysis. Section 6 concludes.
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2 Data

The low-frequency dependencies analysis is applied to a large class of securities for major markets. We test
stock and bond indices as well as short-term interest rates and foreign exchange rates. The study is extended
with an implied volatility index and two real estate indices. Data were downloaded from www.finance.yahoo.com,
Bloomberg and Datastream. We present hereafter data sets in detail and introduce the notion of innovation.

2.1 Data description

2.1.1 Stock indices

We analyse equity markets using Morgan Stanley Capital International (MSCI) stock indices2 for Switzerland, the
United Kingdom, Japan and for the United States. In addition to these ’local’ indices, we use the MSCI world
index which measures the equity performance of 23 developed market countries3. The choice of MSCI indices
has been made for two main reasons. First, these indices are computed in the same manner for each market with
a rigid discipline in the index maintenance. Second, MSCI indices are free-float indices, i.e. the computation of
the index takes into account the available shares on the market. This methodology is clearly useful for investors
who seek a benchmark which accurately reflects the number of shares to invest in. Hence, we have an interesting
reflection of institutional investors point of view. MSCI indices’ data consist of end-of-the-month quotes and range
from January 1970 to July 2003.

We complete the equity analysis by studying the well known S&P500. This index is one of the most widely used
benchmark of U.S. equity performance. It consists of 500 stocks chosen for market size, liquidity and industry
group representative sample of leading companies and leading industries of the U.S. market. It is a market-value
weighted index where dividends are not reinvested in. S&P500 data have been available since 1950 and consist of
end-of-the-day quotes.

2.1.2 Bond indices

To analyse medium- and long-term cash investors horizons, we focus on Government Bond indices. Our selection
is made on Salomon Brother’s Government bond indices for the same reasons that have led us to choose MSCI
indices in the equity analysis: comparability across several markets, rigorous construction and maintenance4.
Analyzed markets are Switzerland, the United Kingdom, Japan and the United States. We also analyse a global
index, the Salomon Brother’s Global Government bond index. Our data consist of end-of-the-month quotes. The
period ranges from January 1985 to July 2003.

2.1.3 Interest rates

Analyses for interest rates (IR) are realized using Interbank 1- and 2-month spot rates. The currencies are the Swiss
Franc (CHF), the British Pound (GBP), the Japanese Yen (JPY), the European ECU and the U.S. Dollar (USD).
Short-term Interbank rates are chosen in order to take a short-term cash investor’s point of view. Depending on

2Gross indices
3Countries in April 2002: Australia, Austria, Belgium, Canada, Denmark, Finland, France, Germany, Greece, Hong Kong, Ireland, Italy,

Japan, Netherlands, New Zealand, Norway, Portugal, Singapore, Spain, Sweden, Switzerland, the United Kingdom and the United States.
4Indices do not change composition very often, and changes are made in order to be easily understood and highly predictable. In addition,

since 1999, Salomon Brother’s has introduced a new selection methodology whose aim is that indices remain investment-grade benchmarks.
A sovereign issuer must have a minimum local (internal) debt rating of BBB-Baa3 from either Standard & Poor’s Corporation or Moody’s
Investors Service. The Salomon Brothers indices measure the total rate-of-return performance for bond market with a remaining maturity of
at least one year. The total return are market-capitalisation-weighted using the security’s beginning-of-the period market value. Indices are
reconstitued each month.
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the underlying currency, we take middle, offered or bid rates in order to get the longest available history5. In GBP
and ECU cases, 2-month spot rates are created by interpolation between the 1- and 3-month spot rates since the
2-month spot rate is not available for the whole history. ECU is chosen instead of Euro for convenience since
Euro appeared on markets on the 31/12/1999. The observation window differs across currencies. Starting dates are
04/01/1977 for CHF, 03/11/82 for ECU, 02/01/1975 for GBP, 01/07/1986 for JPY and 02/01/1986 for the USD.
All time series consist of end-of-the-day quotes and end on the 31/07/2003.

2.1.4 Foreign exchange rates

To analyse foreign exchange rates, we take the same currencies as for interest rates, all given against the USD.
Hence, we have CHF/USD-, GPB/USD-, JPY/USD- and ECU/USD-FX spot rates. The observation window ranges
from 02/01/1980 to 31/07/2003 and consists of end-of-the-day quotes.

2.1.5 Volatility index

One of the most popular measure of investors’ expectations about future stock market volatility is the Chicago
Board of Exchange volatility index (VIX). The VIX is computed on a minute-by-minute basis from the implied
volatilities of eight near-the-money, nearby, and second nearby OEX options (S&P100 options) series. These
implied volatilities are then weighted in such a manner that the VIX represents the implied volatility of a 30-
calendar days (22-trading days) at-the-money OEX options6. Since the VIX index started on the 02/01/1986, we
use the complete history until the 31/07/2003. Our data set consists of end-of-the-day quotes.

2.1.6 Real estate indices

For real estate’s data analysis, we use EPRA/NAREIT real estate indices for Switzerland and Great Britain. These
indices reflect the stock performance of companies engaged in specific aspects of Swiss and British real estate
markets as perceived by institutional investors7. For both indices, the observation window ranges from 31/01/1990
to 30/06/2003 and data consist of end-of-month quotes.

5CHF: bid rate; ECU,GBP: middle rate; JPY, USD: offered rate
6We refer the reader to http://faculty.fuqua.duke. edu/%7whaley/pubs/fear_trading.pdf for more details on VIX’s construction.
7The EPRA/NAREIT Real Estate Index is calculated using official closing share price from the home exchange of all the securities included

in the index. The entire amount of issued share of a constituent company is included in the calculation of the company’s market capitalisation,
and adjusted by the free-float weighting of the company. The index construction’s methodology ensures that the underlying constituents
continue to meet the basic principles of the index, and that the index continues to reflect as closely as possible the value of the underlying share
portfolio. The periodicity of rebalancing is quarterly. However, adjustment in the stocks and weightings in the index do not change the index
value because of the divisor adjustment.
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type name frequency start end
stock indices MSCI monthly 31/12/70 31/07/03

S&P500 daily 03/01/50 31/07/03
bond indices Salomon Brother’s monthly 31/01/85 30/06/03
interest rates CHF daily 04/01/77 31/07/03

GBP daily 02/01/75 31/07/03
JPY daily 01/07/86 31/07/03
ECU daily 03/11/82 31/07/03
USD daily 02/01/86 31/07/03

FX rates CHF/-, GBP/-, JPY/-, ECU/- daily 02/01/80 31/07/03
volatility index VIX daily 02/01/86 31/07/03
real estate indices EPRA/NAREIT monthly 31/01/90 30/06/03

Table 1: Data sets
We present in table 1 the data sets used in the empirical analysis. FX spot rates are given against the USD. The third
column gives the frequency of observations. The fourth and last columns give dates of first and last observations. Data
were downloaded from www.finance.yahoo.com, Bloomberg and Datastream.

2.2 Data cleaning

A good data quality is essential for a consistent empirical analysis: especially in small sample lengths, outliers can
lead to significant bias in correlation estimations. Therefore, as a first step in our analysis, we check the quality
of data and clean abnormal observations accordingly. We insist to the fact that outliers are abnormal observations
which cannot be explained by market conditions. An automatic filter algorithm is applied to data sets but the
decision to delete or to keep observations is taken on a case-by-case basis. This cleaning process has led to remove
0.2% of the data. We refer the reader to appendix A for more details on the filtering methodology as well as for
filtering results. From cleaned data, we then construct innovations.

2.3 Innovations

In literature, most empirical analyses test log-returns dependencies. Whereas it is natural to look at log-returns
for stock and bond indices, it seems that the complexity of interest rates and foreign exchange rates requires a
different approach, especially for longer horizons than one day or one week. Therefore, we introduce the notion
of innovation also referred to as risk factor. An innovation quantifies the deviation from the market expectation
and hence characterizes the risk8. For IR and FX rates, this deviation can be measured by comparing forward and
spot rates. We present hereafter the definition of the innovation for each class of securities tested in the empirical
analysis.

2.3.1 Stock, bond and real estate indices

For stock, bond and real estate indices, innovation at time � is defined as

�� �� ������� �������� (1)

where �� is the index level at time �. This definition approximates the relative change in the index (return). In
effect, we have

������� �������� � ��

�
��
����

�
� ��

�
� �

�� � ����
����

�
�

�� � ����
����

for a small relative change.
8’Market expectation’ has to be understood as a ’fair’ value under the market conditions. This is directly related to the no arbitrage

conditions.
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2.3.2 Volatility

For the volatility, innovation is simply defined as the difference in volatility over a time interval, that is

�� �� �� � ����

where �� is the level of the volatility (in percent) at time �.

2.3.3 Interest rates

For interest rates (IR), we use two kinds of innovations. The first one is defined the same way as for stock indices
(def.1) applied to the one-month spot rates. This definition is the most used in empirical studies so far. However,
as it was mentioned before, we need to go beyond this in order to capture ’deformation components’ of the yield
curve. To that aim, we develop a second definition which is suggested in [28]. It is based on spot rate and implied
forward rate’s comparison.

We start from the fact that the yield curve consists of annualized interest rates ���� as a function of maturity �
(expressed in years). Then, we transform rates in logarithmic form ����. Formally, the equivalent instantaneous
interest rate ���� is given by

���� ��
�

�
�� �� � ������

This has various advantages, mainly transforming the multiplicative compounding of interest rates to simple ad-
ditive compounding. The forward interest rate from maturity �� to �� is given by � ���� ���. An implied forward
interest rate can be constructed using basic interest compounding rules9 as follows:

� ���� ��� �
�������� �������

�� � ��

The next step consists of introducing the time dimension. We denote by ������ ��� the value of the implied forward
interest rate at time � for maturity �� to ��. This rate is computed using ������ and ������, spot rates values at
time � for maturities �� and ��. To construct the innovation, we first notice that the price of a forward interest
rate ����� ����� reflects the current market consensus forecast of the spot rate ���� ����. That is, at maturity
��� of the forward contract, we can directly read the value ���� ���� of the spot rate for the maturity �� . Said
differently, ����� ����� is the market predictor for ���� ����. Of course, this market consensus forecast is not
static since as time moves, interest rates continuously improve and adapt market news, until maturity is reached. In
a surprise-free market, we should observe that ����� ����� equals ���� ���� for all �. But the reality is a stream
of unexpected news that lead to deviations in the forecast. This deviation is precisely our innovation. Hence, from
the implied forward interest rate we define the innovation at time � by

�� �� ������� ���� ��� �����

From now on, we give the extension .new for these innovations. The usual method of taking log-returns of a
one-month spot rate is given with the extension .old.

2.3.4 Foreign exchange rates

Foreign exchange (FX) rates can be treated in a simpler way than interest rates. The market’s unbiased predictor
of an FX spot rate at time � is the FX forward rate at time ��� with maturity � . An FX forward rate depends on

9See [19], pages 93-95.
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the difference of interest rates of the two involved currency zones. This condition comes from the covered interest
rate parity. The FX implied forward rate of a foreign currency � � �CHF�GBP� JPY�ECU� against the USD, at
time � and for a maturity � is defined by

���USD����� �� ���USD��

�
� � ��������

� � �USD������

�
(2)

where ���USD�� is the FX spot rate at time � and ������� is the spot rate at time � with maturity � for the foreign
currency �. From the relation (2), we define the innovation at time � by

�� �� ���USD�� � ���USD���� ���

that is the deviation of the FX spot rate at � from its unbiased predictor, the FX implied forward rate with maturity
� evaluated at time ��� . These innovations are referred to as new innovations. As in the IR case, we analyse
log-returns, here computed on FX spot rates. In that case, we give the extension .old to innovations time series.

2.4 Monthly innovations’ construction

The lack of data in a low-frequency framework leads inevitably to a poor statistical accuracy. We can overcome
this problem by taking a larger observation window. In this case however, the stationarity assumption can become
questionable. Therefore, we require the use of overlapped observations in order to increase the sample size. From
the original daily time series, we create five monthly time series. This methodology allows to decrease the error
variance and leads to more accurate results in terms of estimation. However, since observations are not independent
anymore we need to adjust test statistics.

2.4.1 An example

We start with S&P500 daily quotes ranging from Monday, March 3rd to Wednesday, April 30th, 2003. Our aim is
to construct five monthly observations from this sample.

The first monthly observation is simply constructed by taking March and April’s last valid quotes. In our example,
this monthly observation is constructed using the quotes from Monday, March 31th and Wednesday, April 30th
(MM31-AW30). Twenty-two valid days separate these two observations. Then, we create four additional monthly
observations. We split both March and April into four intervals intervals and take the first valid days preceding
splitting dates. In our example, we obtain the following results: for March, dates are Friday 7th, Thursday 13th,
Wednesday 19th and Tuesday 25th. For April: Friday 4th, Friday 11th, Thursday 17th and Thursday 24th. From
these four couples of days, we construct four additional monthly observations. We have MF7-AF4, MT13-AF11,
MW19-AT19, MT25-AT24. Numbers of valid days within each monthly interval are 21, 22, 22 and 23 days.

2.4.2 Pros. and cons. of overlapping technique

Overlapping technique has both advantages and drawbacks. By increasing the number of observations it provides
more accurate estimates. For instance, Müller [27] shows that, under Gaussian distribution assumption, overlap-
ping technique reduces by one-third the stochastic error when computing the variance’s estimation of log-returns.
A similar result is obtained for the covariance between two time series. Such gains are certainly not negligible
when dealing with small data sets. On the other hand, this method creates spurious autocorrelation effects. In a hy-
pothetical framework where intervals are constant and observations are log-returns, these effects can be quantified
precisely. The aggregation property of log-returns leads to the creation of moving-average (MA) effects.

In our particular case, both advantages and drawbacks are difficult to quantify since observation intervals have
different lengths, Gaussian distribution is questionable and innovations do not necessarily aggregate. However,
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the gain lies between zero and one third, and is therefore not negligible. Since we cannot quantify precisely
autocorrelation effects up to lag one, we ignore them in the empirical analysis. In addition, we adopt an ad-
hoc procedure to adjust test statistics. In effect, statistics distributions are derived under the assumption that
observations are independent. Since with the overlapping process we create dependent observations, we replace
the number of independent observations by the effective number of observations, as suggested in [27]. This number
is given by

	eff ��
	
	



� � �

�
��


�
� � ��


�

� � ��	

�
(3)

where 	 is the total number of observations (with overlapping), and m is the number of overlap (	�
). In our
case, 
�� since we have five monthly observations constructed from a one-month daily sample.

We illustrate in appendix B that, on average, the number of significant lags given by the ad-hoc procedure is close
to the number given by monthly non-overlapped observations, whereas using the whole number of observations
leads to overestimating the number of significant results. Based on these results, we decide to focus on overlapped
observations in order to get more accuracy and correct statistics by taking the number of effective observations
instead of the total number of observations.

2.5 Innovations analysis

2.5.1 Descriptive analysis

In table 2 we present some descriptive statistics for innovations time series. First, we notice that the annualized
mean is significantly positive at the 95% level for stock, bond and real estate indices whereas negative for IR new
innovations. For IR.old and FX innovations, means are not significantly different from zero (beside IR.USD.old).
In terms of Sharpe ratio10, MSCI.UK outperforms stock indices. More surprisingly SLOMON.US overperforms
both equity and bond indices with a Sharp ratio of 1.78. The skewness coefficient is significantly negative for stock
indices. Skewness varies in sign and value across IR and FX rates. However, it is of the the same sign between new
and old innovations (beside the IR.JPY). The kurtosis is significantly positive for stock indices and IR, indicating
leptokurtic distributions. Distributions of new innovations for IR and FX are more centered and less heavy-tailed
than for old innovations. Finally, we observe that VIX innovations’ distribution is highly skewed11.

In figure 1 we present quantile-quantile plots for SLOMON.US and IR.JPY.old innovations. On the left hand-
side, points lying on the straight line indicate that SLOMON.US innovations’ distribution is almost Gaussian.
However, for IR.JPY.old we observe fat tails and peakdness in the empirical distribution: normal distribution is
clearly rejected.

10The Sharpe ratio is defined as �
�

, i.e. the risk-free interest rate is set at 0 for simplicity.
11We can explain this fact by two phenomena. First, individuals overreact bad news which implies more frequent increases than decreases

in volatility. Second, the volatility is bounded from below.
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type name overlap � �ind �� �� ����� ����	
stock indices MSCI.CH F 403 403 0.079 0.175 -0.751 3.052

MSCI.US F 403 403 0.101 0.158 -0.561 2.349
MSCI.UK F 403 403 0.118 0.206 0.302 8.367
MSCI.JP F 403 403 0.067 0.186 -0.268 1.256
MSCI.GLOB F 403 403 0.089 0.142 -0.891 2.914
S&P500 T 3210 642 0.077 0.148 -0.747 3.672

bond indices SLOMON.CH F 221 221 0.052 0.034 -0.101 0.639
SLOMON.US F 221 221 0.086 0.048 0.006 0.008
SLOMON.UK F 221 221 0.100 0.063 -0.081 1.473
SLOMON.JP F 221 221 0.055 0.044 -0.522 2.062
SLOMON.GLOB F 221 221 0.094 0.070 0.171 -0.087

interest rates IR.CHF.new T 1590 318 -0.020 0.021 -0.245 3.335
IR.USD.new T 1110 222 -0.013 0.009 -0.702 5.379
IR.GBP.new T 1775 355 -0.011 0.021 1.014 7.268
IR.JPY.new T 1020 204 -0.005 0.006 -0.570 2.888
IR.ECU.new T 1240 248 -0.013 0.016 -1.455 14.396
IR.CHF.old T 1590 318 -0.073 1.137 -0.434 12.702
IR.USD.old T 1110 222 -0.108 0.218 -0.802 4.705
IR.GBP.old T 1775 355 -0.041 0.239 0.986 6.456
IR.JPY.old T 1020 204 -0.280 0.980 0.941 25.797
IR.ECU.old T 1240 248 -0.079 0.215 -1.177 9.187

FX rates FX.CHFUSD.new T 1050 210 -0.040 0.177 -0.204 0.099
FX.GBPUSD.new T 1050 210 -0.005 0.062 0.657 1.823
FX.JPYUSD.new T 1020 204 -2.308 14.513 -0.470 1.066
FX.ECUUSD.new T 1050 210 -0.013 0.095 -0.097 0.347
FX.CHFUSD.old T 1410 282 -0.007 0.125 -0.259 0.279
FX.GBPUSD.old T 1410 282 0.014 0.107 0.220 2.176
FX.JPYUSD.old T 1410 282 -0.030 0.119 -0.604 1.058
FX.EURUSD.old T 270 282 0.011 0.110 -0.098 -0.248

volatility VIX T 1050 210 0.163 25.889 3.029 130.984
real estate REAL.ESTATE.CH F 162 162 0.077 0.083 0.312 1.583

REAL.ESTATE.UK F 162 162 0.062 0.185 -0.325 -0.116

Table 2: Innovations data sets

We present in table 2 innovations’ descriptive statistics. Column 3 indicates whether overlapping technique is used (T=true, F=false).
Column 4 gives the total number of observations �. Column 5 gives the total of independent observations (end-of-the-month).

Columns 6-9 give respectively the mean �� (annualized), the standard deviation �� (annualized), the skewness ��	
� and the excess

kurtosis�	�
�. Significant results at the 95% level are displayed for the mean, the skewness and the kurtosis in bold face format. To
test the significance we compute the following statistics

��� ��
��

���
�
�eff

�
�����

�� ��	
�
�

�

�eff
�
�����

���	�
�

�
��

�eff

We notice that we use the number of effective observations instead of the whole number of observations in order to avoid the
overlapping bias. ��� follows a Student-� distribution with �eff�� degrees-of-freedom, whereas �

�����
and �
�����

follow a standard
normal distribution. We conclude that the sample mean is significantly different from zero when ����� is higher than the upper
2.5%-quantile of the Student-� distribution with �eff�� degrees-of-freedom.

Skewness is the asymmetric coefficient of the probability density function (PDF). The excess kurtosis is defined such that a positive
value of 	�
� indicates a ’fat tail’, that is, a slow asymptotic decay of the PDF. We recall that skewness and excess kurtosis are 0 for
a Gaussian distribution. Innovations’ definitions are given in section 2.3. Observation windows vary across time series (see table 1).

9



quantiles of corresponding Normal

e
m

p
ir
ic

a
l 
q
u
a
n
ti
le

s

-3 -2 -1 0 1 2 3

-2
-1

0
1

2
3

SLOMON.GOV.US

quantiles of corresponding Normal

e
m

p
ir
ic

a
l 
q
u
a
n
ti
le

s

-2 0 2

-5
0

5

IR.JPY.old

Figure 1: Quantile-quantile plots

In figure 1, we present normal quantile-quantile plots for SLOMON.GOV.US and IR.JPY.old innovations time series. The horizontal
axis indicates quantiles of a normal distribution (with the same mean and standard deviation as the empirical distribution). The
vertical axis indicates empirical quantiles.

2.5.2 Stationarity testing

We test the stationarity of innovations time series using Kwiatkowski, Phillips, Schmidt and Shin (KPSS) statis-
tic12. On the whole sample, only two rejections of the ���� hypothesis at the 5% significance level have been
detected: for IR.ECU.new (fig. 2) and IR.USD.old innovations time series. However, on the 32 innovations time
series, 5% implies 1.6 theoretical rejections. Hence, we cannot conclude to a strong rejection of the stationary
hypothesis for these time series. For more detailed explanations of the testing procedure we refer the reader to
[35].

12Whereas the augmented Dickey-Fuller (ADF) and Phillips Perron (PP) unit root tests are for the null hypothesis that a time series is 
���
(integrated of order 1), KPSS tests the null that the time series is 
���. In general, the ADF and PP tests have very low power against 
���
alternative that are close to being 
���. That is, unit root tests cannot distinguish highly persistent stationary processes from nonstationary
processes very well. The KPSS allows to overcome this problem.
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Figure 2: IR.ECU.new time series

In figure 2 we present IR.ECU.new innovation time series. This time series as
well as IR.USD.old has been detected to be non-stationary by the KPSS statistic
at the 5% level.
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3 How to test dependencies ?

This section reviews some tools usually used to detect linear and non-linear dependencies between data. In addition
to formal definitions we comment their advantages and drawbacks.

3.1 Pearson’s correlation

3.1.1 Definition

The most widely used measure of association between variables is the linear correlation or Pearson’s correlation
coefficient. Given ���� � � �� �������
 � � �
 ���� 


� ��, a �-dimensional random process, the correlation at lag
� between variable ���� and ���� is defined by

������� �� ������� �����	� ��
������ �����	��
������ ������	�

(4)

where

������ �����	� ��� �������� �������������	�� ������	��� (5)

������ �������� ����� (6)

Relation (5) expresses the covariance between variables���� and�����	 whereas relation (6) expresses the variance
of variable ����. The function � is the expectation operator. When we assume stationarity of ��, the denominator
does not depend on time anymore and variance of ���� simplifies to ����. The value of � lies between -1 and 1,
inclusive. It takes on a value of 1, termed "complete positive correlation" when the variable ���� can be expressed
as ������� (almost surely) where � � �. A value near zero indicates that variables are uncorrelated. The natural
multivariate representation of the correlation coefficient is the correlation matrix. This matrix is denoted by ����
where the ��� ��-th component is defined by

��������� �� ������� � 	 �� � 	 � (7)

This matrix is the lead-lag correlation matrix at lag �. It is neither symmetric nor positive semi-definite in general.

From definition (7), we can notice the two particular cases:

� ���� is the contemporaneous cross-correlation matrix between our set of random variables. This matrix is
symmetric, positive semi-definite.

� ��������� is the autocorrelation of random variable �� at lag �.

To estimate this matrix empirically, we start from a �-dimensional sample with 	 observations denoted by � ��
�����
 � � �� 


	
 � � �� 


� ��. The sample correlation estimate at lag �, between variables ���� and ���� is given
by

�������� ��

��
��	�� ���������	�

�
��

��� �
�
�����

��
��� �

�
����

(8)

with ���� �����������, where �� �� �
�

��
	�� ���	 denotes the sample mean. From these coefficients, we construct

the sample lead-lag correlation matrix by�
�����

�
���

�� �������� � 	 �� � 	 � (9)
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We notice that this definition implicitly assumes strict stationarity since it uses the whole information (n observa-
tions) to compute the variance estimates13. To test whether our sample estimate is not significantly different from
zero we use the statistic defined by

t �� �����

�
	� 


�� ������
(10)

where 	 stands for the number of independent observations14. Under the null hypothesis the statistic follows a
Student’s distribution with 	�
 degrees-of-freedom.

3.1.2 Comments

Pearson’s correlation coefficient has the advantage of being a real-number easy to compute and to interpret. How-
ever, it suffers from a large number of drawbacks. Firstly, it only detects linear dependencies in data; non-linear
patterns, even simple ones, cannot be measured. Secondly, correlation is only defined when the variance is finite.
Thirdly, Pearson’s coefficient is not a distribution-free measure. It describes completely the dependence structure
in a normal world. However, it is now well-known and empirically proved that the Gaussian framework does not
describe reality, especially due to the presence of heavy-tails in empirical distributions. Finally, linear correlation
is not invariant under non-linear strictly increasing transformations. For these reasons, we should be careful when
drawing quantitative conclusions from this coefficient.

3.1.3 Transformations

From its definition, we clearly see that correlation is highly influenced by the variance. Hence, even few extreme
observations can imply a high variance in the denominator, and therefore, can bias the correlation coefficient.
Analyzing correlation through a range of power will attenuate this problem. Therefore, in the empirical analysis,
the usual Pearson’s correlation coefficient is calculated for observations �� as well as for transformed observations

��


� where � � ��
�� �� �
�� 
�. Low powers will attenuate the bias in estimation whereas high powers will shed
light on correlation in tails.

3.2 Spearman’s rank correlation

3.2.1 Definition

The incertainty in interpreting the significance of linear correlation leads us to the concept of Spearman’s rank
correlation. This correlation is a distribution-free analog of Pearson’s correlation that measures the monotone
association between variables. Given ���� � � ��, a �-dimensional random process, the rank correlation between
variable ���� and ���� is given by

������� �� ����	
������� ��


������	�� (11)

where ��	
denotes the distribution function of random variable �� and � is given in (4). We estimate it empirically

from the �-dimensional sample � by

�������� �� ���rank������� rank������	�� (12)

where rank��� is the position in the empirical distribution and �� the sample correlation coefficient defined in
(8). Statistical testing for rank correlation is made in the same manner as in Pearson’s case (10). The range of
Spearman’s correlation is from -1 to 1, inclusive.

13This methodology is defined by default in S-Plus. Sometimes however, the definition differs slightly in order to speed up numerical
computations. This is the case for EViews software. These differences are negligible for large samples but can lead to significant differences in
small samples. Since in our case, observations sets are quite small, the maximum of information is used in order to increase results accuracy.

14See [34] for further details.
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3.2.2 Comments

The key concept of nonparametric correlation is to replace the value of each observation ���� by the value of its
rank in the sample, rank������. Hence, the resulting list of numbers is drawn from a uniform distribution function,
eliminating the problem of unknown underlying distribution. Therefore, nonparametric correlation is robust against
underlying distribution. In addition, this measure is invariant under strictly monotonic transformation and is defined
even when the variance is not finite. All these characteristics are desirable in analyzing dependencies in financial
data.

3.3 Box-Pierce and Ljung-Box

The Box-Pierce (BP) [5] and Ljung-Box (LB) [23] tests are based on sample autocorrelation coefficients. However,
instead of testing the randomness at each distinct lag, they test the ’overall’ randomness based on a number of lags
�. The Box-Pierce statistic is given by

�� ��� �� 	
	�

���

������ (13)

where 	 is the number of independent observations and ������ is defined in (8)15. However, Ljung and Box show
that substantially improved approximation can be made from the BP statistic, especially for small samples. They
adapt the BP statistic by

����� �� 	�	� 
�
	�

���

�

	� �
������ (14)

Asymptotically, both statistics are ��	 distributed. When the statistic is significant at lag �, this means that the
statistic has detected presence of autocorrelation up to lag �. We can notice that LB gives more emphasis to later
autocorrelation than BP does. Hence, this statistic will provide a more accurate estimation of autocorrelation if it
occurs at a high lag.

3.4 Copulas

To move away from simple scalar measures of dependence as it is the case for Person’s correlation and Spearman’s
rank correlation and capture the overall dependence structure contained within the joint distribution of innovations,
we use the notion of Copulas.

Copulas: A �-dimensional copula is a distribution function � � ��� ��� �� ��� �� which satisfies

1 For all �� � ��� ��� ���� 


� �� ��� �� 


� �� � ��

2 ����� 


� ��� is increasing in each ��

Copulas capture the dependence structure of the multivariate distribution. This property comes from the following
fundamental theorem:

15We can either use Pearson’s or Spearman’s correlation.
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Sklar’s theorem: Given a joint distribution function � of a random vector ���� 


� ��� with continuous margins
��� 


� ��, then there exists a unique d-dimensional copula � � ��� ��� �� ��� �� such that

����� 


� ��� � ��������� 


� ������� (15)

Hence, from this theorem, we see that for continuous multivariate distribution functions, the univariate marginal
distributions and the multivariate dependence structure can be separated, and the dependence structure can be
represented by a copula. To spell how this unique copula is related to the joint distribution we use the following
Corollary:

Corollary: Let � be the joint distribution function of a random vector ���� 


� ���, with continuous margins
��� 


� �� and copula � satisfying (15). Then, for any ���� 


� ��� � ��� ��

�, we have

����� 


� ��� � ������ ����� 


� �
��
� ����� (16)

where ������ �� ��� �� � � � � ��� � �� is the generalized inverse of � defined on ��� ��. Without the conti-
nuity assumption, this may not hold. Unlike the linear correlation that captures the full dependence structure in
multivariate normal distributions, the copula summarizes this dependence structure for any joint distribution (with
continuous marginals). In addition, if ���� 


� ��� has continuous margins, and ��� 


� �� are strictly increas-
ing transformations, then �������� 


� ������� has the same copula as ���� 


� ��� but not in general the same
correlation matrix.

Many copula functions exist in literature, either belonging to the fundamental, the implicit parametric or explicit
parametric family. We present hereafter the two copulas that are used in this study, namely the Gaussian and the
Student-� copulas16. The fundamental difference between these two copulas lies in their respective tail dependence
structure. The concept of tail dependence relates the amount of dependence in the upper-right-quadrant tail or
lower-left-quadrant tail of a bivariate distribution. It turns out that tail dependence between two continuous ran-
dom variables is a copula property. It can be shown that, in the Gaussian copula case, we have tail dependence
(perfect tail dependence) only when the linear correlation is 1, otherwise, the tail dependence is zero. However,
it is empirically observed that extreme co-movements happen even when the correlation is not perfect between
securities.

It is therefore important to consider copulas that possess the property of non-trivial tail dependence. This is the
case with the Student-� copula. In effect, for random variables which are linked via a Student-� copula, we can
expect joint extreme movements to occur with non-negligible probability, even when the random variables exhibit
small correlation. It is essentially the degree-of-freedom which controls the extent of tail dependence and tendency
to exhibit extreme co-movements.

3.4.1 Gaussian copula

Let � denote the standard normal distribution function and let ��
� denote the �-dimensional normal distribution

function, with zero mean, unit variance for each margin and linear correlation matrix ��� ��� . That is, for ��� �

��
���� �

	
�

��

�

�
 ����
�
��	
������
����������

where 
�
 is the determinant of �. Then, for � ������ 


� ��� � ��� ���, we define the Gaussian copula as

����
 �� �� ��
���

������

where ������ ����������� 


���������.
16These copulas belong to the implicit parametric copulas family.
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3.4.2 Student-� copula

Let �� denote the (standard) univariate Student-� distribution function with ! degrees-of-freedom, formally

����� ��

	 �

��

���! � ��"
�

��!"
��! ���	
�� � #�"!��
�������#

We denote the �-dimensional Student-� distribution, with ! degrees-of-freedom and shape parameter matrix ��
�
��� by

�������� ��

	
�

��

���! � ��"
�

��!"
��! ���	
�
��	
�� � ������"!��
��������

where ��� � . Then, for �� ��� ���, the Student-� copula is defined by

���
 !��� �� �������
��
� ����

where ���� ��� ��


���� ����� 


� ������

�
. If ! $ 
, the shape parameter matrix � can be interpreted as the linear

correlation matrix. We recall that the multivariate �-distribution is a generalization of the multivariate normal
in the sense that the normal distribution can be considered as a �-distribution with infinite degrees of freedom.
Gaussian and Student-�-copulas are essentially indistinguishable for degrees-of-freedom that are greater than ���.
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4 Time dependency analysis

We present in this section a time dependencies analysis of monthly innovations. The goal of our investigation is
two fold. First of all, by using Pearson’s and Spearman’s rank correlation we aim to detect time dependencies in
data sets. Secondly, if measures conclude to significant dependencies over time, we aim to determine which kind
of model is able to better reproduce observed patterns.

4.1 Autocorrelation analysis

The univariate analysis consists mainly of computing autocorrelation for different lag horizons. An example of
the sample autocorrelation function (SACF) is given for the S&P500 in figure 3. In addition to the computation of
Pearson’s autocorrelation for innovations themselves, we compute the autocorrelation for transformed innovations

��


�, � � ��
�� �� �
�� 
� in order to diminish or reinforce extreme observations. Furthermore, Spearman’s auto-
correlation is computed to support or contradict Pearson’s results. Since Spearman’s autocorrelation is invariant
under monotonic increasing transformation, we compute it for absolute values of innovations, i.e. ���. Significant
results are determined at the 99% level using (10).
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Figure 3: SACF – S&P500
In figure 3, we present the sample autocorrelation function (SACF) of the S&P500 over 60 months. Given observations ��	��� � � �� ���� ��
of the random process ��	��� � � ��, the SACF function is the plot of �
	� ��	�	
	��� 	 � �� ���� �� where� is the maximum horizon an-
alyzed. In the upper plot, Pearson’s correlation is computed for innovations (full line) and transformed innovations ��	���� , for � � ���	� ��
(dashed lines). Presence of autocorrelation in absolute values indicates volatility clustering effects. To avoid the problem of the normal distribu-
tion assumption, we compute on the lower plot, Spearman’s rank autocorrelations (full line). Since this correlation is invariant under increasing
transformations, we compute Spearman’s rank correlation for absolute values of innovations (dashed line). Significant autocorrelations at the
95% level (99 % level) are indicated by a circle (triangle). The band about the zero autocorrelation line represent 99% significance of the hy-
pothesis of independent Gaussian observations, that is	��	
���eff. They are not straight since, as the lag increases, the number of effective
observations decreases.
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We display in table 3 the overall lags which exhibit significant autocorrelation for each time series. At a first look,
we can distinguish two groups of data.

For stock, bond and real estate indices and FX rates, neither systematic nor persistent autocorrelation patterns is
observed. For autocorrelation of transformed innovations, Pearson’s and Spearman’s results give slightly more
significant lags, indicating volatility clustering. We can notice the special case of SLOMON.JP innovations, where
we observe a 3-month cycle in transformed innovations.

On the contrary, interest rates show a larger number of significant lags, for both original and transformed inno-
vations. Sometimes, volatility clustering is present for up to 24 months! Differences emerge from new and old
innovations. The use of new innovations decreases the autocorrelation but increases the volatility clustering ef-
fect. When analyzing autocorrelation relative to the powers, we observe that even for � � 
, numerous lags are
significant and are supported by Spearman. This indicates that interest rates are more sensitive to clustering in tails
than other assets. An example is given in figure 4 for the IR.CHF.new time series. The autocorrelation at lag 1 is
computed for transformed innovations and � ���� ��. In this case, even if the highest correlation is observed for
powers which are close to one, autocorrelation decreases slowly and cancels only near ���.
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Figure 4: IR.CHF.new innovation

We present in figure 4 the autocorrelation at lag 1 of ����� as a function of the
power � for IR.CHF.new innovations. The dashed line is the upper limit of the
99% confidence band of the hypothesis of independent Gaussian observations.

Finally, we observe that the VIX index exhibits significant autocorrelation at lag 1, and autocorrelation of absolute
values up to lag 4.
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Now, we go further in the SACF analysis and present hereafter numerical values of Spearman’s autocorrelation
for S&P500, SLOMON.JP, and VIX innovations time series. Results in table 4 show that the S&P500 does not
exhibit significant autocorrelation. In the case of SLOMON.JP, we observe significant autocorrelation at lag 1
and significant volatility clustering at lags ��� 	� �� �� all positive. This indicates a 3 months-cycle pattern in
volatility clustering. For the VIX index, the significant negative autocorrelation at lag 1 suggests a mean-reverting
behaviour17. Level of autocorrelation for absolute value is almost constant up to lag 4 and indicates presence of
clusters in volatility’s changes.

1 2 3 4 5 6 9 12 18 24
SP500 -0.02 -0.01 0.03 0.06 0.08 -0.02 0.01 0.00 0.00 0.00

0.02 0.06 0.09 0.07 0.09 0.08 0.03 0.03 0.00 0.00
SLOMON.JP 0.22 0.13 -0.06 -0.09 -0.08 0.08 0.07 0.08 0.08 -0.07

0.22 0.16 0.35 0.09 0.16 0.22 0.21 0.11 0.10 0.06
VIX -0.19 -0.04 -0.08 -0.04 0.04 0.00 0.05 0.08 0.10 -0.07

0.22 0.15 0.16 0.16 0.03 0.11 0.12 0.06 -0.03 0.06

Table 4: Autocorrelation estimates
We present in table 4 Spearman’s autocorrelation (def.12) up to lag 24 for S&P500, SLOMON.JP and VIX innovations time
series. Results for absolute values are given in italic. For both original and absolute innovations, significant autocorrelations
at the 99% level are given in bold face format. 0.00 indicates that the value is lower than the second digit.

When analyzing interest rates in details, we observe from table 5 that autocorrelation is positive for significant lags.
This is also the case for transformed innovation which argues for volatility clustering effects. All new innovations
time series exhibit less autocorrelations than old definitions. In addition, if this autocorrelation is present in new
innovations time series, it locates only at lag one. It is more difficult to give such a clear conclusion for volatility
clustering since results differ across time series. However, when restricted to lags given in the table, IR.CHF,
IR.USD and IR.JPY suggest that new innovations are less clustered that old one.

name 1 2 3 4 5 6 9 12 18 24
IR CHF new 0.22 0.03 0.14 0.00 -0.02 -0.05 -0.06 -0.08 0.01 0.1

0.22 0.27 0.19 0.23 0.13 0.21 0.12 0.22 0.23 0.23
old -0.06 -0.07 0.18 -0.04 -0.07 0.12 0.09 0.21 0.12 0.22

0.34 0.36 0.37 0.31 0.30 0.28 0.24 0.28 0.17 0.16
IR USD new 0.18 0.00 0.07 -0.03 -0.06 -0.02 0.03 0.00 0.13 0.12

0.24 0.12 0.14 0.09 0.08 0.09 0.04 0.03 -0.02 0.14
old 0.14 0.10 0.26 0.08 0.07 0.27 0.18 0.21 0.08 0.20

0.37 0.22 0.13 0.05 0.04 -0.01 0.05 0.12 0.02 0.13
IR GBP new 0.10 0.09 -0.05 0.01 0.09 0.10 0.00 0.14 0.04 0.00

0.33 0.23 0.19 0.21 0.27 0.19 0.15 0.22 0.10 0.18
old 0.19 0.11 0.04 0.00 0.05 0.03 0.02 0.02 0.02 0.04

0.26 0.13 0.15 0.10 0.15 0.15 0.03 0.08 0.08 0.08
IR JPY new -0.05 0.01 0.00 -0.07 -0.06 0.07 0.00 0.11 0.07 0.10

0.29 0.34 0.22 0.20 0.27 0.30 0.15 0.10 0.14 0.19
old -0.06 -0.02 0.25 -0.02 -0.15 0.18 0.18 0.36 0.10 0.38

0.24 0.13 0.20 0.17 0.16 0.19 0.20 0.34 0.15 0.27
IR ECU new 0.09 0.00 0.05 -0.08 -0.02 0.01 -0.04 0.08 -0.06 -0.01

0.21 0.10 0.30 0.26 0.22 0.19 0.25 0.21 0.12 0.12
old 0.08 0.06 0.16 0.12 0.04 0.06 0.00 0.10 -0.09 0.07

0.17 0.09 0.08 0.07 0.03 0.03 -0.01 0.14 0.03 -0.04

Table 5: Autocorrelation estimates – interest rates
We present in table 5 Spearman’s autocorrelation (def.12) up to lag 24 months for interest rates new and old innova-
tions time series. Results for absolute values are given in italic. For both original and absolute innovations, significant
autocorrelations at the 99% level are given in bold face format. 0.00 indicates that the value is lower than the second digit.

17also referred as to overshooting.
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4.2 Box-Pierce and Ljung-Box

The SACF analysis can be extended by testing the overall presence of autocorrelation. To that purpose, we compute
the Ljung-Box (LB) and Box-Pierce (BP) statistics in order to determine up to which lag autocorrelation is present.

Figure 5 plots LB and BP p-values for S&P500 (left) and IR.CHF.new (right) innovations time series. In the case of
S&P500, Spearman’s LB and BP do not exhibit significant autocorrelation in the original time series. On the other
hand, LB and BP p-values lie below the 1% p-value for transformed innovations, indicating volatility clustering.

Results for volatility clustering is similar for IR.CHF.new innovations. In addition, p-value results for original
innovations indicate that autocorrelation is also present. In this case, the time dependency is brought to light by
both autocorrelation and volatility clustering. For other IR innovations time series, the same conclusion holds.
This suggests the need for GARCH models to reproduce innovations’ evolutions.
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4.3 Time series models fitting

Univariate tools used previously suggest that time dependency is present, even in monthly time series. The autocor-
relation for absolute values of innovations is stronger than for original time series themselves, suggesting volatility
clustering patterns. In this section, we test the adequacy of selected time series models to fit non-overlapped
monthly innovations. Models tested are of ARMA and GARCH types. The former models aim to reproduce
autocorrelation whereas latter capture volatility clustering effects.

4.3.1 ARMA models

The covariance stationary18 univariate process ���� � � �� is an ARMA(p,q) 19 model if, for all �, it satisfies

�� �

��
���

%����� � &� �

��
���

'�&��� (17)

where & 
()��� *�� � is a white noise process20 with mean zero and variance *�� . The condition
��

��� %� + �
implies that the model is stationary.

Within this class of models, we test five particular cases: MA(1), MA(2), AR(1), AR(2) and ARMA(1,1)21. These
models are fitted to non-overlapped monthly innovations by maximum likelihood using the function arima.mle in
S-Plus22. To determine the best model for a particular data set we focus on the Akaike information criterion23. The
smaller the AIC is, the better the model fits the data.

Coefficients estimates as well as AIC are given in table 6. We observe that, in general, models MA(1) and
ARMA(1,1) give better AIC results. For stock indices, apart for in Switzerland, all models are of MA(1) or
MA(2) types. This suggests that autocorrelation is only present up to lag 1 or 2 since MA(�) autocorrelations cut
off at lag �. For the S&P 500, the MA(1) coefficient is not significantly different from zero at the 99% level. Here,
in line with previous results, no autocorrelation patterns are observed.

For bond indices, the autocorrelation is captured by both AR and MA effects. In that class of security, the
ARMA(1,1) model gives the better performance.

Finally, we can notice differences between FX old and new innovations. Whereas ARMA type gives better perfor-
mance for new definitions, which suggests dependence over time, best models for old innovations are of MA(1)
type. In addition, all estimates for this model are not significantly different from zero. Therefore we reject auto-
correlation for old definition as our previous results have suggested.

18Covariance stationary stands for a process with constant mean and where covariance between variable only depends on the time interval’s
lenght.

19Autoregressive Moving-Average.
20A white noise process (WN) is a covariance stationary process where increments are uncorrelated.
21Particular cases of (17) are:
MA(1): � � �, � � �
MA(2): � � �, � � �
AR(1): � � �, � � �
AR(2): � � �, � � �
ARMA(1,1): � � �, � � �
22The assumption of normality distribution for error terms 
 in (17) is often violated in practice. By performing a maximum likelihood under

the hypothesis that errors are normally distributed even if they are not, we estimate the parameters by quasi-maximum likelihood (QML).
23For a model �� with �� parameters �� �� ������ ���� ����
 � and the likelihood ����� ���, the Akaike information criterion is given by

�
����� �� �� 	
 ������ ��� � ���
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4.3.2 ARMA-GARCH models

The univariate process ���� � � �� is an ARMA(��� ,�)-GARCH(��� ,�)24 model, if, for all �, it satisfies

�� � -� � &� (18)
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where �� $ �, �� � � (� � �� 

� ��), �� � � (� � �� 


� ,�) and .� 
 �()��� �� is a normalized strict white
noise25 independent of ���� � 	 ��. We notice that positive parameters ensure that the conditional variance *��
remains positive26. The process is covariance stationary when

���
��� %� + � and

���
��� ���

���
��� �� + �. The

unconditional variance of the process is given by ��"���
���

��� ���
���

��� ���.

Within this class of models, we test five particular cases: ARCH(1), ARCH(2), GARCH(1,1), C-GARCH(1,1)
and ARMA(1,1)-GARCH(1,1)27. These models are fitted by QML to non-overlapped monthly observations using
the function garch in S-Plus28. Since GARCH models can be treated as ARMA models for squared residuals, the
traditional Akaike information criterion is used for selecting best models.

Coefficients estimates as well as AIC are given in table 7. For most time series, ARCH and GARCH coefficient
are significantly different from zero, indicating volatility clustering patterns. In addition, ARMA coefficients are
significant for some time series, in particular for interest rates. Here, both autoregressive and GARCH effects are
captured by the ARMA-GARCH model.

Nevertheless, a more attentive look at coefficients estimates sheds light on an interesting phenomenon. In the case
of VIX, IR.ECU.new, IR.CHF.old and IR.JP.old time series, the resulting unconditional variance is negative! This
does not seem to be a small-sample effect since the other time series contain the same number of observations but
estimated GARCH variances are well defined. For these four time series, the high kurtosis observed in table 2 is
certainly at the origin of the misspecification in fitted GARCH models.

Comparison between ARMA and GARCH models is given in table 8. For each class of asset, we make the
cumulative sum of AIC numbers29. Although the ARMA(1,1) model overperforms GARCH(1,1) for FX.new
innovations, the ARMA-GARCH type gives a better performance in general.

Therefore, even over monthly intervals, autocorrelation and volatility clustering have to be taken into account. It
is now clear that the independence’s rule of thumb is too strong a hypothesis and can lead to underestimating the

24Autoregressive moving-average mean with Generalized Autoregressive Conditionally Heteroscedatic errors.
25A strict white noise is a process of independent, identically distributed, finite variance increments.
26It is a sufficient but not necessary condition.
27Particular cases of (18) are :
ARCH(1): �� � �, �� � �� � �� � �, � � �
ARCH(2): �� � �, �� � �� � �� � �, � � �
GARCH(1,1): �� � �� � �, �� � �� � �, � � �
C-GARCH(1,1): �� � �� � �, �� � �� � �
ARMA(1,1)-GARCH(1,1): �� � �� � �� � �� � �
28FinMetrics library. We set the BHHH.control argument positive at true in order to constraint the coefficients in the variance equation of

GARCH models to be positive during the optimization process.
29In addition to this methodology, we ranked each model and aggregated the rank within each security’s classes. Conclusions are the same

as with AIC numbers.
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risks. In addition, we should be careful when applying GARCH models to time series with high kurtosis since the
unconditional variance might not be defined.

ARMA class GARCH class
model AIC model AIC

stock indices MA(1) -9401 C-GARCH(1,1) -9565
bond indices ARMA(1,1) -6155 ARMA(1,1)-GARCH(1,1) -6249
IR new ARMA(1,1) -10983 ARMA(1,1)-GARCH(1,1) -11633
IR old ARMA(1,1) -2008 ARMA(1,1)-GARCH(1,1) -2574
FX new ARMA(1,1) -1517 GARCH(1,1) -1497
FX old MA(1) -4483 ARCH(1) -4487
VIX ARMA(1,1) 1231 ARCH(2) 1214
real estate MA(2) -1243 C-GARCH(1,1) -1249

Table 8: Akaike information criterion comparison

We present in table 8 aggregated AIC numbers for ARMA and ARMA-GARCH best models within each security’s class.
Column 2 and 4 give the best model for both ARMA and GARCH types. Columns 3 and 5 give the total AIC number within
each security’s class. The best model between ARMA and ARMA-GARCH models is displayed in bold face format.
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5 Bivariate analysis

The next step in our analysis is to determine cross-dependencies in monthly innovations. To this purpose, we com-
pute the sample cross-correlation matrix defined in (def.9) to innovations time series30. We focus on Spearman’s
rank correlation to be robust against underlying distributions. The contemporaneous analysis is extended with a
lead-lag analysis by the computation of the sample lead-lag correlation matrix. The goal here is to detect whether
a given asset leads others over one month. Finally, we use Student-� copula to determine any presence of extreme
co-movements between innovations.

5.1 Contemporaneous analysis

In table 9 we present the sample cross-correlation matrix for some stock, bond and interest rates innovations on
US and UK markets. The volatility index VIX is also included in the basket. As we might have expected, we
notice significant correlations between stock indices. Correlation between MSCI.US and SP500 is 0.999. Stock
and bond indices are positively correlated, with a stronger dependence within the U.K. market31. Interest rates are
negatively correlated with stock and bond indices. Finally, VIX index is negatively correlated with stock indices.
This well-known empirical fact is referred to as the ’leverage effect’32.

The cross-correlation between absolute values of innovations indicates whether assets’ regimes are correlated, that
is whether volatility clustering is observable across asset classes. Results suggest that it is the case within stock
indices, within bond indices and within interest rates. In addition, we notice significant cross-correlation between
stock and bond indices and between bond indices and interest rates. The same result holds between US stock
indices and the VIX.

stocks bonds IR
US UK SP500 US UK USD GBP

volatility VIX -0.48 -0.32 -0.49 0.04 0.05 0.06 -0.03
0.34 0.17 0.31 0.01 -0.02 0.01 0.01

stocks MSCI.US 1.00 0.56 1.00 0.19 0.12 -0.21 -0.04
1.00 0.38 0.98 0.16 0.01 0.10 -0.09

MSCI.UK 1.00 0.57 0.13 0.37 -0.17 -0.28
1.00 0.40 0.16 0.26 0.03 0.06

SP500 1.00 0.20 0.12 -0.19 0.02
1.00 0.16 0.02 0.07 -0.02

bonds SLOMON.US 1.00 0.44 -0.47 0.06
1.00 0.24 0.22 0.06

SLOMON.UK 1.00 -0.18 -0.35
1.00 0.05 0.20

IR IR.USD 1.00 -0.01
1.00 0.23

Table 9: Spearman’s sample cross-correlation matrix

We present in table 9 Spearman’s sample cross-correlation matrix (def.9) for stock, bond and interest rates (new) inno-
vations on US and UK markets. The volatility index VIX is also included in the basket. Results displayed in bold face
format indicate that they are significantly different from zero at the 95% level. To test it, we compute the t-stat given in
(def.10) applied to the Spearman’s sample cross-correlation ��
��	�
 . Cross-correlation estimates for absolute values of
innovations are given in italic format. The construction of the matrix is made pairs-by-pairs in order to increase the number
of observations and therefore may not be positive semi-definite.

30Since time series have different lengths and are sometimes enhanced by overlapped observations, matrix components are computed using
different numbers of observations. This construction leads to more accurate estimates since we use the overall information at disposal. However,
it does not lead necessarily to a positive semi-definite matrix. Numerical methods exist to turn the sample matrix into a correlation matrix which
is positive semi-definite [22, 31]. This can be quite convenient in a factorial analysis for instance, where eigenvalues have to be positive.

31For other MSCI indices, only MSCI.CH presents significant positive correlation (0.19) with its bonds market index, SLOMON.GOV.CH.
32The first explanation to this empirical fact was given by Black [1] and Christie [8] in the sense that negative returns increase financial

leverage which extend the risk of the company and therefore its volatility. Another possible explanation to the negative correlation is, that the
fear induced by an increase of volatility produces a fall of demand and hence a price decrease.

27



We present in table 10 the cross-correlation estimates for interest rates. The upper-left quadrant gives cross-
correlations between new innovations whereas the lower-right gives cross-correlations between old definitions.
The upper-right quadrant gives cross-correlations between new and old innovations. From the latter, we see that
the new and old innovations are around 0.7 correlated. Hence, new innovations behave differently than the simple
log-return of one month spot rates; there are definitely not same things.

When comparing upper-left to lower-right quadrants, we notice that new innovations are less cross-correlated than
old innovations. This suggests that the 1-2 months IR yield curve shifts are less correlated across markets than
one-month spot rates themselves. On the other hand, the cross-correlation of absolute values is higher for new
innovations. In that case, shifts magnitudes are more clustered across markets than one-month spot rates changes.

new old
USD GBP JPY ECU CHF USD GBP JPY ECU

new CHF 0.16 0.13 0.06 0.20 0.74 0.11 0.00 0.02 0.09
0.17 0.25 0.22 0.22 0.53 0.06 0.14 -0.03 0.12

USD 1.00 -0.01 0.03 0.10 0.16 0.66 0.00 0.09 0.05
1.00 0.23 0.14 0.27 0.01 0.48 0.16 -0.10 0.15

GBP 1.00 0.09 0.35 0.09 0.00 0.74 0.10 0.23
1.00 0.14 0.26 0.16 0.16 0.61 -0.05 0.22

JPY 1.00 0.08 0.03 0.07 0.02 0.51 0.04
1.00 0.22 -0.03 0.07 0.06 0.23 0.09

ECU 1.00 0.19 0.10 0.26 0.04 0.76
1.00 -0.02 0.17 0.18 -0.16 0.56

old CHF 1.00 0.35 0.04 0.20 0.27
1.00 0.04 0.15 0.16 0.11

USD 1.00 0.12 0.29 0.22
1.00 0.17 0.02 0.21

GBP 1.00 0.17 0.36
1.00 0.00 0.19

JPY 1.00 0.17
1.00 0.05

Table 10: Spearman’s sample cross-correlation matrix – Interest rates

We present in table 10 Spearman’s sample cross-correlation matrix (def.9) for interest rates new and old innovations.
Results displayed in bold face format indicate that they are significantly different from zero at the 95% level. To test it, we
compute the t-stat given in (def.10) applied to the Spearman’s sample cross-correlation ��
��	�
 . Correlation estimates for
absolute values of innovations are given in italic format. The construction of the matrix has been made pairs-by-pairs in
order to increase the number of observations and therefore may not be positive semi-definite.

Finally, we apply the sample cross-correlation analysis to FX rates. On the upper-right quadrant of table 11, we
notice a quasi perfect correlation between new and old innovations suggesting that, on the contrary of interest rates,
new innovations for FX rates do not capture any additional risk component. Both original and absolute values of
innovations exhibit significant positive cross-correlations. Currencies react together to USD changes. The highest
correlation is observed between CHF and ECU currencies.
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new old
GBP JPY ECU CHF GBP JPY ECU

new CHF 0.70 0.51 0.92 1.00 0.7 0.52 0.92
0.45 0.24 0.75 0.99 0.44 0.25 0.75

GBP 1.00 0.43 0.74 0.70 1.00 0.42 0.74
1.00 0.21 0.46 0.43 1.00 0.20 0.48

JPY 1.00 0.48 0.51 0.44 1.00 0.48
1.00 0.19 0.24 0.22 0.99 0.20

ECU 1.00 0.91 0.73 0.49 1.00
1.00 0.72 0.46 0.21 0.99

old CHF 1.00 0.70 0.57 0.91
1.00 0.43 0.28 0.72

GBP 1.00 0.47 0.75
1.00 0.19 0.50

JPY 1.00 0.54
1.00 0.22

Table 11: Spearman’s cross-correlation matrix – FX rates

We present in table 11 Spearman’s sample cross-correlation matrix (def.9) for FX rates old and new innovation definitions.
Results displayed in bold face format indicate that they are significantly different from zero at the 95% level. To test it, we
compute the t-stat given in (def.10) applied to the Spearman’s sample cross-correlation ��
��	�
 . Correlation estimates for
absolute values of innovations are given in italic format. The construction of the matrix has been made pairs-by-pairs in
order to increase the number of observations and therefore may be not be positive semi-definite.

5.2 Lead-lag analysis

This section extends the contemporaneous analysis by the computation of the sample one-month lead-lag correla-
tion matrix. The lagged correlation is a more powerful tool in investigating the relation between two time series. It
reveals causal relation relations and information flow structures in the sense of Granger causality. If two time series
were generated on the basis of a synchronous information flow, they would have a symmetric lagged correlation
function; the symmetry would be violated only by insignificantly small, purely stochastic deviations. As soon as
the deviations between ������� and ������� become significant, there is asymmetry in the information flow and a
causal relation that requires an explanation.

In table 12 we present the results for the first basket of assets analyzed in section 5.1. Diagonal elements are auto-
correlations at lag 1. Each off-diagonal element gives the correlation between the security at time ��� (horizontal
labels) and security at time � (vertical label). For instance, the 0.22 given in the first line, second column, indicates
that MSCI.US innovations lead VIX innovations.

Most elements in the table are not different from zero at the 99% level. We observe however that the US stock
market, expressed by both S&P500 and MSCI.US, leads the VIX index significantly and positively. In parallel
with contemporaneous findings (leverage effect), this fact induces a mean reverting behaviour of the volatility over
one month. This is in line with the overshooting effect detected in the univariate analysis.

More surprisingly, we observe that SLOMON.US leads the US stock market negatively. Since the contemporane-
ous correlation between SLOMON.US and US stock indices is positive, we obtain the same mean-reverting pattern
for US stock markets. However, any economical interpretation is able to explain this finding in a satisfactory man-
ner. This may be due to the few number of observations, here 210.

In spite of these two significant findings, general results speak against the presence of one-month cross dependen-
cies. Whereas profits can be made from dependencies at a univariate level by ARMA or GARCH models, benefits
of multivariate autoregressive models like VECC or BEKK types seem questionable for monthly observations.
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stocks bonds IR
VIX US UK SP500 US UK USD GBP

volatility VIX -0.19 0.22 0.10 0.22 0.08 0.09 0.01 -0.05
0.22 0.08 0.02 0.09 0.05 0.02 -0.04 0.02

stock MSCI.US -0.05 0.00 0.05 0.00 0.05 -0.01 -0.05 0.06
0.08 0.01 0.08 0.01 -0.03 -0.07 0.03 -0.07

MSCI.UK 0.01 0.00 0.00 0.00 -0.07 0.04 0.00 0.05
0.04 -0.03 0.07 0.00 -0.06 0.00 0.04 0.00

SP500 -0.06 0.00 0.04 -0.02 0.04 -0.01 -0.05 0.06
0.07 0.00 0.09 0.01 -0.02 -0.07 0.03 -0.07

bonds SLOMON.US 0.00 -0.14 -0.10 -0.14 0.15 0.03 -0.09 0.06
-0.10 0.00 0.05 0.00 0.15 0.00 0.14 0.05

SLOMON.UK 0.08 -0.05 0.00 -0.05 0.06 0.11 -0.01 0.06
-0.04 -0.02 0.02 -0.01 -0.10 0.08 0.00 0.04

IR US 0.11 0.07 0.04 -0.06 -0.07 0.05 0.18 0.01
-0.03 0.08 0.23 0.08 0.09 0.00 0.22 0.21

GBP -0.07 0.12 0.05 0.06 0.11 -0.01 0.06 0.10
-0.08 -0.01 0.06 0.00 -0.04 0.08 0.29 0.33

Table 12: Spearman’s lead-lag correlation matrix

We present in table 12 Spearman’s sample one-month lead-lag-correlation (def.9) for stock, bond, IR (new) innovations for
US and UK markets. The volatility index VIX is also included in the basket. Results displayed in bold face format indicate
that they are significantly different from zero at the 99% level. To test it, we compute the t-stat given in (def.10) applied to
the Spearman’s sample one-month lead-lag-correlation ��
��	�
 . Correlation estimates for absolute values of innovations
are given in italic format.

5.3 Tails dependencies

This section presents an analysis of tail dependencies based on copulas. We test the presence of extreme co-
movements by fitting a Student-� copula on bivariate pseudo-samples and then test whether it better describes tail
dependencies than a Gaussian copula. If we cannot reject the Gaussian copula hypothesis, we conclude to absence
of tail dependencies. We extend the analysis by a tri-variate fitting to check whether co-movements are of the same
magnitude across markets.

5.3.1 Methodology

Consider a �-multivariate random sample � ������ 


� ���, where random variables are assumed to be mutually
independent and distributed according to a common distribution function � with continuous univariate margins
��� 


� ��. If the margins were known, then by Corollary 16, the copula � of � would be the distribution function
of �������� 


� �������. To determine these univariate margins we use a parametric estimation. The �th marginal
distribution �� is estimated by

������ ��
	

	� �

��
���

���	��
�� (19)

where ���� is the �-th observation of random process�� and �denotes the indicator function33. From this definition,
we construct the pseudo-observation ��� at time � by

��� ��
�
���������� 


� ���������



(20)

33The ratio ���� � �� avoids "edge effects" that occur as some of the variables tend to one which may result in unboundedness of the
log-likelihood function.
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This approach has been suggested in particular by Bouyé et al. [4] in the context of calibrating copulas to observed
financial data34. From the pseudo-sample �� �� ����
 � � �� 

� 	�, we can derive the pseudo log-likelihood by

/���
 '� ��
��
���

�� 0������ (21)

where 0� � �
���� is the density of the copula �.

In the case of a Student-� copula, the density parameter is ' �� ��� !� as it is pointed in section 3.4.2. In order to
estimate its components, we follow a two steps procedure. First we estimate the matrix � by the robust Kendall’s
� estimator35. In effect, for elliptical multivariate distributions we have a one-to-one relation between Kendall’s �
and usual correlation coefficient, ��������� � �

�
����. From correlation estimates, we construct the correlation matrix

�. The estimated matrix may be not be positive semi-definite. However, they are simple methods to correct this
[22, 31]36. Then, we plug this matrix in the pseudo-ML function and maximize with respect to !, formally

�! � �� !��
�
/���
 ��� !� � ! � �
���

�
(22)

The resulting parameter �! is referred to as the pseudo-maximum log-likelihood estimator (p-MLE) . In order to
test the null hypothesis that the Student-� copula degree-of-freedom is !�, we use the pseudo-likelihood ratio test
statistic (p-LRT) given by

"��!
!�� �� �
 ��
/���
 ��� �!�

/���
 ��� !��
(23)

In our problem, the null hypothesis is that the Gaussian copula fits the pseudo-sample. Therefore, we fix !�����

since, at this level Gaussian and Student-� copulas are indistinguishable. Asymptotic derivations given in [26]
suggest that " 
 �� � 1���� as the sample length tends to infinity, where the constant 1 depends on the null
hypothesis. In their article, the authors use Monte-Carlo techniques to compute this constant. Their results belong
to ��� �
��. However, since we deal with small data sets, we take a very conservative way and set 1��. Significant
results are determined at the 99% level.

5.3.2 Results

In Figure 6 we show pseudo-samples for the basket of assets analyzed in section 5.1. We clearly notice presence
of positive relation dependencies between stock indices, as well as for bond indices. On the other hand, VIX
innovations are negatively correlated with stock indices. We zoom on the pseudo-sample scatter plot for MSCI.US
and MSCI.UK in figure 7. We can observe non-negligible concentration of observations both in the upper-right
and lower-left corners underlying extreme co-movements. The distribution of points between the two corners is
almost symmetric: a bivariate Student-� copula seems appropriate to match these data points.

34As it is pointed in [26], we notice that:

- When the sample size tends to infinity, then ��� converges to �� uniformly on the real-line, almost surely (Glivenko-Cantelli lemma).

- Even if � is iid, �� would not be iid. This comes from the data dependence of the empirical marginal transformation. This problem is
recurrent in any inference problem unless the margins are known a priori.

35Kendall’s � between variables�� and �� is given by ����� �� �
�

sign���� �
������� �

�����
�

where � ���� ���� is an independent vector

of ���� ��� with the same distribution. The coefficient is estimated by ������ ��
�
��������

��

��
����	�� sign������ � ���	������ � ���	��.

36We do not use such methods in this study since estimated correlation matrices are positive semi-definite.
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In table 13 we give degree-of-freedom (DoF) estimates for respective pairs of data in the basket. Significant
results indicate extreme co-movements within stock indices. In effect, estimated degrees of freedom are 5 between
MSCI indices and 3 between S&P500 and MSCI.US. Between stock and bond indices, DoF are very low as
well. However, the statistic gives significant results only in the 1 � � case. We reject the presence of extreme
co-movements between interest rates and bond indices.
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Special attention must be payed to VIX innovations. We present in figure 8 three bivariate pseudo-samples between
VIX and S&P500 innovations and VIX’s level. The upper-middle graphic clearly shows the negative and asymmet-
ric relation between VIX and S&P500 innovations. VIX changes react more to S&P500 decreases than increases.
The Clayton copula37 has the property to reproduce such an asymmetric effect. When we turn to volatility levels
instead of its changes, we observe a very interesting pattern. The U-shaped scatter plot (lower-middle) indicates
that, under S&P500 positive and negative extreme market events, the level of volatility belongs to its highest val-
ues. This phenomenon can be explained by a high market excitation in both extremely positive or negative market
conditions.

VIX innovations

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.4

0
.8

0
.0

0
.4

0
.8

SP500

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

0
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0
.4

0
.8

VIX level

Figure 8: VIX pseudo-samples

We show in figures 9 and 10 the pseudo-samples for IR and FX rates innovations. In the tables below we give
respective DoF of Student-� copula fittings.

Low degrees-of-freedom for all fittings indicate high tail dependencies between interest rates. In spite of the fact
that cross-correlations between interest rates are lower than for FX rates, extreme co-movements are more likely to
happen. This result clearly warns us on hidden risks that a simple correlation coefficient is not able to detect. For
instance, the rank correlation between IR.USD and the IR.ECU is estimated to be 0.10 and the correlation derived
from Kendall’s � is 0.11 (both not significant at the 95% level). At first glance, we might conclude that the time
series are independent. However, the tail dependency analysis strongly rejects the Gaussian copula hypothesis.
The estimated degree-of-freedom is 3, which clearly indicates extreme co-movements.

37Clayton copula is defined by �
�
� ��� ��

��

�����

�
� � �� � �

�����
, where � �
���� is the copula’s parameter.
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5.4 Tri-variate extension

To finish the tail dependencies analysis, we test the stock, bond and interest rate basket for four major markets.
Our aim is to determine whether monthly co-movements are of the same magnitude in Switzerland, the United
Kingdom, Japan and the United States.

In the table 16 we give DoF estimates of tri-variate Student-� copula fittings. We notice that investors face dif-
ferent extreme co-movements depending on the underlying market. Whereas a Swiss investor cannot reject the
3-dimensional Gaussian copula for his portfolio, the Japanese investor is subject to a higher co-movements expo-
sure.

dim # obs ��
MSCI.US - SLOMON.US - IR.USD 3 209 8
MSCI.UK - SLOMON.UK - IR.GBP 3 220 9
MSCI.JP - SLOMON.JP - IR.JPY 3 144 5
MSCI.CH - SLOMON.CH - IR.CHF 3 221 19

Table 16: �-copula fitting – markets

In table 16 we present DoF estimates for MSCI-SLOMON and IR.new innovations for Switzerland, United Kingdom,
Japan and United states. The number of observations is indicated in the second column. Estimations of DoF are computed
using ML. To determine whether pseudo-samples are better fitted by a Gaussian copula instead of a Student-� copula, we
use the p-LRT given in (23). As a conservative way, we take !�� and the level of significance is set to 99%. Results in
bold face format give DoF which reject the Gaussian hypothesis. The normal format gives significant results for ! ��.
Results displayed in italic format do not reject the null hypothesis.
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6 Conclusion

So far, empirical studies of dependencies in financial data sets have focused on intradaily, daily or weekly horizons.
Whereas dependence is clearly observable for these frequencies, illustrated for instance with the volatility cluster-
ing, it is of common practice to assume independence for monthly and longer time span observations. However,
this issue is important since certain companies base their risk management system on longer intervals than one day
or one week.

In this paper, we empirically test the presence of dependencies in monthly observations. The analysis is applied
to major markets for stock indices, bond indices, short-term interest rates and foreign exchange rates. We use
overlapping technique and non-parametric correlation estimation in order to increase both accuracy and consistency
in this low-frequency framework. Copulas are used to test extreme co-movements between financial securities.

Our main findings both for the univariate time dependency and for the cross-dependency analysis can be summa-
rized as follows:

univariate:

� The profile of dependencies is different between asset classes. Whereas autocorrelation is negligible for
stock and bond indices, interest rates exhibit high and persistent time-dependencies.

� GARCH effects are still present in monthly observations and ARMA-GARCH models give the better per-
formance in terms of Akaike information criterion.

bivariate:

� We observe significant dependencies within data classes, as expected.

� The one-month lead-lag analysis does not support any leader across data classes, apart US stock indices that
lead the volatility index.

� The tail dependencies analysis shows a strong presence of extreme co-movements between assets.

Univariate results speak against the time-independence hypothesis and suggest the use of GARCH type models
to fit monthly observations. The bivariate analysis clearly shows the need to go beyond the usual correlation
coefficient. In effect, even if non-parametric rank correlation does not speak against independence, a further look
at tails dependencies shows a systematic presence of extreme co-movements between assets.

To conclude we note that more sophisticated tools can capture non-linear patterns of data and test for independence.
This is the case for instance with the correlation integral [25] or through non-parametric smoothing kernels [29].
The application of such tools to monthly financial observations may constitute a further field of research.
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A Filtering methodology

For a given daily time series ���� ���� 


� 	�, the filtering process is based on the first and second differences of
��. For each observation, we test the following inequality


�����
�������


���������
�2��

	 �3/

Coefficients 2�� and �3/ are defined specifically for each time series. In the case of CHF interest rates for instance,
we take 2�� � �
��� since we expect daily changes of a half percent magnitude. For stock, bond and real estate
indices, the filter is applied to the log-return of the original series.

An observation is defined as an outlier when the above inequality is not satisfied. Each outlier is then carefully
checked. When market conditions do not explain the abnormal observation, the outlier is deleted from its original
sample. The filtering methodology has led to remove 55 outliers from the overall time series.

type name outliers deleted
stock indices S&P500 2 0
interest rates CHF 13 13

GBP 8 8
JPY 1 1
ECU 13 13
USD 6 6

FX rates GBP/USD 10 5
JPY/USD 2 0
ECU/USD 8 8

volatility VIX 3 1

Table 17: Filtering results

B Ad-hoc procedure results

To illustrate the impact of the ad-hoc procedure on tests significance, we compute autocorrelation for a subset of
innovations. We take independent observations (end-of-the-month quotes) as well as overlapped observations time
series. For each of them, we compute the sample autocorrelation function (SACF) up to lags 24 of months (for the
S&P500, we compute it for lags of up to 60 months). Pearson’s autocorrelations are computed for innovations and
transformed innovations, � � ��
�� �� �
�� 
�, and Spearman’s autocorrelations are computed for innovations and
absolute values of innovations. For all these estimates, we count and aggregate the number of significant lags at
the 99% level. To test the significance, we use the �-stat defined in (def.10) and compute it with 	, 	eff and 	indep.

We show in table 18 that using the whole number of observations leads to overestimating the number of significant
results whereas using the number of independent observations leads to underestimate it. On average, the numbers
of significant lags given by the ad-hoc procedure are close to the numbers given by monthly non-overlapped
observations. In addition, within the number of significant lags, the ad-hoc procedure most of the time matches
lags given by the non-overlapped observations. Therefore, based on these results, we decide to focus on overlapped
observations in order to get more accuracy and correct statistics by taking the number of effective observations
instead of the total number of observations.
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type name no overlap � �indep �eff

volatility index VIX 8 30 [8] 7 [4] 13 [7]
stock index S&P500 5 69 [3] 3 [0] 16 [3]
interest rates IR.USD.new 12 60 [8] 6 [4] 24 [10]

IR.USD.old 17 56 [16] 16 [13] 19 [16]
FX rates FX.JPYUSD.new 6 24 [4] 2 [2] 7 [5]

FX.JPYUSD.old 3 23 [2] 1 [1] 3 [1]

Table 18: Statistical comparison

We present in table 18 results of the tests comparison. For each innovation time series given in the
first column, we compute Pearson’s and Spearman’s autocorrelations up to lag 24 months (60 months
for the S&P500). The correlation is calculated for innovations and transformed innovations. Then,
significant lags, at the 99% level, are determined by (10) using �, the total number of observations,
�eff the number of effective observations and �indep the number of independent observations in the
test statistic Column 3 gives results for non-overlapped observations (end-of-the-month observations).
Number in squared brackets indicate the number of lags which match the non-overlapped case.
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