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t
This chapter analyzes the possibility of manipulation in futures markets,
concentrating on the effects that manipulation may have on their informa-
tional efficiency . We use the concept of manipulation as it arises in the study
of noncooperative games with imperfect information .

Forward and futures markets illustrate sharply many of the issues cen-
tral to the economics of uncertainty and of imperfect information . ) Clearly,
future economic activity is in area in which conditions of uncertainty and of
imperfect information arise quite naturally . With respect to uncertainty
about future conditions, the existence of ,I Full set of future markets or the
equivalent is seen as a precondition Ior attaining allocative efficiency . One
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ofthe major roles of such markets is to allow agents to trade so as to allocate
risks optimally among themselves, according to each agent's altitudes to-
ward risk . In this view, lutures markets exist because they allow traders with
different risk positions toward the future to trade with each other for mutual
gain (see, for example, I:?dwards 1 1182) .

n second, (IifTerent . role of Ititures markets is akin to that of a general
financial market . In this role, the futures market is seen as an instrument for
gathering and distributing infrnmation about future market conditions to
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other parts of the economy (Grossman 1977) . This information is of impor-
tance for decision making about inventories . outputs and investment, as well
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as in financial transactions . ]'lie performance of futures markets in this sense
is measured by their informational efficiency .

We are concerned here with a particular issue concerning informational
efficiency . the manipulation of futures markets . This subject has long been

'

	

of practical importance, hill has not until now commanded attention in the
literature . The issue of manipulation arises, for instance, in the study ofwhat
are institutionally known as squeezes or corners . In both cases, in implicit
assumption is that some agents control certain strategic information and that
they Inay use such control to influence the market to their advantage-lor
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instance, through their impact on prices . We assume that agents are not fully
informed about the characteristics of all other traders (such as their de-
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The Industrial Organization of Futures Markets

mands) and that each agent may use his private information to influence
prices to his possible advantage . The context is therefore that of games xvith
imperfect information, and we explore the possibility of manipulation when
agents play in a noncooperative fashion-that is, through Nash equilibrium
strategies . By manipulation, I refer to the strategic use of information and
signals to obtain more advantageous outcomes . I shall illustrate certain
examples of manipulation, such its market s(iueezes : the temporary aberra-
tion of the futures prices and spot prices for strategic advantage .

'The first section establishes the concepts of games with imperfect in-
formation and of manipulation . A brief discussion of the literature is given .
A class of games is then used to explore the extent to which the problem of
manipulation is likely to arise in these markets . One theorem shows that
manipulation arises quite generally, and with it, the informational efficiency
in these markets may decrease . Using these games as examples we then set
up the problem of manipulation in a repeated game context-that is, games
where players are assumed to play repeatedly with each other through time,
even ad infinitum (Heal 197(,) . In this latter case, the incidence of manipula-
tion is greatly reduced . Futures markets become more efficient in their
informational role .

We next examine the extent to which a futures market may be viewed as
repeated games . This view depends on a number of features, including the
degree of anonymity and of restrictions on entry . 1 argue that these two
features are related, in the sense that more anonymity may ease entry . On
the other hand, anonymity may prevent the futures market from behaving as
a repeated game, thus making it more vulnerable to manipulation . 2

The problem can be summarized as follows : disclosure that is, less
anonymity) may prevent manipulation and therefore improve the infor-
mational efficiency of the market . On the other hand, disclosure (less
anonymity) may restrict entry, and therefore produce an efficiency loss .
There is, in this sense, a tradeoff between informational efficiency and free
entry .

It is often argued that the ease ofentry in futures markets is a significant
improvement from the conditions prevailing in more traditional forward
markets . The role of the clearing houses, as discussed in Edwards (9), is in
part related to preserving as much anonymity as possible in futures markets .
Anonymity and free entry appear to be rather important features of futures
markets . It follows that the possibility of manipulation is higher in these
markets because they do not easily satisfy the characteristics of repeated
games .

The conclusions are that a certain amount of market manipulation can
be expected in futures market because of their informational structure, and
that manipulation will have some negative effects on the informational
efficiency of these markets . Self-policing measures involving some form of
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disclosure could decrease to a certain extent the incidence of manipulation .
However, such measures carry a cost in terms of barriers to entry and the
accompanying efficiency losses . It seems therefore that an overall approach
to the problem is to seek an optimal tradeoff between the two types of
efficiency losses : informational inefficiencies and restrictions to entry .

The Concept of Manipulation
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The concept of manipulation has been studied now for a number of years
(Chichilnisky and Heal 1982) . It arises most naturally in the context of
noncooperative games with imperfect information . This section summarizes
the conceptual issues involved and describe briefly existing results .

Economic Games

A game is defined here by specifying four objects :

I . The strategies available to each player-that is, the strategy space S .
2 . The space of outcomes, denoted X.
3 . The payoff function (or game form) g, a function which assigns an

outcome to the strategies played by the individuals .
4 . Individual characteristics, such as preferences over outcomes, that

determine the strategic behavior of the players .

The term "game with imperfect information" denotes a game in which
the players are not fully informed about one or more of the aspects of the
game . For instance, players may be aware only of some of the strategies
available to them, so they do not know their strategy space S accurately .
Another typical incidence of imperfect information is when each agent is not
fully aware of the characteristics of the other agents . This type of imperfect
information will be most relevant here and we discuss it in some detail .

One important role of future contracts is to provide price signals that
can be used by the producers and distributors to allocate real resources .
More specifically, futures prices collect and interpret the underlying eco
nomic information about conditions of supply and demand and so may
influence storage and inventory decisions . In the following, we shall discuss
how the issue of manipulation is linked with that of the efficiency of futures
markets, and also the different concepts of efficiency that emerge .

The extent to which one can rely on futures prices conveying accurate
information about the market's characteristics is relevant for the efficiency
of futures markets (Edwards' section 5 and 6) . Agents' characteristics, such
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tile outcome

as preferences, influence demand, and demand affects futures prices .
'therefore . when agents' characteristics are unknown, each agent may give
strategic signals to the market about these characteristics, in an attempt to
shape the pricing structure to his advantage . For instance, a net sale may be
considered a signal of an agent's preference . An agent may choose this signal
strategically to influence prices according to his preferences . A strategy for
each agent i is then a net sale s i . which is taken as a signal for the agent's
preference . This signal will affect market prices at tile equilibrium . One can
formulate precisely in this context tile issue of manipulation . We say that a
game with imperfect information is manipulable when for at least some
player i, the outcome of the game that obtains when this player gives a signal
si that misrepresents his characteristic s i (preference) is better (according to
i) than tile outcome that obtains if he gives a correct signal about his
preference . That is, denote by
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a k - I tuple of strategies of all players but i, where A denotes that the
corresponding strategy is deleted ; ' i denotes "preferred to" by the ith
player ; ,t" is tile outcome space, and the player's strategies are in S .

A ginne ,g is manipulable if for some strategy of player i, and some
k - I tuple of strategies of all other players but 1, denoted

( .SI . . . . , Si, . . . . ,Sk) FS F

. . . . . si . . . . . s,;)

	

g(sI . . . . , .5 ;, . . . . SR)

\%here si is tile true characteristic of the ith player, and s i :~ si .
This concept of manipulability formalizes tile notion tllat it is individu-

ally optimal for some player to misrepresent his characteristics, at least in
some cases . As already noted, informational efficiency requires tile accurate
transmission of information by prices . "Therefore, it individual deception
leads to different prices than those reflecting the true market conditions, it
could translate into a loss ofefficiency for the market its a whole . The issue of
manipulation is therefore linked to that of market efficiency . This link,
however, is not simple, and is discussed in more dcfail in fire following
sections . In particular, we shall define a class of games along tile lines
discussed here and study their manipulability in the last section .

We now give a brief overview of existing results on the manipulation of
games that seem useful for the study of manipulation in futures markets . The
first results in tile theory of manipulation appeared in Gibbard (1973) . A
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certain type of game is called "straightforward" when tile individual has no
incentive to misrepresent his characteristics in his choice of strategy . 'The
informational structure of straightforward games is such that players do not
communicate at all . We now discuss briefly the concept of game solution in
relation to the degree of communication among players because it will help
formulate the problem with precision .

Imperfect information may take several forms . An agent may be un-
aware of tile other agents' characteristics, but he may be able to observe
their strategic moves . 'This is different from a game where agents are
unaware of each other's characteristics and are also unable to observe each
other's moves .

The effects of different informational structures is seen more readily
through the concept of solution or equilibrium . For example, in a game
where each player knows nothing alulut the other's characteristics and is also
unable to observe their strategic moves, the typical concept of a solution is
that of dominant strategy equilibrium . In this concept, adopted by Gibbard,
each player is playing his dominant strategy-that is, pi for tile ith player,
which ensures him of the best possible outcome no matter what other players
may he playing . Forniallv, s, is a dominant strategy for i if for any k -

	

I tuple

and for all strategies s -~ s i in S, then

9( "SI " . . . , Si, . . . , SO - i S(SI, . . . , .S, . . . , SO

A straightforward game is one in which giving the correct signal about
one's characteristic is a dominant strategy for each player, and this gives rise
to a dominant strategy equilibrium of the game . Gibbard's theorem call no\\,
he simply sunlnrarized, even though a few definitions are needed for stating
it with precision . For a wide family ofgames, the only straightforward games
are dictatorial . Dictatorial games are those in which the outcome is always
identical to the preferred outcome stated by one of the players, called the
"dictator." Dictatorial games (to not provide in adequate representation of
markets .

This result establishes (flat most nonclictatorial games are manipulable,
in the sense of mot being straightforward . The phenomenon of manipulabil-
ity appears therefore rather widespread . I lowever, closer examination of
Gibbard's result shows that the conditions of his theorem may lie quite
restrictive . I lis games generally have no dominant strategies . 'hherefore, in
particular, correct signaling cannot he a dominant strategy equilibrium .
"Therefore, his games fail to be straightforward may be because they do not
have Dmy equilibrium . Ilis result may appear to be mostly a statement about
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the stringency of the concept of dominant strategy equilibrium and of the
assumption that there is absolutely no communication between the players .
In addition, Gibbard assumes that no restriction exists on the players' a
priori preferences .'

Several later articles viewed manipulation results in a wider, and per-
haps more realistic perspective (Laffont and Maskin 198(1 ; Chichilnisky and
Heal 1981, 1982) . We draw from this latter literature in this discussion . The
first widening was to recognize that players do observe each other's strategic
moves, even though they may ignore each other's true characteristics .
Second, it is seldom the case that agents have all possible characteris-
tics, so that it suffices to study market games where the players have
characteristics within a subclass of all characteristics .

The first point, about the observability of each other's strategies, leads
one immediately to a different concept of solution (or equilibrium) of the
game . The concept generally used in games where individuals take into
account each other strategic moves is that of a Nash equilibrium . A Nash
equilibrium is defined as a vector of strategies

(s ;, . . .,s, . . .,sk)

where strategy p is such that the ith player maximizes his utility given all
other player's strategies . Formally :

For all i,g(s`;, . . .,s,, . . .,sk)=max{ur(g(s ;, . . .,s, . . . .s'k)}
s;FS

where ir; is a real valued utility function on outcomes representing the
preference of the ith player .

A Nash equilibrium is a familiar concept in the study of market behav-
ior : it is usually referred to as it noncooperative solution . The concept is
used, for instance, for the study of markets whose agents have some degree
of market power, such as monopolistic competitors . In this context it is
called the Cournot solution or Cournot equilibrium . From now on we shall
adopt this concept of a solution, which appears to be more realistic in the
case of futures markets .

Efficiency and Manipulation

The examples in the last section made an implicit assumption about market
behavior : that some agents' supply/demand behavior reflects on market
prices . Obviously, in imy general equilibrium model, market prices reflect
the aggregate supply and demand, which is obtained by adding up individu-
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ill's supply and demand functions . An individual's behavior therefore affects
the equilibrium market prices . However, it is an assumption of the theory of
competitive markets that each agent acts as if he has no influence at all on
prices-that is, no market power . Our treatment of futures markets as
noncooperative games with imperfect information therefore deviates from
the standard competitive model in two respects . One is the lack of perfect
information . The second aspect is that some of the players are aware that
they may have some market power and may be able to influence prices . The
concept of futures markets used here is in this sense closer to that used in the
chapters by Anderson and Sundareson and by Kyle in this book .

We now turn to the issue of efficiency discussed in the last section . We
explained that the manipulation of a futures market may be used in defining
the efficiency of this market because the market prices in this case may not
convey accurate information about market conditions . There may be an-
other source of inefficiencies, this one related to the overall allocation of
resources . If individuals play the market strategically as a noncooperative
game and reach a Nash equilibrium solution, this solution need not be an
efficient allocation of resources, even when information is perfect . It is well
known that Nash equilibrium solutions do not always yield Pareto optimal
allocations among the players . In this chapter, however, we concentrate on
informational efficiency, which arises more frequently in the study of finan-
cial as well as futures markets .

Using the concept of a game introduced in the previous section . we give
a formal example of the behavior of futures markets as noncooperative
games with imperfect information . Again, we assume that each agent an
nounces a net demand schedule, which is characterized by a number of
parameters, and can therefore be viewed as a vector in euclidean space . This
vector is a signal of his true net demand function emerging from the
optimization of individual preferences . Each component of the vector may,
of course, be either positive or negative, depending on whether the agent
buys or sells the particular commodity indicated by that component .

We can assume without loss of generality that the initial net amount
traded when the market opens is the vector q� in R""', where ni denotes the
miniber of delivery dates, and n the number of commodities . Opening
futures prices 1) � are therefore described by a positive nrn dimensional
vector . A signal for agent i is a net demand schedule, a vector denoted Aq; . It
is convenient, but not essential, to assume that q; also has dimension
nrn-that is, q;FR""' . Because in futures markets no immediate payment
is necessary at the moment of contract-that is, there are no budget
constraints-in principle a signal can he imy vector in Rwith some
coordinates positive and others negative . In the final section we shall also
refer to cases where the agents have budget constraints, which limit their
signals to a subset of R""' .
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In its simplest and most general form, we conceive of tile game as a
function that assigns to individual net demand schedule signals a market
price, which is a positive vector in 11""'-that is

g(Aq,, . . . , Agti.) = P r. R(" � , )

Equivalently, we may consider the outcome as a change from initial to final
prices-that is, we may rewrite the game in the form

g(Aq, . . . . , Aq A ) = Ap = h - hn

This formalization is useful because we obtain more synrnrctrv . The stra-
tegies of the players are vectors in Rand the outcomes are vectors in
lZ""' as well . The game form or layoff function is thcretorc a function

g : ( Il . ...Y ~~ ll �m

where k is the number of players . In general, of course, the image ofy will be
a subset of R""' .

We now focus on one class of games within this context, which is used
later to explore the incidence of manipulation . The goal of each player is to
attain a price change as close as possible to Ap*� the ideal price change far
this agent given his true (current or expected) market position . For example,
assume that there are two periods and that each component of the price
vector denotes tile price for the same good in each of tile two periods .
Assume that in the first period the agent goes long for delivery of good u on
tile second period, and furthermore, that it is his private information that lie
does not wish to hold good a on or after the second period . Then if this agent
can induce by strategic signaling a change in market prices that keels future
prices far good cr at tile first period, demoted as law as possible, and
second-period slot prices for a, denoted p 2 (a) as high as possible, he may be
able to squcezc tile market for delivery at the second date, provided ire
purchases enough in the first period for delivery at the second . I lis goal is
then to obtain that change in price Ap* that maximizes tile ratio

hi (rr)

p` ((r)

For instance, if tile agent's net position is long, his ideal price ratio in this
market would he zero . In other cases-such as those with two or more
delivery dates-one may consider the ideal price as representing instead
futures prices at different delivery dates . If an agent holds a portfolio with
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different delivery elates, the ideal prices for this agent will in general be a
vector whose components are positive . I low an agent may influence prices
to approximate his ideal price is described in the last section .

We now assume that prices are affected by the behavior of <t subset of
players who have market power /' Prices will change in the same general
direction of the excess demand vector of the players in 1' . More precisely, if
Aq, is tile demand signal of tile ith agent with market power, then Ap will he
in tile convex set of directions determining tile signals Aq; for all i in P . In
particular . when all quantity signals are identical to each other-for exam-
ple, to Aq (that is, everyone signals the same net demand)-then tile change
in prices will also he in the same direction . 'That is

Ap = XAq

for some positive number Jc .
We can now describe the strategic behavior of the players . The optimal

Nash strategy of the ith player, given that all other players_in 1' are playing
strategies Aq,, for j = I, . . . , k, j # i, is that strategy Aq, that yields a
price change as close as possible to ;in ideal outcome Ah . Formally, the
Nash strategy of the ith player is Aq, if

K(Agi ,

	

.

	

.

	

.

	

,

	

Aq;, .

	

.

	

. Aq,,) -

	

Ap% -

min (g(Agr, . . . , Aq, . . . , Aq,,) - Api)
Aq,R

where /' = { I, . . . , p) . and the minimum is taken with respect to the
standard euclidean distance in R""' .

A Nash equilibrium set of strategies (Aq,*, . . . , Aq*,) is one in which
for each player i, the strategy Aq'; is optimal, given that player j is playing
strategy Aq~, for j = l, . . . , h, j

	

l . There is manipulation only if tile
Nash equilibrium strategy of agent i, Aq , which he chooses strategically to
attain the best outcome in the game g, is a misrepresentation of is net
demand Aq;, obtained under competitive assumptions from utility nraxi-
nrization at tile competitive equilibrium market prices . If some player gains
by misrepresenting his market position-for example, if it influences prices
to move in a different way than they would do if lie was to represent his
position accurately-the informational efficiency of futures prices in predic-
ting subsequent spot prices will he diminished . In the last section, we show
that in this type of market game manipulation will take place generally-that
is, each player will in general obtain a more favorable price move by
misrepresenting his position (theorem 2) . We earl further refine the result by
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showing that when the outcomes of the game are directions of price changes,
then under these conditions there exists always one player who can attain
whatever direction of price change lie desires by Manipulation (theorem I ) .

The results of theorems I and 2 show that although we have dropped the
restrictions of Gibbard's theorem and consider more plausible games where
agents do take into consideration each other's strategic moves, the problem
of manipulation is still present . The next section will study alternatives to tile
examples of games discussed here and explore tile role of disclosure in the
context of repeated games .

Disclosure and Repeated Games

We have discussed examples of tile incidence of manipulation in futures
markets vic%ved as noncooperative games will) imperfect information . In
this section xvc analyze tile strategic behavior that arises when players play
tile game relicatedly, even a(f infinitum . The incidence of manipulation is
likely to decrease when the game is played by the same agents repeatedly
because each player's strategic behavior is observed by tile other players .
Once manipulation is exposed and the player is identified, future signals
from this player may be interpreted differently . In particular, it is possible
that by playing tile game repeatedly, tile manipulative player will reveal his
true market position through his strategic behavior . If this is tile case, tile
longer-run informational efficiency of tile futures market as a repeated game
may be recovered, despite the possible incidence of manipulation in each
one-shot game .

Several factors may stand on tile way of the full disclosure of an indivi-
dual's position through his strategic behavior . However, at least in certain
examples one can give sufficient conditions to guarantee that an optimal
strategy in a repeated game is to reveal one's true market position . Such
examples will be seen to require some form orl disclosure or loss of anonvrni-
ty . I lowever . disclosure or loss of anonymity may be associated with barriers
to entry, which decrease the Market's allocative efficiency . Therefore, (lie
gains from informational efficiency of repeated games may he accompanied
by efficiency losses from harriers to entry . A mixed policy to optimize this
tradeoff may he called for .

Ideally, we would consider the games discussed in the last section as
played repeatedly . However, this view would lead to games on infinite
dimensional strategy spaces . Therefore, we study now a simpler example of
one-shot games that will then he repealed indefinitely . '['his is analogous but
different from a one-shot game studied by Akerloff (19711) . An extension of
our game to a supergame-that is, the game obtained by repeating this
one-shot game ad infinitum-is obtained . A precedent is I leal (1976) who
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extended Akerloff's game to a supergame and produced the first results in
the area of incentives in repeated games . Because we repeat tile game
indefinitely, it is simpler to assume that only two strategies are available to
each player, one representing truthful demand A and the second misrepre-
senting it for calculated strategic advantage B .

Our game differs from those of Akerloff and Heal in several ways . Heal
requires that a "good quality" good obtained through trade have an intrinsic
value for the player, a value that is the same for both players and is
independent from what the other player's strategy is . Thus, his game has
only four parameters : the value of obtaining a "good quality" good, the
value of departing from s) "good quality" good, and the same two values for
"bad quality" goods . Here, we need instead eight parameters because there
is no intrinsic value here toil truthful strategy . This value is determined by
the market response, which depends of course on the other player's strategy .

We assume that there are two players, I and 2, and define eight parame-
ters as follows . When players I and 2 play both strategy A, tile outcome for 1
is a I I and for 2 is (3 1 , ; when I and 2 both play B the outcomes are a22 and 022 ;
when I plays A and 2 plays B, the outcomes are a le and 012, respectively,
and finally when 1 plays Band 2 plays A, they are a and 0 21 respectively . We
now define this game formally . The game form g is a function

g : (A,B12--> ((a11 " 011) (a12 , 012) ((X21, 021) (x22, 022)} C R2

where {A, B} is the set of strategies of each player, consisting of two
strategies . A and B . The set of outcomes is contained in R2 . Each different
set of strategies is assigned one outcome-for example, by construction

g(A, B) = (a 12 , 012)

We can represent tile same game also in the more familiar matrix form :

Player I

strategy A

strategy B

Player 2
strategy A

	

strategy B

all II

	

"12
1'12

(Y2I
P21

a22
022

- g

By analogy with the previous game we may assume that the truthful outcome
(a ,,, 011 ) is Pareto-efficient-that is, that anv other outcome which has a
higher value for one of the players will necessarily have a lower value for the
other . We shall also discuss cases where (a 1 ,, 011 ) is not Pareto-efficient .

The next step is to find the non-cooperative solutions of this one-shot
game . We are concerned with tile cases where the game can be manipulated
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and wish to investigate how the repetition of this game may improve mat-
lcrs . The game can he manipulated when the outcome of 1)l ;tying slralegy 13
(deceit) is an improvement over that of playing strategy A (stating one's
truthful position) . We may assume without loss of generality that the deceit-
ful player is l . Then if

player 1 will always play strategy 13 (deceit) . Player 2 will therefore always
choose between f3=, and (322 only . Under the assumption that )3 � > fi2t
(that is, it is preferable to respond to deceit with deceit) . the only Nash
equilibrium of this game is the pair of strategies (11, B) with payoff (eye� , f3 � ) .
'I his will happen even though the truthful (A . /t ) strategy vector may yield
a PareIo superior outcome-that is, even if (a � . [it I) > ((e2= . fi22) , where >
is the sI ;indard vector order in euclidean space R 2 . The Nash e(Iuilihrittm-
that is, noncooperative beltavirn of the agents--may lead to Pareto inferior
outcomes if each player has an incentive to deceive the other in the one-shot
game . Such a market would not lie informationally efficient because at the
equilibrium, we expect deceitful behavior of the agents .

Now assume the game is played repeatedly . Consider the following
infinite strategy I' For player I : to real his correct position A in the first
period, and in the Ith period to play B if and only if player 2 has been
deceit lulinsonic previous period s < 1.Define d,toliethesymmetric policy for
player 2 . We can now compute the discounted future payoff of this strategy
for both player . 'I lie playoff of I' to player I is 2 plays 11 is

where 11 < A < I is the discount factor . Similarly, the payoff to 2 of 11 if I
plays T is

Now . it' player 2 plays strategy 11, can player 1 benefit by departing from
strategy A? Assume that from t = I to I = T, I plays A, and for 1 ~- T + I , 1
plays R . Then if 2 follows strategy 11, 2 will play 11 from I = T + 2 onward,
and therefore . the best I can do is to play B from there onward also .
Therefore, the highest payoff to I of departing from strategy Tat time T + I
is

cx tt V

	

A , + (VI I

	

all
r- 1. +2

alt > cY, i and a2> > c

(6 .2)

(6 .3)
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We can now compare the payoff to strategy I' for player I , to the payoff to
this deviation from I' . This is, we compare equations 6 .1 and 6.3 . It is easy to
check that the payoff of equation 6.1 exceeds that of 6.3 if and only if

< aft - alt

a22 - alt

"Therefore, for sufficiently small discount rates A, the pair of strategies f',11 is
always a Nash equilibrium of the repeated game . This shows that for small
discount rates-that is, when players value their future trades sufficiently-
one possible solution to this game is that each player acts according to his
true position without attempting to manipulate the outcome .

We therefore may attain informational efficiency if the discount rate is
sufficiently small . Moreover, it can also he shown that for any discount rate,
a Pareto-efficient solution of the game is in equilibrium of the supergame .
Therefore, the truthful strategy (A,A) leads to a Pareto-efficient allocation .
It follows that in such cases one may add Pareto efficiency of resource
allocations to the informational efficiency of the solutions .

An interesting problem arises in those cases where the truthful strategy
set (A, A) is informationally efficient but not Pareto-efficient . As discussed
previously, this may arise in the Nash equilibrium of noncooperative market
games even with perfect information, such as games of monopolistic compe-
tition . In such cases, it cannot be guaranteed that gaining more information
about the market conditions (for example, through repeated games) will
improve the outcome . More information may lead in some cases to all agents
being worse off .

Finally, it should be pointed out that, in general, ;my Pareto-efficient
allocation of a one-shot game will he a Nash equilibrium of tile supergame .
This result implies in particular that if the truthful strategy (A, A) is Pareto
efficient, it will always be a Nash equilibrium solution to the supergame .

Efficiency Gains and Losses from Disclosure

The previous section studied a one-shot game where the agents have an
incentive to manipulate their signals to their advantage . It also showed
sufficient conditions for this incentive to disappear when the game is re-
peated indefinitely . The intuitive reason is that when the game is repeated,
the players build ill) reputations and may therefore internalize at least some
of the losses that they may inflict on others in previous periods . The incen-
tive to manipulate is therefore decreased . We exhibited two sufficient
conditions for attaining a manipulation-free outcome . One is that the truth-
ful strategies define a Pareto-efficient equilibrium . The other is that the
agents have relatively low discount rates for the future . Clearly, the extent to
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which future trades matter will he rellected by more concern for one's

current commercial reputation . These results lead us naturally to question

the conditions under which a futures market can be considered a repeated

game . This will he the first subject of this section . The second will he to

explore tile implications of this on efficiency .
One factor that emerged clearly in the discussion in the last section is

that some form of strategic retaliation is necessary to prevent repeated

manipulation . Clearly . such a strategy would require that tile manipulating

agents he identified . For example, if manipulation is followed by exit from

tile market, and perhaps reentry under a different brand name, manipula-

tion may go unchecked and he repeated indefinitely .

To formalize this concept . one reformulates the repeated game defined

previously to take exit into account . Dependingon the returns outside of tile

garne, one may be able to formulate precisely the optimal exit policy of a

manipulative agent . For example, assume that the returns outside the game

sire .v dollars per period . Consider the following strategy ~ for player 1 .

Player 1 plays tile game straight for 7' periods, then it manipulates it cm

period 1
..
and leaves tile market on period 7' + 1 . Then the payoff to I of

strategy : , under tile assumption that player 2 will not manipulate unless I

does (that is . strategy 11) is

r 1

cr11

	

~' + a 21 0~ -t- x

	

A~
I

	

r- .T
. .4 . I

t

We may now compare the payoffof strategy I' for player 1, with the payoff of

two other strategies : manipulating and staying in the market, and manipu-

lating and exiting . Clearly it will he preferable for 1 to follow strategy l

rather than tile straight strategy 7' if and only if

>
oil - a21

X - (Y21

(6 .4)

(6 .5)

Notice that the choice of cheat and exit strategy becomes more attractive in

two cases :

The higher is the rate of discount of the future payoffs .
The higher is the payoff x outside the market, and this is independent
from the stopping time .

Obviously . _r must be larger than cr22 because otherwise player 1 would

never contemplate leaving the market . Also x must he smaller than a l I for

this player to want to play at all . Therefore strategy t will generally he

preferred to manipulating forever and will also be preferable to playing

straight with high rates of discount of future payoffs .
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As a result, there is tile concern that at any point of tile game a player
may manipulate and then exit . Unless a player can be fully identified in
terms of his history of trades, one cannot expect the players to reveal
truthfully their market positions so that newcomers, who have no market
history, would normally be suspect . With full disclosure, a wedge is driven
between oldtime players and newcomers, which effectively restricts entry .

When more sophisticated strategies are considered, it can be expected
that a natural concept of entry fee may arise-that is, the cost associated
with developing a good market reputation for the newcomers . The formal
ization of such a concept would seem useful to compute tile efficiency losses
associated with restricted entry arising from disclosure . Or, equivalently, it
may measure the efficiency gains from anonymity, in the form of free entry .
Therefore, a measure of the informational efficiency gained by disclosure
(in which case we may have a repeated and manipulation-free game) and the
efficiency losses due to restricted entry caused by full disclosure would seem
required .

Results for One-Shot Cames and Applications

in this section we prove results on the manipulation of games with imperfect
information . At the end of the section we shall also discuss their possible
applications for tile analysis of futures markets .

Let us assume that there are k>2 players with market power . We shall
examine their Nash strategies and the corresponding outcomes of a non-
cooperative game . The game is defined by a game form g, a strategy set S in
R" for each player, and an outcome set X in R" . Each strategy is a vector
representing a net demand schedule for it commodities . The game form is
a continuous function g : (R" )k

--> X, which assigns to each k-tuple of
strategies an outcome that is a direction of price change D,, in R", or else
no change at all-that is, the vector (0, . . . , tl) .

We shall assume that each player knows g, X, and S, and that they
observe each other's moves, player is preferred direction of price change is
denoted D/r ; . To provide a simple proof of our next result, we shall look at
tile special case k = 2, n = 2 . The results in this section hold true for higher
dimensional cases, but the proofs require more complex tools of algebraic
topology .

THEOREM I . Considera garneg : (RT --~- R2 defined as above. Asstone that
prices move in the direction of a convex combination of the changes ill net
demands ofthe agents . There then evists a /)layer n,lro i.s always able to secure,
as a Nash equilibriton otitcorne, his preferred direction of price change, for
anv (nonzero) strategies the other is playing . To attain this outcome, this
player will generally misrepresent his true (ne() demand, but his strategic net
demand vector need never have a higher absolute vahte than that of tile outer
player .
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PI-00f. Because ,g' 111apS Strategies into directions of price chatlges, and such
directions are in a one-to-one correspondence will] points in (lie unit circle
,S' of R`, we may consider g : (R2)2 -> S' . We shall now restrict ourselves
to nonzero strategies, so we may look at g : (R 2 - )M)''5'

We study next file restriction of the slap g to the set (S I ) 2 C (R 2 - 10})2-
that is

following subsets :

and

and

g : (S 1
)
2 , S 1

We may define file degree of g restricted to file diagonal set D = ; (x,,
r,) e (S

1
)
2 : x, = x 2 }, because D is horneonlorphic to the circles S' in R2

(Chichilniskv 19 ;11) .
The condition that [)rice changes in file direction of positive linear

cool dinatior1 demands implies that when all individual demands are c,1-

lincar, 111cy n1,we in 111e same (lit ccli,m .'I lr11sg restricted to I) is the idelltily
slap . So that deg,g/D = I . Sinlilarly we study the degree of g ,r11 each of the

T1 -=

	

{(-%,

	

r) : x

	

_
.1 n, yrS 1 )

h2 = I(X , Y) . 1' = 1'n, xrS I }

The degree of ,g restricted to T, and to T2 is either zero or one, clue (o file
convexity condition (Chichilnisky 1982b)-that is

11 < (leg g/T, < I

	

(6.5)

(1 < deg g/T2 -r 1

	

(6 .6)

Now, because D is hornotopic to T1UT2 Within
(S

1 )`', it Follows that

(let, g/D = deg glT, UT2 = deg g/T, +

	

deg g/T2

	

(f).7)

Since (leg g/D = I, this implies by equation 6.5 and 6.6 that of the two
degrees on (11e right side of equation 6 .7, one must be zero, and the other
one .

Assume without loss of generality that deg g/T, = I and (leg g1T2 = (l .
This implies that when player 2 plays e � in .S 1 for any outcome D';, in S 1 there
exists an x(1',,) in S' such that g(x . v ( ,) = U" . By continuity of g, this is also
true for any other r in S 1 , y - y, 'I his proves that the first player can always
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find a Nash strategy that ensures him of his preferred outcome, no matter
what strategy player 2 plays . The argument is now easily extended to
strategies in R2 .

For any y in R2 , consider the circle .S' (y) centered in the origin, passing
through y . Because g is defined on R2 , in particular g is defined on S 1 (y),
and thus the preceding argument applies to this circle-that is, to the map

/

	

: S' (Y)XS1(Y) - S1
S1(Y)XS' (Y)

This proves that for the game g: (R`)` __,. S 1 , the Nash response function of
player I has always D'', as its outcome-that is, g(x(y), y) = 1)'J'� till */, in
R 2 . Because the Nash equilibrium is in the intersection of both response
functions of file [)layers, the proof" of the theorem is complete .

The following is an example of a game g as in theorem 1 .

Example l : A special case of Walrus games of misrepresentation of prefer-
c1u:c,s . This ex( m[)Ic draws ()it the literature on market manipulation (see
llurwicz 1972, 1979) . We consider first a pure exchange market with two
persons and two goods . Given an initial endowment W; and a price p, each
agent determines a utility-maximizing bundle z*(p) . As the price p varies,
the geometric locus of z * (h) in the commodity space constitutes the offer
curve of this agent .

One may consider the game where each individual chooses strategically
an offer curve to maxinlize his strictly convex preference subject to a budget
constraint depending on W; . Given a pair of such strategies, denoted /1 1 and
11 2 , the outcome of the Walras game is defined by the determination of the
market clearing prices for 11, and h2 and the subsequent selection of the
corresponding Walras equilibrium allocation . In the case of multiple solu-
tions, one is chosen .

1-lurwicz has shown that the set of Nash allocations of the preceding
game, which corresponds to equilibria in Nash strategies, coincides with tile
interior of the lens L* constituted by the true offer curves . In general,
therefore, manipulation of file market will take place, in the sense that the
Nash solutions of the Walras game when agents play strategically is different
from the set of Walrasian equilibrium market allocations .

We consider now a special case of the preceding game .
Given inital endowments Wi and preferences U;, i = 1, . . . , k (k

agents), let E(Wi, Ui) be the set of Walrasian equilibria of the pure exchange
economy described by (Wi , Ui)i = l, . . . , k . We assume that initial en
dowments (Wi ) are given, and that the preferences Ui, i = 1, . . . , k, may
vary over a family of preferences parameterized by vectors in R" (11 goods) .
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This is a restricted domain assumption . For example, for n = 3, k = 2 let
U, = min(a, .r . b,y, c i z) and U2 = nlin((I'x, bw, c_' Z), so aril U,
is fully described by the three ---- dimensional vector (a,, b,, c,) and U, by
(a,, b, c,) . Alternatively consider a fainlily of Cobb-Douglas utilities I U, _
( .r", vti , z'')} each utility U; indexed by a vector in euclideail slrlce, naillCly

We shall assume that there exists a continuous map (() from utilities to
equilibria

where ch assigns a Walrasian equilibria to each utility U ; ill a continuous
fashion . Because the utilities U;'s are assumed to be characterized by vectors
in R" . then the map cir can lie written as

(~ : (R" ) ' -E ( . :lV;),
where

	

car

	

(r;,

	

.

	

.

	

.

	

, r; ,,

	

.

	

.

	

.

	

, r';)

	

is

	

a

	

Walrasian

	

e(Iuilibria

	

elf

	

the

	

pure
exchange economy (ri . . . .

	

, r; , . . . .

	

, rr', ; {W,}) with initial endowments
{If',} and preferences {U ;} represented by the nk vector of parameters

i

If we now consider the equilibrium price lr
,t supporting the Walrasian

eyuilibria allocation (1)(r ;, {W;}), then we obtain from car a contin-
uous slap

g, : (R")k , R"

assigning to (ri, . . . , r;,) the eyuilibria price of
This map satisfies the conditions statement of theorem 1, defining a game
form ,g' : (R") k -4 IV . The strategy of the All player is therefore an It-
dimensional vector . . . , r;,) in R" representing his preference, or
corresponding demand schedule . Each individual vector will represent a
variation from an initial vector of parameters (1

11
,, . . . , r;;) . Individual

strategies are variations over a given preference or initial demand schedule .
We now make the following additional assumption :

Regularif"v assnrnplion : 'The equilibrium price p* varies continuously as
a function of individual demands in the direction of the convex combination
of changes in individual demands . This condition can he described intu
itively by saying that the equilibrium price moves in a certain direction
whenever individual utilities change so as to assign higher utilities to
commodity bundles in that direction . ']'his condition can be weakened
significantly, for instance to request that the trial) of from (R")r< into R" has
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degree 1 over certain subsets . In view of our two assumptions, the game
form as clefined by the Walras game satisfies all the conditions of theorem 1,
and therefore the results of theorem l apply to this example .

We may also refer to cases where, because of constraints, the players
may not play all possible net demand vectors as strategies . In the two-
dimensional case, we may consider therefore that the strategies open to each
player are restricted to a box in R2 , denoted Z2 . The manipulation of such
games was studied in Chichilnisky and Heal (1982), and we quote here those
results .

TIlEOREM 2 . Let g be a regular" garne with strategies in Z2 for each
player, and outcomes in a convex set of R2 (that is, the price space) . Then g is
nonmanipulable in Nash equilibrium only if g is locally ,simple-that is,
locally a constant or locally dictatorial . Furthermore, locally constant or
dictatorial gatnes are nowhere dense in the fancily ofcontinuous game forms
g: Z2 --> R2. Therefore, generically, games g: Z2 --* R2 are manipulable.
For a proof see theorem 2 and proposition 5 of Chichilnisky and Heal (1982) .

We now give a corollary of theorem I that will be used in the following
application to futures markets :

COROLLARY l . Let g: (R2) 2 - R2 be a garne as in theorem 1 . Then there
always exists a planer that can ensure that the price of one of the goods will
move in the opposite direction of his net demand vectorfor this good, at least
in some ranges of his demand .
Proof. This follows from the proof of theorem 1 . The fact that deg/TZ = 0
implies, together with the convex hull condition, that the set ofvalues ofgon
the set T2 , that is

{g(xo, Y) : YES, (xn)}

does not cover TZ . That is, as the net demand vector y of the second agent
describes clockwise the circle Si (x(j ), the outcome must move counter-
clockwise at least for some values ofy . Therefore, as net demand of player 2
increases for one good, the price change moves in the opposite direction .
This completes the proof .

We now explore an application of theorem 1 and its corollary 1 to a
particular example of manipulation of futures markets, related to what is
sometimes called a market squeeze (for a discussion and definitions, see for
example Kyle, chapter 5, this volume) .

Example 2: Marketsqueezes and the competitivefringe . For this example we
must specify in more detail the institutional framework of the problem . We
shall assume that there are two types of agents, those with market power and
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those without it . The latter arc called the "competitive fringe ." TI]cy are
distinguished in operational terms by the fact that when operations are
contractual but not physical (that is, no physical goods are exchanged, only
contracts), tire prices are determined by the ntarkct behavior of tlic players
with market power . I however, if as delivery dale arrives physical deliveries
take place, then the price changes are inllucnccd by the plivsical volumes of
demands and supplies of all players, including those without market power .
until physical markets clear . We shall assume, as usual, that price changes
move in the same general direction as aggregate excess demands .

In our example . there is one good a and two periods . We shall consider
two prices : Ir, (a) denotes the futures price of a at period 1 . and 1) 2 (,,)
represents the spot price of a ill period 2 . Obviously, will] perlect informa
tion] and no manipulation these two prices should he equal but for storage
costs . As we will see . however . where there exist agents with market power
ill period I . it will be possible (under certain conditions) too drive a wedge
llctN\rcn these two prices to tile advantage of tile manipulative agent .

\1'c shall consider a case where file first period is very close too the
dclivciv date (of second period) . So that tire c1caring mouse is not able to
close flu \\edge through its periodic monitoring operations . Assume that
there arc two players will] market power denoted I and 2 and a competitive
Iringe of undetermined size . Assume that the direction of price change is as
before in the convex hull of player 1 and player 2's net futures contract
demand for good a (to he delivered at date 2) . Then corollary 2 establishes
that at least for one agent, say player l, it will be possible in some cases to
increase its demand for a (to he delivered at date 2) and go sufficiently long
without at the same time increasing, or even while decreasing, the futures
price at which lie contracts ill period 1 .

An intuitive explanation of this case could he as follows . If in previous
periods agent I had traded with tin agent with market power denoted 2, and
2 went sufficiently short, then in period 1, tile second agent could prevent
tile futures price of a from rising-for example, while agent I goes long by
buying only from the competitive fringe . Because we assumed that until
physical trade takes place, the competitive fringe does not affect market
prices, futures prices for a remains low, even as player I goes sufficiently
long that his demand exceeds physical supplies in period 2 . The manipula-
tion is mow completed . As period 2 arrives, if player I purchased more than
tile total physical quantities available, then obviously the sport price of good
a will rise in period 2 . This increase will give a net gain to player I if lie
accepts monetary compensation for the lack of delivery . This gain, of
course, will only be meaningful if player I (lid not actually buy futures ill good
a because he needed good a in period 2 ; contrary to what lie expressed about
his demand for a in period 1, he does not actually need to consume (I ill
period 2, so he can materialize tile gain of the price wedge lie produced
through manipulation .

Notes
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This result has two key elements . First, as provided by theorem I and
corollary I , ill period I tine agent may increase his futures demand for good a
and get sufficiently long without increasing his futures price in contracts at
period I . The competitive fringe that went short in the aggregate ill period I
for delivery in period 2 will affect spot prices in the second period, because
then delivery is enforced, so that the other physical scarcity of quantities
traded affects spot prices .

A closer look at agent I's strategy suggests that this agent may do well to
buy first from those agents with the most market power . If they go short,
they may help prevent increases in futures prices, thus allowing player I to
continue to buy from the competitive fringe at lower prices and increase his
long position significantly just ill) to the (late where delivery must take place .

1 . I-ooiwaid markets do not ]nark to market as futures markets do .
2 . I-of an institutional example of this Iradcooff I1cltvecn case of cnlry

and manipulation . sec "Antitrust Study of U .S . 13ond Trading." Ylre New

York limes, April d, 1983 .
3 . That is, a priori each player may have any possible preference among

different commodities . The game is supposed to be straightforward with
respect to any arbitrarily given set of players, each of which may have only
possible preference .

a . A regular game is one whose game form g : R" --~ R" satisfies ge-
neric transvcrsality conditions ; sec Chichilnisky and I Ieal (1951) .
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