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Some Mathematical Properties of the Futures

Market Platform

M.S. Radjef∗and F. Laib†

2007

Abstract

This is an introductory work to analytical properties of the futures
market platform’s main parameters. The underlying mechanism of this
market structure is formulated into a mathematical dynamical model.
Some mathematical properties of traders’ positions, their potential and
realized wealths, market open interest and average price, are stated and
demonstrated.

1 Introduction

The majority of studies on futures markets were conducted from a stochastic
perspective where time series were analyzed in order to discover empirical rela-
tionships between market phenomena (Chan and Young, 2006; Mandelbrot and
Taylor, 1967). In parallel, market analysts and traders use extensively technical
analysis and fundamental analysis to forecast price moves and monitor market
trends (CBOT, 1998; Murphy, 1999). In the same optic, Shelton (1997) has sug-
gested an authentic approach based on a game theory model where a rational
player (a trader) is playing a game against Nature (the market). He defined the
probability triangle showing to the trader the right strategy to play depending
on his risk level and the market mood.

However, to respond to more conceptual questions on futures markets, other
kind of investigations are needed. For this purpose, Arthur et al. (1996) de-
veloped a genetic approach designed to generate the price of a stock financial
asset based on heterogeneous agents with different expectations and different
strategies. Their approach allowed to understand the band wagon effect and
the interaction between technical trading and fundamental trading. Howard
(1999) constructed an analytical mathematical model, inspired from the work
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of Arthur et al. The model of Howard is basically an evolutionary system gen-
erating the price of a stock asset, where some traders are establishing their
decisions on technical signals and the others use fundamental signals. At each
step of the game, some traders may migrate from one set to the other, influ-
enced by financial results of the other set. The Santa Fe Stock Market Simulator
(LeBaron et al., 1999) is a typical computer model of the stock market allowing
to carry out simulations and tests the effects of different scenarios on the price
behavior (Palmer et al., 1994).

On the other hand, computerized models of futures market platforms are
running on almost all brokerage houses systems and commission houses plat-
forms, helping to track traders’ positions and monitor their profits and losses on
a daily basis. Computerized models have offered to market participants what
they need: speed, accuracy and large scale treatment; however, these models
are not showing the analytical relationships existing among different market
parameters like the link between open interest and average market price. The
scientific literature lacks these kind of studies.

By contrast, our work differs from others in that it looks to the futures
market platform from a pure mathematical point of view and attempts to es-
tablish exact analytical relationships between its components. Furthermore, a
mathematical investigation looking in-depth of each phenomena and establish-
ing exact analytical functions between relevant components could be a necessary
step to realize new research advances in the field of futures markets price equi-
librium understanding. Our investigation is intended to be a contribution to
this subject.

The remainder of this study is organized in two sections. The next section
describes the underlying mathematical model of a futures market platform and
outlines its most important parameters like transactional prices and quantities,
traders’ states and their update process: At instant tj ∈ T, each trader i ∈ N
is characterized by his position yi(tj), his average price xi(tj), his potential
wealth wi(tj), his realized wealth Wi(tj), and his total wealth Ji(tj). The
market as a whole is characterized by the instantaneous transactional price and
quantity, (p(tj), q(tj)), the open interest y(tj) and the market average price
p̄(tj) measures. The last section presents our main findings which are analytical
relationships between the above mathematical measures of the futures market
model. One of the properties on the open interest change seems to have an
interesting practical interpretation for market analysis purposes. Finally, to
demonstrate these properties, we make use of the condition function defined in
the appendix.

2 Mathematical formulation of the futures mar-
ket mechanism

We consider a set of traders, N = {1, . . . , n}, tracking a particular futures
contract, with a life duration T . Each trader i ∈ N is constantly observing the
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market via the news they receive from different sources of information allowing
him to assess the supply and demand levels. Based on these news and their
market experience, their needs and their financial capabilities and strategies,
traders establish orders, ui, and send them to the market platform as shown in
figure 1.
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Figure 1: Traders sending their orders to the market platform

The orders are directed either to the List of Selling Orders (LSO) or the List
of Buying Orders (LBO) depending on their type. The orders in both lists are
instantly sorted in such a way that the best sale order is always in the top of
the LSO and the best buy order is in the top of the LBO. At each instant, an
attempt is made to generate a transaction between the best buy order with the
best sell order.

We assume that the daily market sessions of the futures contract, since the
first trading day until expiration day, are grouped into a compacted interval
[0, T ] which is discretized into a set of instants

T = {t0, . . . , tm}, with t0 = 0, tm = T, tj = tj−1 + h, j = 1, . . . , m,

where h is the discretization pace. At instant tj , at most one order can be
received and treated. If an order is received at instant tj , then it will be di-
rected to the corresponding list of orders, sorted in that list, then an attempt
to generate a transaction follows; all these four sub-vents are happening during
the same instant tj .
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2.1 Price fixation

The order ui(tj) send to the market platform by trader i ∈ N at instant tj ∈ T,
has the following form:

ui(tj) = (ui1(tj), ui2(tj)) ,

where ui1 is the ask price in case of a sale order, or the bid price in case of a
buy order, thus ui1 ∈ R+; and ui2 is the number of contracts to sell in case of a
sale order, or the quantity to buy in case of buy order1. In case of a sale order,
we add conventionally a minus sign to distinguish it from a buy order, therefore
in the general case ui2 ∈ Z.

At instant tj , the LSO and LBO display the following status

SO(1, tj) ≡ us(ξs) = (us1(ξs), us2(ξs)) ;
BO(1, tj) ≡ ub(ξb) = (ub1(ξb), ub2(ξb)) ;

that is, the best sale order is us(ξs) issued by trader s at instant ξs ≤ tj ; and
the best buy order is ub(ξb) issued by trader b at instant ξb ≤ tj . A transaction
will occur at instant tj if us1(ξs) ≤ ub1(ξb), and us2(ξs) > 0 and ub2(ξb) > 0
simultaneously. In this case, the transactional price, p(tj), will be

p(tj) =
{

ub1(ξb), if ξs < ξb,
us1(ξs), if ξb < ξs.

(1)

This price is determined in this way because an advantage is given to the trader
who issued his order first. The number of contracts q(tj) sold by trader s to
trader b in this transaction will be

q(tj) = min{ub2(ξb); |us2(ξs)|}. (2)

Otherwise, no transaction will take place at instant tj , and we set

p(tj) = p(tj−1) and q(tj) = 0. (3)

If a transaction has occurred at instant tj , then tj is a transactional time,
otherwise it is a non-transactional time.

2.2 States of the traders

The trading activity of futures contracts starts at instant t0 and finishes at tm.
At each instant tj ∈ T, the state of each trader can be described by the following
components:

• yi(tj) : is the position of trader i, representing the number of contracts
he has bought or sold.

1A third component, ui3(tj), may be added to the order ui(tj) in case of a cancelling order
to show which previous order of trader i to cancel.
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• xi(tj): is the average price of the position yi(tj) of trader i.

• wi(tj): is the potential wealth (profit or loss) of trader i at instant tj . It
represents the amount of money that he would gain or loss if he closes his
position at the current instant tj . This amount is the difference between
the real worth of his position and its current worth value, that is

wi(tj) = yi(tj) [p(tj)− xi(tj)] . (4)

• Wi(tj): is the realized, or closed, wealth (profit or loss) of trader i since the
beginning of the game until instant tj . The component Wi(tj) is updated
only when trader i closes entirely, or partly, his position. If, at instant
tj , he closes |d(tj)| contracts from his old position then his accumulated
realized wealth at instant tj will be

Wi(tj) = Wi(tj−1) + d(tj) [p(tj)− xi(tj−1)]. (5)

• Ji(tj): is the total wealth of trader i at instant tj , defined by

Ji(t) = J0
i + Wi(t) + wi(t), (6)

where J0
i is the initial wealth of trader i, i.e. the amount of cash he

possesses at the beginning of the game.

We set J0 as the global wealth of all the traders:

J0 =
n∑

i=1

J0
i . (7)

At the starting time t0, all the components of each trader are flat, that is

xi(t0) = yi(t0) = wi(t0) = Wi(t0) = 0, i = 1, . . . , n.

2.3 Updating traders’ states

Consider a step forward in the trading process passing from instant tj−1 to
tj , and let’s study, in paragraphs 2.3.1 and 2.3.2 respectively, the two possible
cases: ’no transaction has occurred’ and a ’transaction has occurred’ at instant
tj . We are going to deal with some mathematical details as they are needed in
the subsequent section for demonstrating some mathematical properties.

Note 2.1. In order to simplify further our notations and avoid lengthy expres-
sions, we drop the letter tj when no confusion is possible, hence we set

xi ≡ xi(tj), yi ≡ yi(tj), Wi ≡ Wi(tj), wi ≡ wi(tj), Ji ≡ Ji(tj).

To make reference to the state of any dynamical variable at the prior instant
tj−1 we use instead the apostrophe notation (’), that is

p′ ≡ p(tj−1), x′i ≡ xi(tj−1), y′i ≡ yi(tj−1),
W ′

i ≡ Wi(tj−1), w′i ≡ wi(tj−1), J ′i ≡ Ji(tj−1).

These notations will be used interchangeably.
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2.3.1 Case of no transaction

If no transaction has occurred at instant tj , then relation (3) will hold, and all
the components of each trader will remain unchanged, that is for every i ∈ N
we have the following:

yi = y′i, xi = x′i, Wi = W ′
i , (8a)

wi = w′i, Ji = J ′i . (8b)

2.3.2 Case where a transaction has occurred

If instant tj is a transactional time, then a transaction has occurred between a
buyer b and a seller s, exchanging q contracts. In this event, an update of the
price and the traders’ components is necessary. The transactional price, p, and
quantity, q, are given by (1) and (2) respectively.

The update of traders’ components is conducted in three steps: Step 0 below
shows how to update the components of all traders except the buyer and the
seller; Step 1 and Step 2 updates the components of the buyer and the seller
respectively.

Step 0 : updating all traders’ components except the buyer’s and the
seller’s

All the traders other than the buyer b and the seller s, will only update their
potential wealth, in other words, for traders i ∈ N \ {b, s} formula (8a) will
apply, but their potential wealth component wi will evolve with time because
the price has changed

wi = yi (p− xi), i ∈ N \ {b, s}. (9)

Obviously, for these traders, their total wealth component Ji, given by (6),
should also be recalculated because it depends on wi.

Step 1: updating the buyer’s components

The buyer b has bought q new contracts during this transactional time tj ,
his current position yb will be

yb = y′b + q. (10)

Since he had added new contracts to his old position, the average price xb of
his new position should be updated. However, this update will depend on the
value of his previous position y′b. Below, we examine the four possible cases, 1-i
to 1-iv, corresponding respectively to i) y′b ≥ 0, ii) −q < y′b < 0, iii) y′b = −q,
and iv) y′b < −q. In each case, we determine the analytical expressions of xb,
wb and Wb.
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Step 1 - case i: when y′b ≥ 0. In this case, his new average price xb on his
new position will be

xb =
y′bx

′
b + qp

y′b + q
. (11)

In this case, his realized wealth will remain unchanged because he has not closed
any contract of his old position, thus

Wb = W ′
b. (12)

His potential wealth wb should be updated because the price has moved from
p′ to p, that is

wb = yb(p− xb). (13)

Substituting (10 ) and (11) in (13) we obtain

wb = y′b(p− x′b). (14)

Step 1 - case ii: when −q < y′b < 0. In this case, at instant tj , he bought
q new contracts with a price p. This buying operation can be viewed as two
consecutive buying operations:

a) he had bought |y′b| contracts with a price p, then

b) he bought q − |y′b| contracts with a price p.

When he executed operation a) he had closed his short position y′b that he had
sold before with a price x′b, and realized a net profit or loss equal to |y′b|(x′b−p).
Adding this amount to the old realized wealth W ′

b, the new realized wealth will
become

Wb = W ′
b + |y′b|(x′b − p) = W ′

b + y′b(p− x′b).

When he executed operation b), he had acquired a long position yb = q −
|y′b| = q + y′b with a price xb = p and the potential wealth of this position is
wb = yb(p − xb) = 0. This is true because the new position yb = q − |y′b| was
established at the current price p, therefore it has not yet any potential wealth.

Step 1 - case iii: when y′b = −q. In this case, when he bought the q new
contracts, he had closed entirely his short position, hence he realized a net profit
or loss equal to |y′b|(x′b−p). Adding this amount to his previous realized wealth,
will yield

Wb = W ′
b + |y′b|(x′b − p) = W ′

b − q(p− x′b).

In this case, his new position is yb = y′b + q = 0, thus we consider its average
price as xb = 0, having a zero potential wealth, wb = yb(p− xb) = 0.

Step 1 - case iv: when y′b < −q. In this case, when he bought the q new
contracts, he had closed q contracts in his old short position, hence he realized a
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net profit or loss equal to q(x′b−p). Adding this amount to his previous realized
wealth W ′

b will result in
Wb = W ′

b − q(p− x′b).

After this operation, it will remain yb = y′b + q < 0 contracts in the possession
of the buyer. This is a part of his old position that he had sold with an average
price x′b. As these contracts are still in his hand at instant tj , hence xb = x′b,
and the potential wealth of this position is wb = yb(p− xb) = (y′b + q)(p− x′b).

Summary of step 1: In order to write on a single line the functions xb, Wb,
and wb of the four cases 1-i to 1-iv, we will use the condition function (see
appendix) formulation as shown below

xb =
y′bx

′
b + qp

y′b + q
1[y′b≥0] + p 1[−q<y′b<0] + x′b 1[y′b<−q]; (15)

Wb = W ′
b + (p− x′b)

(
y′b 1[−q<y′b<0] − q 1[y′b≤−q]

)
. (16)

However, we have showed that in both cases 1-ii and 1-iii the potential wealth
wb = 0. In the remaining cases 1-i and 1-iv, we know that wb 6= 0, hence we
can assert that the potential wealth wb can be written as

wb = (p− x′b)
(
y′b 1[y′b≥0] + (y′b + q) 1[y′b<−q]

)
. (17)

Step 2: updating the seller’s components

After selling q contracts, the position of the seller s should be

ys = y′s − q. (18)

Below we examine the four possible cases, 2-i to 2-iv, corresponding respectively
to i) y′s ≤ 0, ii) 0 < y′s < q, iii) y′s = q, and iv) y′s > q. In each case, we
determine the analytical expressions of xs, ws and Ws.

Step 2 - case i: when y′s ≤ 0. In this case, his new average price xs on his
new position, ys = y′s − q, will be

xs =
y′sx

′
s − qp

y′s − q
. (19)

His realized wealth will remain unchanged because he has not closed any con-
tract from his old position, thus

Ws = W ′
s. (20)

His potential wealth, ws, should be updated due to the price move from p′ to
p, that is

ws = ys(p− xs). (21)
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Substituting (18 ) and (19) in (21), we obtain

ws = y′s(p− x′s). (22)

Step 2 - case ii: when 0 < y′s < q. In this case, the action of the seller can
be viewed as two consecutive selling operations:

a) he had sold y′s contracts with a price p, then

b) he sold q − y′s contracts with a price p.

When he executed operation a) he had closed his long position y′s that he had
bought before with a price x′s, and realized a net profit or loss equal to y′s(p−x′s).
Adding this amount to the old realized wealth W ′

s, will yield the new realized
wealth

Ws = W ′
s + y′s(p− x′s).

When he executed operation b), he had acquired a short position ys = −(q −
y′s) = y′s − q, with a price xs = p, and the potential wealth of this position is
ws = ys(p− xs) = 0.

Step 2 - case iii: when y′s = q. In this case, he had closed entirely his long
position, hence he realized a net profit or loss equal to y′s(p− x′s). Adding this
amount to his previous realized wealth will yield

Ws = W ′
s + y′s(p− x′s) = W ′

s + q(p− x′s).

In this case, his new position ys = y′s− q = 0, thus we consider its average price
as xs = 0, and ws = ys(p− xs) = 0.

Step 2 - case iv: when y′s > q. In this case, he had closed q contracts in
his old long position, hence he realized a net profit or loss equal to q(p − x′s).
Adding this amount to his previous realized wealth W ′

b will result in

Ws = W ′
s + q(p− x′s).

After this operation, it will remain ys = y′s−q > 0 contracts in the possession of
the seller. This is a part of his old position that he had bought with an average
price x′s. As these contracts are still in his hand at instant tj , hence xs = x′s,
and the potential wealth of this position is ws = ys(p− xs) = (y′s − q)(p− x′s).

Summary of step 2: In order to write on a single line the functions xs, Ws,
and ws of the four cases 2-i to 2-iv, we will use the condition function formulation
as shown below

xs =
y′sx

′
s − qp

y′s − q
1[y′s≤0] + p 1[0<y′s<q] + x′s 1[y′s>q]; (23)

Ws = W ′
s + (p− x′s)

(
y′s 1[0<y′s<−q] + q 1[y′s≥q]

)
. (24)
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However, we have showed that in both cases 2-ii and 2-iii that ws = 0. In the
remaining cases 2-i and 2-iv, we know that ws 6= 0, hence we can assert that
the potential wealth ws can be written as

ws = (p− x′s)
(
y′s 1[y′s≤0] + (y′s − q) 1[y′s>q]

)
. (25)

3 Some mathematical properties

Two well known properties of a futures market are the following

n∑
i=1

yi(tj) = 0, and
n∑

i=1

Ji(tj) = J0, ∀ tj ∈ T. (26)

The first result follows directly from (10) and (18) since for every transaction
there is a buyer and a seller. The second result reflects the fact that total wealth
of all the traders is constant and that what was lost by some traders is gained
by others.

Hereafter, we present three classes of new properties.

3.1 Some properties of traders’ components

We show herein that the state variables wi, Wi and Ji, of trader i at instant
tj , can be identified by knowing only their values at the prior instant tj−1, the
market price p and the transactional quantity q, of the current transaction, if
any.

Property 3.1. ∀ tj ∈ T, the potential wealth wi of trader i, defined by relation
(4), can be written in the following form

wi = w′i + y′i(p− p′), (27)

for every trader i ∈ N , except if i = b and yb < 0, or if i = s and ys > 0.

Proof. We will prove this property case by case.
a) Case where i ∈ N \ {b, s}. At instant tj , we know that xi = x′i and yi = y′i,
therefore,

wi = yi(p− xi) = y′i(p− x′i)
= y′i(p− p′) + y′i(p

′ − x′i) = y′i(p− p′) + w′i.

b) Case where i = b. If y′b ≥ 0, hence we should be in the case 1-i of paragraph
2.3.2, then from (14) and following the same reasoning than case a) above,
starting from the second line, we show readily this result.

c) Case where i = s. If y′s ≤ 0, hence we should be in the case 2-i of paragraph
2.3.2, then from (22) and following the same reasoning than case a) above,
starting from the second line, we show this result.

10



Property 3.2. ∀ tj ∈ T and ∀ i ∈ N , the total wealth, Ji, given by relation (6),
can be expressed in terms of J ′i in the following way

Ji = J ′i + y′i(p− p′). (28)

Proof. We will prove this property case by case.
a) For every i ∈ N\{b, s}, we know that relations (8-a) and (27) apply, therefore
we can write the total wealth Ji defined by (6) as follows

Ji = J0
i + Wi + wi = J0

i + W ′
i + w′i + y′i(p− p′) = J ′i + y′i(p− p′).

b) If i = b, we make use of formulas (16) and (17) in the below development

Jb = J0
b + Wb + wb

= J0
b + W ′

b + (p− x′b)
(
y′b 1[−q<y′b<0] − q 1[y′b≤−q]

)
+ (p− x′b)

(
y′b 1[y′b≥0] + yb 1[y′b<−q]

)
= J0

b + W ′
b + (p− x′b)

(
y′b 1[−q<y′b<0] − q 1[y′b≤−q] + y′b 1[y′b≥0] + yb 1[y′b<−q]

)
= J0

b + W ′
b + (p− x′b)

(
y′b 1[y′b>−q] − q 1[y′b≤−q] + yb 1[y′b<−q]

)
= J0

b + W ′
b + (p− x′b)

(
y′b 1[y′b>−q] − q 1[y′b≤−q] + yb

[
1[y′b≤−q] − 1[y′b=−q]

])
= J0

b + W ′
b + (p− x′b)

(
y′b 1[y′b>−q] + (yb − q) 1[y′b≤−q] − yb 1[y′b=−q]

)
;

but we already know that 1[y′b=−q] = 1 if only if y′b = −q, in this event, yb =
y′b + q = 0, hence yb 1[y′b=−q] = 0, is always true. Now we resume the last
expression of Jb, after erasing this zero term, we obtain

Jb = J0
b + W ′

b + (p− x′b)
(
y′b 1[y′b>−q] + (yb − q) 1[y′b≤−q]

)
;

= J0
b + W ′

b + (p− x′b)
(
y′b 1[y′b>−q] + (y′b + q − q) 1[y′b≤−q]

)
= J0

b + W ′
b + (p− x′b)

(
y′b 1[y′b>−q] + y′b 1[y′b≤−q]

)
= J0

b + W ′
b + y′b(p− x′b)

= J0
b + W ′

b + y′b [(p− p′) + (p′ − x′b)]
= J0

b + W ′
b + y′b(p

′ − x′b) + y′b(p− p′)
= J0

b + W ′
b + w′b + y′b(p− p′)

= J ′b + y′b(p− p′).

c) If i = s, then following the same approach then case b) above, we can show
easily that

Js = J ′s + y′s(p− p′).

Hence, relation (28) holds true for all traders and in all cases.
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Remark 3.1. Consider the summation of (28) on all traders,

n∑
i=1

Ji =
n∑

i=1

J ′i + (p− p′)
n∑

i=1

yi.

Since
∑n

i=1 yi = 0, then
∑n

i=1 Ji =
∑n

i=1 J ′i for all tj ∈ T, i.e. the sum of the
wealths of all traders is constant in time. This confirms that property 3.2 is not
in disagreement with earlier established results on futures markets (the second
term of (26)).

Remark 3.2. Assuming that time t is continuous in the interval [0, T ], then
total wealth of trader i can be described by the following differential equation

J̇i(t) = yi(t) ṗ(t), i = 1, . . . , n.

Property 3.3. ∀ tj ∈ T and ∀i ∈ N , the realized wealth Wi can be written as

Wi = W ′
i + w′i + y′i(p− p′)− wi. (29)

Proof. If relation (6) was applied at instant tj−1, it would yield

J ′i = J0
i + W ′

i + w′i.

On the other hand, from (6) we can extract the expression of Wi as shown below

Wi = Ji − J0
i − wi.

Now substituting the term Ji by its expression given in (28) will result in

Wi = [J ′i + y′i(p− p′)]− J0
i − wi

=
[(

J0
i + W ′

i + w′i
)

+ y′i(p− p′)
]
− J0

i − wi

= W ′
i + w′i + y′i(p− p′)− wi.

Remark 3.3. In case of i ∈ N \ {b, s}, or i = b and y′b ≥ 0, or i = s and
y′s ≤ 0, then we know from section 2.3 that

Wi = W ′
i ,

and the remaining part of the right-hand-side of (29) is equal to zero, i.e.

w′i + y′i(p− p′)− wi = 0,

due to property 3.1.

3.2 Some properties of the open interest

The open interest measure, y(tj), is a popular concept in futures markets. Stated
in simple terms, it represents the number of contracts held by traders with long
positions at instant tj , which is also equal to the absolute number of contracts
held by traders with short positions.
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Definition 3.1. The open interest measure, y(tj), at instant tj ∈ T, can be
described analytically by

y(tj) =
n∑

i=1

yi(tj) 1[yi(tj)>0] = −
n∑

i=1

yi(tj) 1[yi(tj)<0]. �

Hereafter, the apostrophe notation (’) will apply for y, i.e. the time param-
eter letter tj will be dropped in the expression of y(tj) when no confusion is
possible, and the previous state, y(tj−1), will be denoted by y′.

Property 3.4. At an instant tj ∈ T, the open interest y can be calculated in
the following way

y = y′ + A−B, (30)

where

A ≡ A(tj) = q 1[y′b>−q] + y′b 1[−q<y′b≤0], (31)

B ≡ B(tj) = q 1[y′s>q] + y′s 1[0<y′s≤q]. (32)

i.e. y depends only on the transactional quantity q and the state of the system at
the previous instant tj−1. The amount A(tj) represents the number of contracts
added by the buyer to the open interest, and B(tj) indicates the number of
contracts deducted by the seller from the open interest.

Proof. We have

y =
∑
i∈N

yi 1[yi>0]

= yb 1[yb>0] + ys 1[ys>0] +
∑

i∈N \{b,s}

yi 1[yi>0]

= yb 1[yb>0] + ys 1[ys>0] +
∑

i∈N \{b,s}

y′i 1[y′i>0],

we write this as

y = Q1 + Q2 +
∑

i∈N \{b,s}

y′i 1[y′i>0]; (33)

where

Q1 = yb 1[yb>0] = (y′b + q) 1[y′b+q>0] = (y′b + q) 1[y′b>−q]

= y′b 1[y′b>−q] + q1[y′b>−q] = y′b

(
1[y′b>0] + 1[−q<y′b≤0]

)
+ q1[y′b>−q]

= y′b 1[y′b>0] + A;
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and

Q2 = ys 1[ys>0] = (y′s − q) 1[y′s−q>0] = (y′s − q) 1[y′s>q]

= (y′s − q)
(
1[y′s>q] + 1[0<y′s≤q] − 1[0<y′s≤q]

)
= (y′s − q)

(
1[y′s>0] − 1[0<y′s≤q]

)
= y′s1[y′s>0] − q 1[y′s>0] − y′s 1[0<y′s≤q] + q 1[0<y′s≤q]

= y′s 1[y′s>0] − q
(
1[y′s>0] − 1[0<y′s≤q]

)
− y′s 1[0<y′s≤q]

= y′s 1[y′s>0] − q 1[y′s>q] − y′s 1[0<y′s≤q]

= y′s 1[y′s>0] −B.

Substituting Q1 and Q2 in formula (33), we obtain

y = y′b 1[y′b>0] + A + y′s 1[y′s>0] −B +
∑

i∈N \{b,s}

y′i 1[y′i>0]

= A−B +
∑
i∈N

y′i 1[y′i>0]

= y′ + A−B.

Property 3.5. ∀ tj ∈ T, the open interest y(tj) could be calculated by

y(tj) =
j∑

k=0

[A(tk)−B(tk)] . (34)

Proof. By definition, we know that y(t0) = 0 because yi(t0) = 0, ∀i ∈ N , so
(34) holds for t0. Now, assuming that at instant tj−1 relation (34) holds, that
is,

y(tj−1) =
j−1∑
k=0

[A(tk)−B(tk)] ,

hence

y(tj) = y(tj−1)+A(tj)−B(tj) =
j−1∑
k=0

[A(tk)−B(tk)]+A(tj)−B(tj) =
j∑

k=0

[A(tk)−B(tk)] .

�
The value and sign of the change in the open interest measure are monitored

continuously by traders and analysts as it helps them assessing the behavior of
the market and forecasting its future move.

Property 3.6. Consider the change in open interest, ∆y(tj), at a transactional
time tj, defined by

∆y = y − y′.

For a specified value of q, and allowing the values of y′b and y′s to vary over the
set of integer numbers, then the values and signs of ∆y in each case are given
in tables 1a and 1b respectively.
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y′b ≤ −q −q < y′b ≤ 0 y′b > 0 y′b ≤ −q −q < y′b ≤ 0 y′b > 0
y′s > q −q y′b 0 y′s > q < 0 ≤ 0 0

0 < y′s ≤ q −ys q + y′b − y′s q − y′s 0 < y′s ≤ q < 0 any ≥ 0
y′s ≤ 0 0 q + y′b q y′s ≤ 0 0 > 0 > 0

(a) Values of ∆y (b) Signs of ∆y

Table 1: Values and signs of ∆y

Proof. Note that if tj is a non-transactional time, then y = y′, therefore
∆y = 0. Thereafter, we are dealing with transactional times only. From (30),
we deduce that

∆y = y − y′ = A−B =
(
q 1[y′b>−q] + y′b 1[−q<y′b≤0]

)
−

(
q 1[y′s>q] + y′s 1[0<y′s≤q]

)
.

Table 2 summarizes the calculation for each case: case 1) corresponds to y′b > 0
and y′s > q, case 2) corresponds to y′b > 0 and 0 < y′s ≤ q, and so on. For
each case, we compute the values of A and B, then we calculate the difference
∆y = A−B, and the last column of the table shows the sign of ∆y in each case.

case y′b y′s A = B = ∆y = A−B = Sign of ∆y

1) y′s > q q q 0 0
2) y′b > 0 0 < y′s ≤ q q y′s q − y′s ≥ 0
3) y′s ≤ 0 q 0 q > 0
4) y′s > q q + y′b q y′b ≤ 0
5) −q < y′b ≤ 0 0 < y′s ≤ q q + y′b y′s q + y′b − y′s any
6) y′s ≤ 0 q + y′b 0 q + y′b > 0
7) y′s > q 0 q −q < 0
8) y′b ≤ −q 0 < y′s ≤ q 0 y′s −y′s < 0
9) y′s ≤ 0 0 0 0 0

Table 2: Calculation of ∆y

Case 5) of table 2, where −q < y′b ≤ 0 and 0 < y′s ≤ q, necessitates further
analysis to determine the sign of ∆y. In this case, we know that

∆y = q + y′b − y′s. (35)

For this case 5), we can show easily that −2q < y′b − y′s < 0, hence −q <
q + y′b − y′s < q, therefore ∆y could be positive, negative or null, depending on
the values of y′b and y′s; we have the following

• ∆y > 0 ⇒ q + y′b > y′s;

• ∆y < 0 ⇒ q + y′b < y′s;
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• ∆y = 0 ⇒ q + y′b = y′s.

This completes the proof of this property.

Remark 3.4. The results of tables 1a and 1b can be further displayed graph-
ically on a 2-dimension space with (0, 0) as an origin, the horizontal X-axis
representing y′b versus the vertical Y-axis for y′s . This is shown in figures 2a
and 2b.
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Figure 2: Values and signs of ∆y

Figure 2a shows the values of ∆y for each point (y′b, y
′
s) ∈ Z2. Inside the

square delimited by the points (0, 0), (−q, 0), (−q, q) and (0, q), the value of ∆y
is calculated by formula (35); this square corresponds to case 5 of table 2. In
addition to the two zones where ∆y = 0, all the points belonging to the thick
lines correspond also to ∆y = 0.

On the other hand, figure 2b shows the signs of ∆y for each point (y′b, y
′
s) ∈

Z2. Inside the triangle delimited by the points (0, 0), (−q, 0) and (0, q), the sign
of ∆y is positive. All the points of the triangle (−q, 0), (−q, q), (0, q) correspond
to a negative ∆y. The points of the common segment (−q, 0), (0, q) of these two
triangles have ∆y = 0.

Property 3.7. Assume that M is the biggest number in the set of positive
integer numbers (in practice, M stands for +∞). At a transactional time, the
probability π(·) of the following events are

π(∆y = 0) =
1
2
− q

2M
,

π(∆y > 0) =
1
4

+
q

2M

(
1 +

q

4M

)
,

π(∆y < 0) =
1
4
− 1

8

( q

M

)2

.

Proof. Assuming that M is the biggest positive number, then from figure 3 we
observe that any couple (y′b, y

′
s) belongs to the square delimited by the points
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(−M,−M), (−M,M), (M,M), and (M,−M), having an area 4M2 square-
units.
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Figure 3: Calculation of π(∆y)

In this square, we have:

• two symmetrical zones where ∆y = 0, with a total area of 2M(M − q)
square-units, hence

π(∆y = 0) =
2M(M − q)

4M2
=

1
2
− q

2M
;

• one zone where ∆y > 0 formed by four sub-zones: one square of M2

square-units, two symmetrical rectangles of 2Mq square-units, and a tri-
angle of q2

2 square-units; therefore

π(∆y > 0) =
M2 + 2Mq + q2

2

4M2
=

1
4

+
q

2M
+

q2

8M2
=

1
4

+
q

2M

(
1 +

q

4M

)
;

• one zone where ∆y < 0 formed by four sub-zones: one square with (M−q)2

square-units, two symmetrical rectangles with 2Mq square-units, and a
triangle of q2

2 square-units. We can also consider this zone as being formed
by a bigger square (0, 0), (−M, 0), (−M,−M) and (0,M), having an area
of M2 square-units, from which we deducted the triangle (0, 0), (−q, 0),
(0,q) having an area of q2

2 square-units, thus

π(∆y < 0) =
M2 − q2

2

4M2
=

1
4
− 1

8

( q

M

)2

.
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Property 3.8. At a transactional time, assuming that q can vary from 1 to M ,
then we have the following limits on the probabilities of each event.

lim
q→1

π(∆y = 0) =
1
2
, lim

q→M
π(∆y = 0) = 0,

lim
q→1

π(∆y > 0) =
1
4
, lim

q→M
π(∆y > 0) =

7
8
,

lim
q→1

π(∆y < 0) =
1
4
, lim

q→M
π(∆y < 0) =

1
8
.

Proof. Assuming that M is bigger enough (M ≡ +∞), then

lim
q→1

q

M
= 0, and lim

q→M

q

M
= 1.

Applying these two limits we show easily property 3.8. �

Graphical visualization: The results of property 3.8 are illustrated graphi-
cally on figures 4a-b.
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Figure 4: Limits of π(∆y)

The first figure, 4a, shows the case where q is small enough (q → 1). The
dotted area represents the zone where ∆y < 0, the blank area corresponds to
∆y > 0, and the two symmetrical dashed areas illustrate the points (y′b, y

′
s) for

which ∆y = 0. From a rough observation, we note that the two dashed zones
occupy almost halve of the plane, confirming the fact limq→1 π(∆y = 0) = 1

2 .
Whereas, the blank and dotted zones fill approximately one quarter of the plane
for each, hence confirming the limits limq→1 π(∆y > 0) = 1

4 and limq→1 π(∆y <
0) = 1

4 respectively. We observe also that the blanc zone is slightly larger than
the dotted zone, showing that

π(∆y < 0) <
1
4

< π(∆y > 0).
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Figure 4b illustrates the case where q → ∞. We observe readily that the
two dashed zones are no longer visible on this plane, hence confirming that
limq→M π(∆y = 0) = 0. On the other side, the blanc zone spreads over a
greater space, approximately equal to 7/8, proving that limq→M π(∆y > 0) = 7

8 ,
and inversely, the dotted zone is smaller than before and occupies only 1/8
confirming that limq→M π(∆y < 0) = 1

8 .

Contribution to market analysis: Property 3.8 can bring further insight to
market analysts. Indeed, after a transaction has occurred, the open interest y
could either increase, or decrease or stagnate; this is reflected by the sign of
∆y. This change depends on the transactional quantity q, and the buyer’s prior
position y′b and the seller’s prior position y′s; all possible cases are given in table
1a. For instance, if the buyer was long or flat before the transaction, i.e. y′b ≥ 0,
and the seller was short or flat, i.e. y′s ≤ 0, then for any value of q, the open
interest will increase as a result of this transaction.

If the transactional quantity is small enough (q → 1), then it is more likely
that the open interest will stagnate after the transaction rather than increase
or decrease, since the event ∆y = 0 has about 50% of chances to occur, whereas
the events ∆ > 0 and ∆y < 0 have only about 25% of chances for each to occur.

By contrast, if the transactional quantity is big enough, i.e. q is of the same
order than y′b and y′s, then it is more likely that the open interest will increase; in
fact, this should happen in 75% of cases, and the possibility to see open interest
decreases is only 25% in this case. Noticeably, in this case, the open interest
should not stagnate as the probability of the event ∆y = 0 is almost zero.

3.3 A property of the market average price

Definition 3.2. We define the market average price, p̄, at instant tj by

p̄(tj) =
∑j

k=0 p(tk)q(tk)∑j
k=0 q(tk)

, (36)

which is simply the weighted average price of all the transactions since the start-
ing time t0 until tj.

The following property links the average price of the market to the open
interest and the traders’ components.

Property 3.9. In the special case where

y(tk) = y(tk−1) + q(tk), ∀ k = 0, . . . , j, (37)

then

p̄(tj) =
∑n

i=1 xi(tj)yi(tj) 1[yi(tj)>0]

y(tj)
. (38)

That is, formula (38) allows to compute the market average price at instant tj
using only the knowledge available at this instant.
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Proof. Condition (37) means that, since the instant t0 till tj , no trader is
closing a part of his old position, i.e. any trader who bought before continues to
buy and any trader who sold before continues to sell. In a mathematical form,
if sk and bk are respectively the seller and buyer at a transactional instant tk,
then

ysk
(tk−1) ≤ 0, and ybk

(tk−1) ≥ 0, ∀ k = 0, . . . , j.

In this case, the open interest y(tk) at any instant tk is growing by the amount
of the transactional quantity q(tk), therefore

y(tj) = y(tj1) + q(tj) =
j∑

k=0

q(tk).

Assuming that (38) holds true at tj−1, that is

p̄(tj−1) =
∑j−1

k=0 p(tk)q(tk)∑j−1
k=0 q(tk)

=
∑n

i=1 xi(tj−1)yi(tj−1) 1[yi(tj−1)>0]

y(tj−1)
; (39)

and let’s show this remains true at tj . We already know that

p̄(tj) =
∑j

k=0 p(tk)q(tk)∑j
k=0 q(tk)

=
∑j−1

k=0 p(tk)q(tk) + p(tj)q(tj)∑j−1
k=0 q(tk) + q(tj)

(40)

=
∑n

i=1 xi(tj−1)yi(tj−1) 1[yi(tj−1)>0] + p(tj)q(tj)
y(tj−1) + q(tj)

. (41)

We know that when passing from instant tj−1 to tj , the components of all
traders will remain the same, except the components of the buyer b and the
seller s need to be updated, that is xi(tj) = xi(tj−1) and yi(tj) = yi(tj−1) for
all i ∈ N \ {s, b}. This is true in case of a transactional time. In case of a
non-transactional time, components of all traders will remain the same. Now
resuming the apostrophe notation, we obtain

p̄ =

∑
i∈N\{b} xiyi 1[yi>0] + x′by

′
b + pq

y + q
. (42)

Note that the components of the seller s do not appear above because we are
in the case where y′s < 0, therefore 1[ys>0] = 0.

1) If tj is not a transactional time, i.e. q = 0, y = y′ , yb = y′b and xb = x′b,
then from (42) will result

p̄ =
∑

i∈N xiyi 1[yi>0]

y
(43)

which completes the proof.
2) If tj is a transactional time, and since y′b ≥ 0 then yb = y′b + q > 0 ⇒

1[yb>0] = 1 and

xb =
x′by

′
b + pq

yb
⇒ pq = xbyb − x′by

′
b. (44)

Substituting pq by xbyb − x′by
′
b in (42) will readily complete the proof.
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4 Conclusion and perspectives

Our study showed that a futures market platform has reach analytical prop-
erties. We derived the most basic of them, and we believe that many other
features remain to be explored and stated in a mathematical framework. A
more important issue is to bring practical interpretation of these properties as
it was done with property 3.8. In addition, some results need to be generalized,
this is the case of property 3.9 on the market average price that need to be
extended to the case where condition (37) is no more verified.

On the other hand, the mathematical model of the futures market platform
as stated herein has already a theoretical game format, though a discussion on
the game equilibrium is lacking. This could be achieved by introducing trading
strategies for traders as it was carried out by Arthur et al. (1997) for the stock
market. Furthermore, we may write the model in a matrix format in order to
simplify notations and present the model in a more compact form. Additionally,
the continuous-time version of the model can be considered as pointed out in
remark 3.2.
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Appendix: The condition function

The condition function is a new version of the boolean function (zero-one). It
allows to summarize, in a single analytical formula, the content and meaning of
many statements each of them related to a realization of a particular condition.
The condition function is particularly useful when demonstrating mathemat-
ical properties involving several cases, as it helps to aggregate all cases in a
single relation and performs the mathematical demonstration using only logic
arguments, consequently avoiding lengthy and discourse proofs.

Definition 4.1. The condition function 1[.] is defined by

1[R(a,b)] =

{
1, if relation R(a,b) is true,
0, if relation R(a,b) is false;

where R(a, b) is an algebraic relationship between the two mathematical entities
a and b. (For instance, R could be an equality (=), or inequality (≤, ≥), or
inclusion (∈), etc.)

Application: The general form of a step-wise function is

f(x) =


h(x), if x ≤ a,

g(x), if a < x < b,

0, if x > b.

Using the condition function, the step-wise function can presently be written
on a single line:

f(x) = h(x) 1[x≤a] + g(x) 1[a<x≤b]

Also, the condition function can replace the min and max functions as shown
below

min{x, y} = x 1[x≤y] + y 1[x>y], max{x, y} = x 1[x≥y] + y 1[x<y].

Some properties of the condition function: Consider a and b are two
real parameters with a < b, and x and y are real unknowns, then we have the
following

• 1[x<a] + 1[x≥a] = 1, 1[x≤a] = 1[x<a] + 1[x=a],

• 1[x>a] = 1[x>b] + 1[a<x≤b], 1[x>b] = 1 ⇒ 1[x>a] = 1,

• 1[a<x<b] = 1[x>a] 1[x<b], 1[x<a] 1[x<b] = 1[x<a],

• 1[x>a] 1[x>b] = 1[x>b], 1[ 1[x>0]>0] = 1[x>0],

• 1[y+b 1[x>0]>0] = 1[x>0] 1[y+b>0] + 1[x≤0] 1[y>0],

• min{0, x} = x 1[x≤0], max{0, x} = x 1[x≥0].
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