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Solving Daniel Bernoulli's St Petersburg
Paradox: The Paradox which Is Not and Never
Was l

Robert W Vivian

School o/Economic and Business Sciences, University a/the Witwatersrand

ABSTRACT

It has been accepted for over 270 years that the expected monetary value (EMV)
of the St Petersburg giune is infinite. Accepting this leads to a paradox; no
reasonable person is prepared to pay the predicted large sum to play the game
but will only pay, comparatively speaking, a very moderate amount. This
paradox was 'solved' using cardinal utility. This article demonstrates that the
EMV of the St Petersburg game is a function of the number of games played and
is infmite only when an infinite number of games is played. Generally, the
EMV is a very moderate amount, even when a large number of games is played.
It is of the same order as people are prepared to offer to play the game. There is
thus no paradox. Cardinal utility is not required to explain the behaviour of the
reasonable person offering to play the game.

JEL D81

Samuelson (1977: 24) pointed out that 'the veritable who's wh02 in probability
and the social sciences' have been connected with Bernoulli's (1954/1738) St
Petersburg Paradox3

• Indeed, few would dispute the correctness of Bernstein's
(1998,100) observation that Bernoulli's ' ...paper is one of the most profound
documents ever written'. Besides those who specifically considered the
paradox, the utility solution to the paradox is implicitly accepted by those who
apply cardinal utility notions to problems of decision making under conditions
of risk and uncertainty. This has produced a formidable body ofliterature4

•

The 8t Petersburg Paradox has thus been enormously influential. The purpose
of this article is to demonstrate that contrary to the accepted view, the St
Petersburg game does not lead to a paradox at all.

The St Petersburg Game

The background to the St Petersburg gameS is now6 well-known and it is not

I
¢

necessary to repeat it here in any detail. For ease of reference only a brief
overview is given.

Attempts have been made for a long time to develop decision criteria to assist in
the decision making process or to find theories7 explaining why people make the
decisions they do when facing conditions of risk and uncertainty. The earliest
and most well-known criterion is the expected monetary value (EMV) criterion8

,

the formulation of which is credited9 to Pierre de Fermat (1601-1665) and Blaise
Pascal (1623-1662). According to this criterion a person faced with this kind of
decision would or should choose the path involving uncertainty, if it has the
most advantageous EMV.

Daniel Bernoulli (1738) attempted to demonstrate that this criterion did not in
fact explain the behaviour of a reasonable personlO under these circumstances.
He used a number of problems including the poor fellow problem and the 8t
Petersburg gamell to support his hypothesis. He then went on to suggest an
alternative theory. His new theory was based on the notion of marginal
decreasing value of wealth12

• This today, in its developed form is the expected
utility value (EUY) criterion or expected utility value hypothesis.

The St Petersburg game goes like this. Peter offers Paul an opportunity to take
part in a game of chance where a coin is flipped and if a head appears (with an a
priori probability of 112), Paul receives $1 (ie $2l)13. If it does not appear, the
game continues. If the head appears after the second flip (with an a priori
probability of 112 2 ), Paul receives $2 (ie $z1) and if not, the game continues in
this fashion, until such time as a head appears (if ever) whereupon the game
terminates and Paul can take his winnings. It is conceptually possible for any
game to continue to infmity. The probability of the game.t~tingat the'iib
flip of the coin is lIi with a corresponding payout of$zi·l.

The simple question to be answered is how much should, a reasonable person,
the proverbial Paul be prepared to pay to play the game? As a rule-of-thumb,
the answer should be of the same order as the EMV of the gamel4

• From
Bernoulli (1738) to Aase (2001) it has been accepted that the EMV of the game
is infinite. In other words accepting the EMV as a rule-of-thumb guide, a
reasonable man should be prepared to pay an exceptionally large sum to play the
game.

The traditional derivation is as follows.

The game can have any payout from the following infmite range of payouts (C i

expressed in dollars);
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each with a corresponding a priori probability (Pi) associated with it, indicated
as follows:

2 0,21, 2 2, 2 3, •.. 2 i-I ...

2 -I 2 -2 2 -3 2 -4 2 -i, .' , ...

And since

i=«>

EMV=LPiCi
j;1

(1)

(2)

(3)

that no reasonable person in the position of Paul will risk a substantial amount
(let alone an infinite amount) to play the game. Numerous empiricall7 tests
indicate that in general people will not risk more than $12 - $13 to play the
game, and in the vast majority of cases a sum much less than this. Therein lies
the paradox. The EMV predicts that a reasonable person should be prepared to
risk a very large amount to play the game, and generally no fault can be found
with the EMV decision criterion which is still the most widely used decision
criterion and no-one can fault the reasonable person for not being prepared to
risk a large a~ount to Iplay the g~me. Both are seemingly correct and no
completely satisfactory explanatIOn has been found to reconcile these
contradictory conclusions - hence the apparent paradox.

it follows from series (1), (2) and equation (3) that, expressed in dollars, the
EMV is determined as shown in Table 1

2 DETERMINING THE EMV THE ST PETERSBURG GAME

or the EMV = Cf;J

Term T 1 T 2 T3 T4 ... T i ... Teo Totals

Payout (<;i) 2 0 2 1 2 2 2 3 ... 2 i-I
'"

00 Na

Probability (Pi) 2 -I 2 -2 2 -3 2-4 ... 2 -i
'" ° 1

Contribution
EMV =

to EMV (Pi XCi)
2 -I 2 -1 2 -I 2 -1 2 -I 2 -1 2 -1 ... P iXCi

=co

Table 1 Traditional solution of the St Petersburg game
It will now be shown that the traditional determination of the EMV is only
correct as a special case where the game is played an infmite number oftimes.

2.1 A single game

First, the position of a single gamel9 is considered.

It seems to me the source of the paradox stems from the irrational assumption
that the EMV can be applied equally when a large number of games are played
or when a single game is played. This irrational assumption ignores the Law of
Large Numbers. Since the EMV by defmition, is concerned with the average
payouts of a number of games, the EMV is of little assistance when a single
game is played20

•

A number of points about the traditional solution of the EMV should be noted.
The EMV is infmite because the series consists of an infmite number of terms
each of constant value, in this example $Y2. The sum of this infmite series of
fmite numbers is infinite

An infinite amount can be an issue for another reason. As the game continues,
the payouts become increasing large, tending to infinity. It is possible to
confuse the infinity which comes from the sum of the series and infmity of a
very large payout. These two infmities are more often than not confused. The
paradox concerns Paul's decision vis-a-vis the EMV =~ not Paul's decision
vis-a-vis fmal large payout. Even for very large payouts, according to the
traditional derivationlS, the contribution of each of payouts to the EMV is still
the same constantl6.

Concluding that the EMV of the game is infmite, empirical evidence indicates

If the game is played only once, there will be one outcome (l) taken from the
following series of possible outcomes, shown with their respective probabilities
of occurring:

A. = [(2 0
; 1/2 1 ) or (2 I; 1/2 2

) or (2 2
; 1/2 3) 'or ...or (2 i ; 1/2 i-I) ...~ 0)]

This is an infmite series of mutually exclusive outcomes 1, 2, 4, 8 ... with
corresponding probabilities of 0,5; 0,25; 0,125; 0,0625 ...). To accept the
traditional view that the EMV of a single game is infmite or a large number is to
ignore the possibility of any of the lower, high probability outcomes. This is a
very unrealistic assumption.

When a single game is played, the EMV is of little use and an alternative
approach is needed. It must be decided how much should Paul be prepared to
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pay to play this single game with this range of outcomes and probabilities?
Although the EMV may not, where a single game is played be of much
assistance to Paul, Arrow (1974,415) correctly points out that probabilities are
relevant, even when a single game is played. He wrote, '[w]hile it may seem
hard to give justification for using probability statements when the event occurs
only once ... the contrary position [that probability statements are irrelevant] also
seems difficult to defend.' It is not the EMV which is important when playing a
single game but the probability of the outcome. The choice facing Paul can be
likened to Paul placing his hand in a very large barrel filled with millions of
small, marked balls and he can select only one. Fifty percent of the balls are
marked T1 (paying $1) , twenty-five percent are marked Tz (paying $2), twelve
and a half per cent are marked T3 (paying $4), and so forth. Thus 93,75 per
cent of the balls will pay an amount of $8 or less. The question then becomes,
which single ball does he think he will draw and how much should he be
prepared to pay for the right to draw this single ball?

Paul as noted is the proverbial reasonable man. He is not the most pessimistic
nor most optimistic; not the wisest nor the most foolish. Based on probabilities it
is suggested that he will not wager much in excess of $8 to play this single
game. In general he does not expect to win more than this by playing a single
game. If this is so, he should not be prepared to loose more than this. At $8
there is a 93.75 percent possibility that he will win $8 or less and a 6.25 per cent
that he will win in excess of $8. He would be an optimist to pay an amount in
excess of $8. If a range indicating what people generally will wager to playa
single game, rather than a single figure of $8 is selected, the range is between $4
to $32. This range is in line with the collective wisdom ofhistorl

l
.

2.2 The EMV of M games

As indicated it is doubtful if the EMV is meaningful when only a single game is
played so, multiple games are now considered. Multiple games must be
considered for another reason. The issue is not only what is Paul prepared to
pay for his ticket, but also what should Peter be prepared to accept to allow Paul
to take part in the game. Logically if Paul is asked how much would he be
prepared to pay to f.lay the game, his answer will be, 'As little as possible 
preferably nothing.z , It is Peter after all who carries the risk. If Peter accepts
$8 for the ticket, then Paul knows the extent of his possible loss, $8. It is Peter
who does not know the extent of his liability until the game or all the games
have ended. Although Paul has only one ticket, seen from Peter's perspective, if
for example he is a casino owner, prepared to accept wagers on the 5t
Petersburg game there may, over a period of time be millions of other tickets
about which he must be concerned. So Peter needs to know what is likely to
happen ifhe accepts $8 per game and M games are played.

Assume then that M games are played. This assumption carries with it a number
of implications which may not be obvious. Firstly, if M games are played there
are only M outcomes, not an infinite number of outcomes. Each game can have
only one outcome. Conceptually one of these could continue to infmiry23.
Secondly the mere statement that M games will be played implies that all games
do in fact terminate, ie that one of the M games does not continue to infmity.
This accords with realityz4 and theoJiS. The fact that a game may go to infinity
does not mean that a game does go to infinity. What is not known is where each
or any of the M games end. Thirdly despite the fact that all the games end, no
limit is placed on any single game. Particularly no limit is placed on the length
of time that any game may lasf6 or on the magnitude of the payout. If a game
happens to go to infinity, Peter must live with that risk.

Once it is accepted that the games are played a multiple number of times, the
mathematical nature of the problem becomes clear. Peter must fmd a way of
determining the EMV of a series of terminating games, but the point of
tennination is not known beforehand. If Peter is prepared to accept $8 per
game, millions of Pauls may be prepared to play games for that amount. Will
Peter be able to pay the millions of Pauls out of the $8 per game he is prepared
to accept?

Once the problem is correctly stated, it is not difficult to solve. Assume the
game is played M = 2 k times. If this generalised approach is adopted then M (or
k) can be varied from I to infinity. In this manner all possible numbers of
games are catered for, including M = 00. The methodology for solving the
problem was suggested by Bernoulli (1954/1738, 32) himself. The solution set
out in this paper could have been arrived at in 1738. Bernoulli pointed out that
the number of games (nj) which terminate at the first flip of the coin (first term)
is Y2 of the total number of games piayed,Z7 and Y4 terminate at the second term
and so on. In general if M games are played then the number terminating at
term TI, Tz, T3, •••T j '" is nj = pj.M. This number is then multiplied by the
payout C j for that term and divided by the total number of games played, M. In
this way the contribution of each individual term to the EMV is established.
The various contributions are then summed to arrive at the EMV.

If the game is played 2 k times, the numbe~g of (n\) games which terminate after
the first flip of the coin is \1'2 x 2 k or 2k - I. The payout for the first term (Td is
$2 0. The number of (nz) games which terminates after the second flip, (T2) is
l/i x 2 k or 2 k-Z with a payout of $2 \ and so the pattern continues until 2 °is
reached. The results are shown in Table 2.
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Tz Tk
Sub

Tk+l Tk+z Tk+3
Totals

Term Tl ... Total
... (EMV)

Payout (C i) 2 0 2 1
'"

2 k.1 ... 2 k 2 k+1 Z k+2 ...

ni 2k•1 2k•2 ... Z'o Zk_ l oor 1 oor 1 oor 1 oor 1 Zk

Contribution
klZ+ (0 or I)

toEMV 2.1 2 ·1 2 -1 Z-I k.Z -1 oorZo Oor2 1 oorZ 2
+ (0 or Z)... + (0 or 4)

(n j.C ;12k) + ....
."

Probability
ofgames

0 0 0 0 Z-I 2 ·2 Z-3 1
terminating at

... ...

specific tenn

Table 2 The EMV of the St Petersburg game played 2
k

times 4,8 ... to the EMV arrived at by summing the contributions to the EMV up to
the Tk term. It is clear that the series beyond the Tk term is once again the same
series as for a single game. As indicated above a reasonable man would value
this at an amount of approximately $8. .

The EMV of the 8t Petersburg game, played 2 k times and which pays $1 if a
head appears on the first flip of the coin can now be stated.

EMV (2 k
) = k/2 + [(1;1/2) or (2;1/4) or (2 2;1/8) or (2 3;1/16) or ...410; 0]

and if A= [(1;1/2) or (2:1/4) or (2 2;1/8) or (2 3;1/16) ... ] then:

EMV(Zk)= ~+ A.
Z

with the lowest value of the EMV being k/2 + 1.

or for all practical purposes:

At the k th term (T0 the game has been played 2 k - 1 + 2 k - 2 + 2 k - 3 ••• 1 times.
This is a geometric progression the sum of which is 2 k • 1. In other words all
games have terminated by the kth term, except one29

, which had alreadro
terminated at some point beyond the Tk term by the time M games had been
played.

If this solitary game ended at T(k+l) the payout is $2k and the contribution to the
EMV is ($2 k . 2 . k)=$I. Since all the 2 k games have now terminated all other
terms in the series equals zero,. all the way to infmity. If the remaining game
terminated at T(k+2) then the payout for this game is $2 k + 1 and the contribution
to the EMV from this game is ($2 k + 1 • 2 -k) = $2. In this event the contribution
from T(k+1) term is 0 as are all the other terms to infmity. Thus although terms
beyond the kth term have both payouts31 and a priori probabilities pi, the
contribution from all of these except one, equals zero, since all games had
ended. The contribution of this final game, to the EMV depends on its position
after the kth term.

Thus using a priori32 probabilities when the St Petersburg game is played 2
k

times it produces, with certainty a series consisting of not more than k+1 terms,
with the series terminating beyond the kth term. If played a finite number of
times, a fmite, not infinite series is produced. The probability of there being less
than k terms is thus zero. After the Tk term the series can terminate at any term
to infmity. However each term beyond Tk requires an additional flip of the coin,
with a probability of Y2. The probability thus of the term ending after the Tk

term, decreases at the rate Y2. . In other words the probability of terminating at
Tk+l is 1/2 at T k+2 is 114, at Tk+3 is 1/8, at or beyond the k+4 is 1/16, adding 1,2,

EMV(Zk)", ~+8 at a 93.7 per cent confidence level.
2

The St Petersburg game thus does not have a single a priori value for the EMV.
It has a series of possible EMVs starting at k/2 + 1 and continuing to infmity
with decreasing probabilities. Of course for any specified number of games, the
empirical EMV will have only one value determined by the above equation.

The traditional solution EMV = 00 is correct but only where the 8t Petersburg
game is played an infinite number of times.

Many people may, subconsciously if nothing else, hold the view that the EMV,
is the aggregate of the payouts divided by the number of games played (M), in
the limit, when M approaches infinity. In terms of this view there is only one
EMV and that is the value derived when the numbers of games tend to infinity.
Those who hold this view will then hold that the traditional solution to the St
Petersburg game that the EMV is infmity is correct by definition. There is no
problem with this view but it still does not produce a paradox. One must
compare apples with apples. If the assumption is that the game is played an
infinite number of times, then it must be accepted that Paul can play the game an
infinite number of times. In other words the question is 'Paul plays the 8t
Petersburg game an infinite number of times, how much should he be prepared
to wager per game to do so?' The answer to this question is quite correctly an
infinite amount.
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ENDNOTES

Tra?itio~ally the i~correct value of the EMV was used. Utility (cardinal or
ordma~) IS not re~Ulred to explain the behaviour of Paul- he has during all these
centunes been qUIte rational after all.

One cannot compare apples with pears. It clear that the traditional question is
irrational if stated as, 'Paul plays the game a finite number of times (M), why
does he not wager a substantial amount to play the game?' The answer is of
course because he is only playing the game a finite number of times. In the
traditional formulation of the paradox, the assumption is that Paul plays the
game only once but then uses the EMV of an infinite number of games. It is not
comparing apples with apples.

Returning to the above example. Assume Paul decides he will play one game
for $8. Should Peter accept the wa§er? Peter needs to know how many other
games will be played at his casin03

• Assume he accepts the $8 from all the
Pauls and estimates that during the next fmancial year his casino will play 2

20
(ie

1 048576) games. The question now is, will he face a loss at the end of the year
from all of these games? The EMV of these games34 is $10+($1 or $2 or $4 or
$8) ie within realistic confidence limits from $11 to $18. The first point to note
is that whatever figure is chosen it is a modest amount, nowhere near the say
$IOm or more required by the traditional solution to the St Petersburg game.
The second point is using a priori probabilities Peter faces certainty that the
EMV will not be less than $11. In other words if he accepted $8 from all the
Pauls he would have lost not less than $3 per game or a total certain loss of not
less than $3 146328 pa. What Peter should have charged was not less than k/2
+ A. or $18 to be 93.75 per cent confident that he would not suffer a loss.

3 CONCLUSION

So it is easy to answer the question, 'How much should the reasonable man,
Paul, be prepared to pay to play the St Petersburg game?' Paul would simply
respond, 'How many times am I allowed to play the game?' If the answer is
twice he would answer, 'An amount in the order of $1/1 + $8 = $9.' If the
answer is that he can play the game 2 18 times he would answer, 'An amount in
the order of $9 + $8 =$17.' It will be noted that although the number of games
increase substantially, the size of Paul's wager does not. In all cases the amount
the EMV, once correctly determined, predicts that his wager is moderate and
this is in accordance with common experience. If the answer is that he can play
an infmite number of games, his answer would be that he would wager an
infinite amount.

The correct determination of the EMV does not thus expect Paul to wager an
infmite amount to playa fmite number of games, nor would a reasonable person
do so. The EMV once correctly derived for the St Petersburg game does not
lead to a paradox at all - it never did. The application of the EMV criterion
gives an answer that is consistent with the behaviour of the reasonable man.

2

3

4

5

6

Earlier drafts of this paper were presented at a Business Economics
Research Group of the University of the Witwatersrand and at the 12th
Annual Conference of the South African Institute for Management
Scientists 31st October-2nd November 2000. The paper has benefited
from comments and advice from a number of academics from various
parts of the world. The usual disclaimers apply.
For a history, including the treatment of the paradox by mathematicians of
the. previous centuries see Samuelson (1977). Some of the more recent
wnte~ .who acc~pt that the EMV of the St Petersburg game is infinite or
the utilIty solutIOn to the paradox include Todhunter (1949/1865: 220);
Marshall (1920: 134); Keynes (1973/1921: 350); Von Neumann and
Morgenstern (1953); Friedman and Savage (1948: 281 and note 5); Stigler
(1950: 374); Arrow (1951: 407); Menger (1954 note 9) published in
Bernoulli (1954/1738); Samuelson (1960); Bo;ch (1968,15); Savage
(1972: 93); Arrow (1974: 63); Brito (1975: 123); Sennetti (1976); Shapley
(1977: 439!; Epps (1978); Hagen published in Allais and Hagen (1979:
14); Gorovltz (1979: 259); Allias (1979: 498); Szekely (1987: 28); Bassett
(1987: 517); Cowen and High (1988: 199); Machina (1987: 50); Russon
and Chang (1992: 8); Schmeidler and Wakker (1996); Starmer (2000);
Aase (2001).
Bernoulli's paper was presented in 1731 but only published in i738
however the St Petersburg game was formulated in 1728.
yon Neumann and Morgenstern's (1953) book sparked off the renaissance
m cardinal utility theory. The literature on cardinal utility is immense but
fo~at.ely f?r.purposes of this paper it is not necessary to discuss cardinal
utIlIty sIDce It .IS the thesis of this paper that the St Petersburg paradox can
be resolved Without resorting to utility theory. For a review of the current
position see Schoernaker (1982), Machina (1987) and Starmer (2000).
A number of explanations have been given as to why the game is called
the St Petersburg game. Samuelson (1977: 36 note 1) suggests it is
bec~use Bernoulli's article appeared in St Petersburg. Savage (1972: 93)
ascn?es the ~ame to the journal in which Bernoulli's paper was first
publIshed. Shght variations in the name are encountered. Some writers
such as Keynes (1973/1921: 349) refer to the paradox as the Petersburg
paradox.
I say now because until Samuelson (1977) set-out its history this had not
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really been done or as Samuelson put it '... I found to my surprise that no
one seems to have provided anything like a complete survey of the
subject.' Earlier writers in particular Todhunter (1865) provided at least an
outline of the subject.

7 The theory could have more than one emphasis. It can for example
attempt to explain the behaviour of people when faced with decisions
involving uncertainty or be a management tool to assist in making an
appropriate decision.

8 The EMV is derived as follows. If a game of chance is played M times
and has a range of possible outcomes Cb C2, C3 ... CM then the

EMV" =~~C, • Where the outcomes fall into categories and the number
!':f,., ,

of times that an outcome appears in each category is nb n2 , n3, ...nl. then
;a/

the EMV" =L!!.L.C,. Where M is large, the corresponding probabilities
'.1 M

;~J

become Ph P2, P3, ... PI then the EMVoo =~>Pj' Implicit in the idea of the
i-I

EMV is that M is large, indeed the EMV is often defmed as the value

when M tends to infinity ie EMV., =jP(x).C(x),dx for continuous

distribution.
9 Samuelson (1977: 37 n4) points out that crediting Pascal and de Fermat

underplays the role ofearlier contributors.
10 I have used the term reasonable person, the same term used by Daniel

Bernoulli, to avoid a debate if this reasonable person is rational or risk .
averse or risk neutral or risk seeking. It can of course be argued, as
Bernoulli did, that no gambler is rational.

11 Bernoulli did not claim to be the originator of the game. Nicolas Bernoulli
appears to have first suggested the game.

12 Marshall (1920: 134 et seq) preferred using income rather than wealth as a
measure of utility. Income is not however in issue when it comes to
investment decisions where "something" is risked. It is capital (what
Marshall referred to as stock of wealth) not income, which is risked when
undertaking risky projects. See also Friedman and Savage (1948) for the
use of income instead of wealth.

13 The original currency was the ducat, which Bernstein (1998: 106) equates
to about $40 today. In principle the type of currency is irrelevant. This
paper uses dollars.

14 It is accepted that the typical gambler would be prepared to pay an amount
in excess of the mathematical expectation ofa game ofchance.

15 There is a further problem with the traditional solution. In the limit as the
payouts tend to infinity and the probability of these large payout tends to

zero and the contributions from this point onwards, strictly speaking
become which is 1/2 n-l . 2 n or 0.4 which is indeterminate and not a
constant.

16 Assume for example the game continues to a payout of i oo an enormous
amount. The probability of this happening is 2-101 and hence, according to
the traditional view the contribution of this term is still only Y2. The size
of the fmal payout is irrelevant in the determination of the EMV.

17 I have often explained the game to students and asked them to indicate the
amount they would be prepared to risk to play the game. No student is
ever prepared to risk more than a few dollars to play the game. Despite
going to great lengths to explain the game I doubt if every student
understood the explanation since some students indicate that zero is a
reasonable amount to play the game. Since the lowest amount to be won
is $1, it is clear that those students did not comprehend the game.

18 Utility solutions do not, of course, try to reconcile the EMV criterion and
the paradox. They do the very opposite and look for an alternative
solution to the paradox, accepting that the EMV cannot explain the
paradox. Cardinal utility solutions to decisions under uncertainty are
increasingly coming under attack, see Starmer (2000); Rabin and Thaler
(2001).

19 For a discussion of a single game of the St Petersburg game consult Allais
(1979: 501 et seq).

20 Allais (1979: 502) concludes that 'the rule of mathematical expectation
cannot be a rational principle for decision taking in the case of a single
game.' He concludes that $33 dollars would be the amount a syndicate
would offer to playa single came if the banker's (casino owner) wealth is
$lObn.

21 The various writers arrived at their conclusion for different reasons.
Daniel Bernoulli (1954/1738: 32) accepted an amount of 2 ducats if Paul
had no initial wealth, Nicolas Bernoulli, his cousin (or uncle) accepted an
amount of less than 20 ducats. Gabriel Cramer, in 1728 accepted an
amount of less than 20 ducats. Arrow (1974, 407) accepts that Paul will
not pay the predicted large amount. Sennetti (1976: 960) accepts an
amount of less than $10. Allais (1979: 502) postulates an amount less
than $33 where a single game is played.

22 This is almost invariably the answer I get from at least one student when I
ask a class of students the question, 'How much would you be prepared to
pay to play one round of the St Petersburg game?'

23 I say only one because if it goes to infmity it never ends and thus the next
game in the series will never be played.

24 I simulated St Petersburg games millions upon millions of times; all
ended. An academic commenting on an earlier draft of this paper
simulated the game a billion times; all ended. In practice the games end.
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