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Jean-Pierre Benoît

London Business School

Juan Dubra�

Carnegie Mellon University

and Universidad de Montevideo

Abstract

Many studies have shown that people display an apparent overcon�dence. In par-

ticular, it is common for a majority of people to describe themselves as better than

average. The literature takes for granted that this better-than-average e¤ect is prob-

lematic. We argue, however, that, even accepting these studies completely on their own

terms, there is nothing at all wrong with a strict majority of people rating themselves

above the median.

When it comes to overcon�dence, there is a consensus on a consensus: writers agree that

researchers have found overcon�dence to be common. Typical comments include �Dozens of

studies show that people...are generally overcon�dent about their relative skills�(Camerer,

1997), �Perhaps the most robust �nding in the psychology of judgment is that people are

overcon�dent� (DeBondt and Thaler, 1995), and �The tendency to evaluate oneself more

favorably than others is a staple �nding in social psychology�(Alicke et al. 1995). While

the study of overcon�dence originated in the psychology literature, the phenomenon has

migrated into the economics and �nance literature, taking its place in the growing list of

�irrational�aspects of human attitudes and behaviour that were once on the fringes but are

now on the forefront of mainstream thinking.1

�We thank Stefano Sacchetto for his research assistance. We also thank Ariel Rubinstein, Rafael Di Tella,

Federico Echenique, Emilio Espino, PJ Healy, Richard Lowery, Henry Moon, Don Moore, Nigel Nicholson,

Luís Santos-Pinto, and Madan Pilutlla for their comments.
1Papers on overcon�dence in economics include Camerer and Lovallo (1999), Garcia, Sangiorgi and Uro-

sevic (2007), Hoelzl and Rustichini (2005), Koszegi (2006), Menkho¤ et al. (2006), Noth and Weber (2003),

Van den Steen (2004), Zabojnik (2004). In �nance, recent (published) papers include Barber and Odean

(2001), Biais et al. (2005), Bernardo and Welch (2001), Chuang and Lee (2006), Daniel, Hirshleifer and

Subrahmanyam (2001), Kyle and Wang (1997), Malmendier and Tate (2005), Peng and Xiong (2006), Wang

(2001).
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If people are indeed overcon�dent there are important implications for our understanding

of the economy and for public policy. For instance, a basic principle of competition is that

�rms will enter an industry only up to the point that they earn zero expected pro�ts. But

if, to take one industry, restaurateurs overestimate their abilities, we can expect too many

restaurants to open only to close shortly thereafter, and the restaurant business to lose

money on average. At the same time, if people overestimate their driving ability, then

merely informing them of general risks will not induce them to take su¢ cient care.

Overcon�dence has been reported in peoples�beliefs in the precision of their estimates,

in their beliefs about the likelihood their answers to questions are correct, and in their

appraisal of their relative skills and virtues. In this paper, we are concerned with the last

form of overcon�dence.2 As Myers (1999; p:57) writes, �on nearly any dimension that is

both subjective and socially desirable, most will see themselves as better than average.�As

evidence, he cites research showing that most people perceive themselves as more intelligent

than their average peer, most business managers rate their performance as better than their

average fellow manager, and most high school students rate themselves as more original

than the average high-schooler. In an oft-quoted study, Svenson found that 77% of Swedish

subjects felt they were safer drivers than the median, and 69% felt they were more skillful.

These �ndings, and others like them, are typically cited as evidence of overcon�dence, at

least in peoples�estimation of their relative skills, without any explanation as to why such

data is indicative of mistaken self-appraisals. For instance, Alicke et al. (1995) simply

assert that �the better-than-average e¤ect provides compelling evidence that people maintain

unrealistically positive images of themselves relative to others�[italics added]. Presumably,

the reason for the lack of explanation is that, since �it is logically impossible for most people

to be better than average�(Taylor and Brown (1988)), it seems obvious that some people

must be making errors in their self-evaluations. But the simple truism that most people

cannot be better than average �more precisely, the median �does not imply that most

people cannot rationally rate themselves above average. Indeed, we will show that none of

the evidence cited above is evidence of unrealistically positive images at all. This is true

even if we accept the evidence described on its own terms (and do not, for example, argue

that subjects misunderstood the questions or disagreed in their interpretations). Failure to

recognize this fact comes from a failure to frame the issue of overcon�dence precisely.

To illustrate the main point of this paper, consider a large population with three types

of drivers, low skilled, medium skilled, and high skilled, and suppose that the probabilities

of any one of them causing an accident in any single period are pL = 4
5
; pM = 2

5
; and pH = 0,

2Some authors, such as Burson et al. (2005) reserve the term �overcon�dence�for people who overestimate

their absolute abilities, but we see no reason for this restriction. In any case, the literarture uses the term

in all the ways we have listed, and more.
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respectively. In period 0, nature chooses a skill level for each person with equal probability.

Initially no driver knows his or her own skill level, and so each person (rationally) evaluates

himself as no better or worse than average. In period 1, everyone drives and learns something

about his skill, based upon whether or not he has caused an accident. Each person is then

asked how his driving skill compares to the rest of the population. How does a driver who

has not caused an accident reply?

Using Bayes�rule, he evaluates his own skill level as follows:

p (High skill j No accident) =
1
3

1
3
+ 1

3
3
5
+ 1

3
1
5

=
5

9

p (Medium skill j No accident) =
1
3
3
5

1
3
+ 1

3
3
5
+ 1

3
1
5

=
1

3

p (Low skill j No accident) =
1
3
1
5

1
3
+ 1

3
3
5
+ 1

3
1
5

=
1

9

Such a driver thinks there is over a 1
2
chance (in fact, 5

9
) that his skill level is in the top third

of all drivers. His mean probability of an accident is 5
9
0 + 1

3
2
5
+ 1

9
4
5
= 2

9
, which is better than

for 2
3
of the drivers, and better than the population mean. Furthermore, his beliefs about

himself strictly �rst order stochastically dominate the population distribution. Any way he

looks at it, a driver who has not had an accident should evaluate himself as better than

average. Since 3
5
of drivers have not had an accident, 3

5
rank themselves better than average.

Thus, the population of drivers seems overcon�dent on the whole. However, rather than

being overcon�dent, which implies some error in their judgements, they are simply using all

the information available to them in the best possible manner.

We emphasize that in this paper, we do not provide an explanation for overcon�dence.

Quite the contrary, we show that, as in the above driving example, much of the supposed

evidence for overcon�dence does not indicate overcon�dence at all; the apparent overcon�-

dence may be an illusion. At the same time, we do not argue that people are, in fact, not

overcon�dent. Rather, we argue that better-than-average data does not provide evidence

one way or the other. Thus, for example, a �nding that 80% of the people in a population

rate themselves as above median intelligence does not work against the null hypothesis that

no one su¤ers from overcon�dence.

Missing from the discussion in the literature has been the recognition that when people

rank themselves, their rankings are just summary statistics which provide only limited infor-

mation about the entire distributions of their beliefs. In the above driving example, although

the statement �3
5
of the people rank themselves above average�appears to be problematic,

an examination of the complete beliefs of the population shows that there is no anomaly.

Indeed, since the 2
5
of the population that do cause an accident have beliefs �I am low skill

with probability 2
3
, medium with probability 1

3
, and high with probability 0,�the beliefs of
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the population average out to the actual population distribution, as they should.

We will also show that not only can a majority of people rationally rank themselves above

the median, but, depending upon the de�nitions one adopts, even 99% of the population can

rank itself in the top 1% without any cognitive error being implied. Moreover, the failure

to properly frame the issue has led authors to make plausible sounding statements that are

simply wrong, such as Camerer�s (1997, p. 173) claim that two �rms cannot both think they

are each more likely to have the most skill (assuming a common prior). We will return to

Camerer�s claim in Section 1.3.

In some experiments, subjects are asked to take actions, rather than answer questions.

Overcon�dence is then inferred from their actions. But actions, too, provide only a summary

statistic of beliefs, and the same errors that have been made in interpreting answers to

questionnaires have been made in interpreting the actions that subjects take.

The remainder of this paper is organized as follows. In Section 1 we provide a careful

framework for analyzing overcon�dence. We distinguish between apparent overcon�dence,

which gives a possibly misleading impression of overcon�dence (as in the above driving

example), and (true) overcon�dence. We show that much of the evidence in the literature

purporting to show overcon�dence does nothing of the sort. At the same time, we identify

two types of evidence that can show overcon�dence (Theorems 3 and 6). In this section,

we analyze experiments in which subjects are asked to evaluate themselves. In Section 2 we

look at two papers in which subjects are asked to take actions, rather than make statements.

Using the framework developed in Section 1, we show that the experiments in these papers

do not provide proper tests of overcon�dence. In Section 3 we suggest two experiments that

do provide a proper test of overcon�dence.

Recent work has challenged the universality of the �nding that most people rate them-

selves as above average. In particular, there is evidence that this e¤ect is attenuated when

the attribute under consideration is objectively measurable, and even reversed when the skill

under consideration is a di¢ cult one to master. In Section 4 we provide an explanation for

these �ndings. In Section 5 we discuss why it is important to distinguish between apparent

overcon�dence and overcon�dence. In Section 6 we present some evindence on our approach.

In Section 7 we review some of the literature. Section 8 is the conclusion.

1 Questionnaires

Consider a person who asserts �I am very intelligent.�How are we to tell whether or not this

con�dence is merited? It may well be impossible, given the vagueness of the term �very�.

Suppose that instead the person asserts �I am more intelligent than most people.� The

concept �more than most� is clearer than �very,� but the statement remains di¢ cult to
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assess, since it is unclear how to measure intelligence, IQ tests notwithstanding.

Researchers have attempted to surmount these di¢ culties by considering entire popula-

tions at once. The idea is that, while it may be di¢ cult to judge whether or not a speci�c

individual is overcon�dent, it may be possible to determine that a population is overcon�dent

on the whole. For instance, if everyone in a room asserts �I am de�nitely the most intelligent

person in this room�, it could be concluded that all but one of them is overcon�dent, at least

in their evaluations of their relative abilities3 (and assuming that they agree on what consti-

tutes intelligence). Note that for many economic problems, these types of relative rankings

are the relevant ones. For instance, the wisdom of attempting a career as a professional

football player depends on a person�s ability relative to other would-be footballers.

This research can be divided into two types: work that proceeds by means of question-

naires and work that asks subjects to take actions. We consider the questionnaire work �rst,

and subdivide this work into two categories, one ordinal and one cardinal:

1. Ranking questionnaires: People are asked to rank themselves relative to others on some

attribute (�I am more intelligent than 80% of the people in this room�).

2. Scale questionnaires: People are asked to compare themselves to the population on a

scale (�On a scale of �5 (much less intelligent than average) to 5 (much more intelligent
than average), I am a 3.�

We consider the ranking literature �rst.

1.1 Ranking Questions

Svenson�s (1981) work is a prototypical example of a ranking questionnaire. Svenson gathered

subjects into a room and presented them with the following instructions (among others):

We would like to know about what you think about how safely you drive an

automobile. All drivers are not equally safe drivers. We want you to compare

your own skill to the skills of the other people in this experiment. By de�nition,

there is a least safe and a most safe driver in this room. We want you to indicate

your own estimated position in this experimental group. Of course, this is a

di¢ cult question because you do not know all the people gathered here today,

much less how safely they drive. But please make the most accurate estimate

you can.

3Each individual may or may not also have an over�ated opinion of his absolute level of intelligence. In

fact, individuals may not even have a clear notion of what this absolute level is.
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Each subject was then asked to place himself or herself into a safety decile. In one respect,

Svenson was very careful. Realizing that the subjects had little information about the other

drivers in the room, he explicitly stated: Of course, this is a di¢ cult question because you

do not know all the people gathered here today, much less how safely they drive. But there

is another aspect he left unaddressed: Does a driver know how safely he himself drives? Of

course, a driver has more information about himself than about a stranger (for instance, he

knows the number of accidents he has had), but there is no reason to presume that he knows

precisely how safe his driving is4 (even assuming that he knows exactly what it means to

drive �safely�5). This raises the question of what exactly a respondent means when he ranks

himself as being, say, in the 7th decile of drivers when it comes to safety.

To isolate the nature of the problem, let us consider a more carefully delineated problem.

Suppose a subject is asked to rank her �reaction time�. She is told that reaction time is

measured to the nearest tenth of a second, and that it varies in the general population

uniformly from 1 second to 0:1 seconds, so that, for instance, a time of :3 seconds places

a person in the 8th decile (smaller reaction times are better). She is asked to estimate her

position in the population. Suppose that her beliefs about her own reaction time are given

by Chart I below (she estimates that with probability 0:16 her reaction time is :5 seconds,

with probability 0:2 her reaction time is :4 seconds, etc...). The chart also lists population

deciles.

Reaction Time 1 :9 :8 :7 :6 :5 :4 :3 :2 :1

Prob. own time 0 0 0 0:16 0:16 0:16 0:20 0:30 0:02 0

Decile 1 2 3 4 5 6 7 8 9 10
Chart I

In what decile will she place herself? Three reasonable answers immediately come to

mind, corresponding to three common notions of �average�.

(�) She can reasonably place herself in the 7th decile. After all, there is over a 50% chance

that her reaction time will be :4 or better, and this is the fastest time for which she

can make such a claim. Another way of saying this is that :4 is the median of her

distribution, and this places her in the 7th decile .

(�) She can reasonably place herself in the 6th decile. After, all :462 is her mean reaction

time, which rounds up to :5 which is in the 6th decile.
4Many authors explicitly acknowledge that people are not likely to be certain of their skill levels. Thus,

Alicke et al. (1995) ask subjects to make �point estimates�of their skill, while Hoelzl and Rustichini (2005)

note that a subject in their experiment has only �some idea of his skills in it�. However, these and other

authors do not fully explore the implications of this uncertainty.
5Dunning et. al (1989) argue that people may have di¤erent notions of what it means to drive safely, so

that the data is not what it appears to be. Here, we give the best case for the data and assume that all

subjects agree on the meaning of a safe driver.
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(�) She can reasonably place herself in the 8th decile. After all, her modal time :3 places

her in the 8th decile.

Certainly, this list is not exhaustive. Thus, when a person places herself in a certain

decile, we, as researchers, have no real way of knowing the signi�cance of her answer. Is

there a �correct�or �rational�answer? No; she is being asked to summarize her beliefs with

a single parameter, but no single reply supplies the best information for all circumstances.

For instance, if she is risk-neutral, and we are interested in knowing whether she would place

an even money bet that her reaction time is better than that of x% of the population, then

her median belief provides the requisite information. On the other hand, if we would like

to know whether she would place a bet where she receives a payment based on how much

faster or slower she is than other people, her mean answer may be more informative. If she

is not risk-neutral, then no single parameter may be of much use.

Returning to Svenson�s driving question, a person may consider herself to be quite a

safe and skillful driver since she has never had an accident and always manoeuvres well in

tra¢ c, but at the same time realize that her limited experience restricts her ability to make

a precise self-appraisal. In ranking herself, she must estimate her own ability as well as that

of the others in the room. As a result, it is unclear what to make of her answer to Svenson�s

question and, hence, of Svenson�s data. Rather than ascribe a particular meaning, we will

consider several possibilities.

1.1.1 Population Median Data

Consider a population where each person is asked to rank his or her skill level relative to the

other people in the population. (We use the word �skill�loosely here to denote the attribute

under consideration.) The literature is not always very careful in de�ning when this popu-

lation displays overcon�dence (or, equivalently for this paper, when the population displays

the so-called better-than-average e¤ect), but the general idea is that there is overcon�dence

if, as Myers (1999; p:57) writes, most people �see themselves as better than average.�

An immediate di¢ culty with this formulation is the ambiguity in the notion of �average�

�does this refer to the mean or the median? It is easy to see that the mean cannot possibly

provide the right de�nition, at least when the underlying trait distribution may be skewed.

For example, in a population of ten people, one who has scored 0 on a test and nine who

have scored 50, the nine have, in fact, performed better than the mean, so there is certainly

nothing wrong in them believing that they have. Thus, De�nition 1 below, which uses the

median, is what the literature has in mind, whether explicitly or implicitly.6

6For instance, Hoelzl and Rustichini say that a population exhibits overcon�dence if �a majority of people

estimates their skills or abilities to be better than the median�.
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Given a set of individuals who are asked to rank themselves, let population median data

x be the fraction of people who rank themselves strictly above the median.

De�nition 1 Population median data x is apparently overcon�dent if x > 1
2
.

The reader will have noticed that we have used the word �apparently� in the above

de�nition. To understand the reason, we must ask why a population that ranks itself highly

on average should be called overcon�dent, rather than simply con�dent. Clearly, the idea

is that in an overcon�dent population there is something incorrect, or at the very least

inconsistent, in people�s self-evaluations. To determine if a population that is apparently

overcon�dent is truly overcon�dent, we need a notion of what it means for peoples� self-

evaluations to be correct and consistent. Fortunately, we have such a notion readily available,

given by the Harsanyi common prior approach in which nature picks a skill level, or type,

for each person, and over time each person receives information about her type and updates

her beliefs about herself using Bayes�rule. We formalize this below.

De�nition 2 A signalling structure is a triplet � = (S;�; f), where S is a set of signals,
� � R is a type space, and f = ff�g�2� is a collection of probability distributions over S:

If, for example, S is �nite, f� (s) is the probability that a person of type � receives the

signal s.

� Throughout this paper we interpret higher types as more skillful.

De�nition 3 A signalling model consists of a population of individuals and a signalling
structure � = (S;�; f) such that:

i) In period 0, nature picks a type � 2 � for each individual, resulting in some distribution

p; initially, each person�s belief about her own type is given by this distribution.

ii) In period 1, an individual of type � receives a signal s 2 S according to the probability
distribution f�; each person updates her initial belief using Bayes�rule.

This de�nition of a signalling model re�ects a standard approach to a situation of incom-

plete information.7 Although it is not necessary for us, we posit that each individual knows

the distribution of types in the population. On the one hand, this is certainly a plausible

condition. For instance, an individual might know the distribution of the number of acci-

dents a person can expect to have in a lifetime, or the distribution of IQs in the population,

7In the literature, it is often assumed that nature chooses a type for each person independently. Imposing

this restriction would not modify our results.
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without knowing either �gure for herself.8 More importantly, this condition makes our task

more di¢ cult: we will show that apparently overcon�dent data can rationally arise, even

if everyone has a perfect understanding of the level of skills in the population. Note that,

although it is not explicit in the de�nition of a signalling model, a dynamic time structure

is allowed. In particular, the signal that an individual receives in �period 1�may consist of

various pieces of information obtained over time (for instance, from her driving experience).

This is quite a rational model; indeed for many it is the de�nition of full rationality. As

such, it provides a proper foundation for judging the rationality of a population. Note that

since agents in a signalling model use Bayes�rule, for a large population their beliefs average

out to the (true) population distribution.

The following proposition indicates that apparent overcon�dence is incompatible with

rationality when people know their skill levels exactly.

Proposition 1 Consider a signaling model. If everybody�s updated beliefs after receiving
their signals are degenerate, the population median data cannot be apparently overcon�dent.

Proof. All proofs not in the text are in the appendix
If people are certain of their types, then a strict majority of them cannot rationally believe

they are strictly better than the median.9 However, this certainty is a rather implausible

condition �in most, if not all, situations each person will have only an imperfect indication

of his own skill.10 How imperfect can a rational persons�self-knowledge be? A priori, it

seems di¢ cult to require more of a rational population than that its members derive their

beliefs in a rational and consistent manner; that is, that they derive them from a signalling

model.11

In ranking questionnaires, people do not report their full beliefs, but only a ranking.

Rational and consistent individuals report rankings that come from beliefs that are derived

from a signalling model; however, as discussed in the previous section, there are many

legitimate ways to report a ranking derived from a particular belief. Therefore, in interpreting

ranking data we need to consider several possibilities.

8In experiments, the comparison population is sometimes the group of subjects in the room. Even if

a subject knows the skill distribution in the general population (or relevant subpopulation, for instance,

students), he may not know the distribution of skills in the room. However, the best case for the validity of

an experiment is when the subject group is large enough to be representative of the larger population.
9Propostion 1 remains true if we modify the de�nition of a signalling model to allow people to be uncertain

of the population distribution. For instance, nature could pick one of several population distributions with

probabilities that are common knowledge.
10As Benabou and Tirole (2002) write, �The psychology literature generally views introspection as quite

inaccurate (Nisbett and Wilson (1977)), and stresses that learning about oneself is an ongoing process.�
11We might further ask that this signalling model be, in some sense, reasonable. We explore this issue in

Section 1.1.3.
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Suppose that people use their median beliefs about themselves in their self-evaluations (as

in � of Section 1.1). The next de�nition says that a fraction x can rationally and consistently

report themselves as being better than the population median, if, starting from a common

prior, and using Bayes�rule, a fraction x can come to believe their median type is better

than the population median. To avoid ambiguities, we require that the distribution of types

has a unique median.

De�nition 4 Population median data x can be �-rationalized if there exists a signalling
model in which the distribution of types has a unique median and x is the expected fraction of

people who will believe that their median type is strictly greater than the population median,

after receiving their signals and updating.

More formally, x can be �-rationalized if there exists a signalling model as follows: Let

m be the median of the prior p. Let Smed � S be the set of signals such that an individual
who receives a signal s 2 Smed has a median belief about himself that is strictly greater than
the (unique) population median. Thus, s 2 Smed if and only if P (� � m j s) < 1

2
: Let F

denote the probability distribution of the signals in S, often called the �marginal�. That is,

for each (measurable) T � S let

F (T ) =

Z
�

Z
T

df� (s) dp (�)

Then, x can be �-rationalized if x = F (Smed).
In a stochastic environment it is possible to �explain�a wide range of experimental data

as the outcome of a random, although possibly unlikely, process. De�nition 4 avoids this

�cheat�by insisting that the data x be the expected fraction of people who believe themselves

to be above average. This can also be interpreted as restricting ourselves to data that comes

from large populations.12 Thus, De�nition 4 is a demanding notion of rationalizing. When

people self-evaluate using their median types and the data can be �-rationalized, there is no

prima facie case for calling it �overcon�dent�.

The following de�nition is for a population in which people use their mean beliefs about

themselves (as in � of Section 1.1) for their self-evaluations.

De�nition 5 Population median data x can be �-rationalized if there exists a signalling
model in which the distribution of types has a unique median and x is the expected fraction

of people who will believe that their mean type is strictly greater than the population median,

after receiving their signals and updating.

12In Section 1.3 we brie�y discuss small populations, where more extreme data can be rationalized.
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Although reporting a modal belief strikes us as a plausible way to answer a questionnaire,

it also strikes us as less compelling than reporting either a median or a mean belief. Therefore,

in the interest of space, from now on we no longer consider mode reports. (Considering mode

reports would not modify our results in any essential way.) Instead, we turn to a slightly

di¤erent approach than the one we have adopted so far.

It is reasonable for a person with no information about herself, other than that she is

a random member of the population, to rate herself as average.13 Suppose the person now

receives a signal that causes her beliefs about her own type to strictly �rst order stochastically

dominate the population distribution. It is natural for this person to now rank herself above

the median person.14 This leads to the following de�nition.

De�nition 6 Population median data x can be -rationalized if there exists a signalling
model in which the distribution of types has a unique median and x is the expected fraction

of people who, after receiving their signals and updating, will have beliefs about their own

type that strictly �rst order stochastically dominate the population distribution.

The existing literature assumes that apparent overcon�dence implies cognitive errors,

or inconsistencies, on the part of (some) respondents without considering the meaning of

their replies. In our terms, the literature assumes that apparent overcon�dence implies that

the data cannot be rationalized without specifying which sense of rationalizing. In some

cases, there may be a reason to focus on a particular sense (as in Section 2.2). Absent such

a reason, a stringent de�nition of overcon�dence requires that population median data be

called overcon�dent only when it cannot be rationalized using any of the above concepts, for

only then can we be sure that there is a �problem�with the data15; a lax de�nition requires

only that data be called overcon�dent when it cannot be rationalized using at least one of

the concepts.16

13A person who has no private information about herself and who self-evaluates using the median of her

type, ranks herself as equal to the population median; if she uses her mean type, she ranks herself as equal to

the population median if the prior is symmetric, but not necessarily otherwise (which may be an argument

against the reasonableness of the mean).
14Note, however, that if the population distribution is not symmetric, the fact that a person�s beliefs about

herself strictly �rst order stochastically dominate the population distribution does not imply that either her

median or mean type is strictly better than the population median type.
15In fact, even then we could not be sure as there could be still other reasonable ways for people to evaluate

themselves. Morevover, although in the interest of space, we have assumed that the entire population self-

evaluates in the same way, nothing precludes di¤erent people using di¤erent ways. For instance, 13 of the

population could self-evaluate with their mean type and 2
3 with their median type.

16It is the data (i.e., the evidence at hand) which we are de�ning as overcon�dent, or not, rather than the

population. Note, for instance, that even a group of people that is apparently undercon�dent could, in fact,

be overcon�dent if they are ranking themselves more highly than a rational appraisal of their life experiences

would justify (although it might be di¢ cult, or impossible, for an analyst to determine this).
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De�nition 7 Population median data x is strongly overcon�dent if it is apparently over-
con�dent and it cannot be �-rationalized, and cannot be �-rationalized, and cannot be -

rationalized.

De�nition 8 Population median data x is weakly overcon�dent if it is apparently over-
con�dent and it cannot be �-rationalized, or it cannot be �-rationalized, or it cannot be

-rationalized.

In a symmetric signalling model, the population distribution is symmetric.17 In what

follows, we note when the data can (also) be rationalized by a symmetric signalling model

(and hence the rationalizing does not depend upon a discrepancy between the mean and

median).

The following theorem shows that population median data cannot prove even the weak

version of overcon�dence.

Theorem 1 Apparent overcon�dence of population median data x implies weak overcon�-
dence only if x = 1. Put di¤erently, it is possible to �-rationalize, and �-rationalize, and

-rationalize any fraction x 2 [1
2
; 1) of the population rating themselves above the median.

Moreover, these rationalizations can be done with symmetric signalling models.

Theorem 1 shows that when people have imperfect information about their skills, and

receive information about these skills over time, there is nothing wrong with a strict majority

of them ranking themselves above the median. Thus, apparent overcon�dence should not

be used as an indication of overcon�dence. For instance, Svenson�s (1981) �nding that �a

majority of subjects regarded themselves as more skillful and less risky than the average

driver�is unproblematic. Note that Theorem 1 restricts x to be greater than 1
2
only because

we are concentrating on overcon�dence. The theorem remains true for all x 2 (0; 1), so that
apparent undercon�dence is also not problematic. Although the three notions of rationalizing

used in Theorem 1 are independent of each other, the drivers example in the introduction

illustrates the theorem for all three.

The above theorem concerns a population of individuals who place themselves relative to

the median person. The next theorem is even more dramatic: almost everyone can rationally

believe that their mean skill level is strictly higher than the skill level of any fraction of the

population (even if the population distribution is symmetric).

Theorem 2 Data in which any fraction x 2 (0; 1) of the population ranks itself strictly

higher than any fraction q 2 (0; 1) of the population can be �-rationalized by a signalling
model. In particular, 99% of the people can rationally believe that their mean skill level is

17If P is the distribution, and h is the midpoint of the support , P (� � h� y) = P (� � h+ y) for all y.
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strictly higher than the skill level of 99% of the people. Moreover, this rationalizing can be

done with a symmetric signalling model.

1.1.2 Population Ranking Data

Although the results of ranking experiments are typically summarized by the number of

people who rank themselves above the median, most of these experiments collect more de-

tailed data, such as the deciles into which subjects place themselves. While the previous

section shows that population median data is essentially useless for determining whether or

not people are overcon�dent, this more complete data is potentially helpful.

Suppose that each person is asked to place himself into a �k-cile�, where to be in the jth k-

cile means that the person ranks himself strictly above the fraction j�1
k
of the population, but

not strictly above the fraction j
k
.18 Population ranking data is a vector x 2 Rk;

Pk
1 xi = 1,

where xi, i = 1; :::; k is the fraction of people who rank themselves in the ith k-cile. We have

the following:

De�nition 9 The population ranking data x is apparently overcon�dent if x strictly �rst
order stochastically dominates

�
1
k
; :::; 1

k

�
:

If neither one of x and
�
1
k
; :::; 1

k

�
�rst order stochastically dominates the other, then

the data has neither an unambiguously overcon�dent nor undercon�dent appearance. For

instance, the data
�
1
5
; 1
5
; 3
10
; 0; 3

10

�
contains a disproportionately large number of people who

consider themselves to be in the top �fth, but a disproportionately small number who place

themselves in the top two �fths.

De�nition 10 The population ranking data x can be �-rationalized if there exists a sig-
nalling model in which nature assigns a fraction 1

k
of the population to each k-cile and the

expected number of people whose updated beliefs will place their median type in the jth k-cile

is xj; j = 1; :::; k.19

The following theorem says that when people report the median of their beliefs, a rational

population can be �twice as con�dent�as reality would suggest, but no more. For instance,

suppose that people place themselves into deciles (k = 10). Then apparently overcon�dent

data in which 2
10
of the people rank themselves in the top decile, 4

10
rank themselves in the

18By de�nition, each person ranks himself striclty above the empty set, so that everyone is in a (unique)

k-cile.
19The de�nition assumes that nature places a fraction 1

k of the population in each k-cile in order to avoid

trivialities. For instance, if the entire population were assigned a single type then, even without receiving

any signals, 100% of the population would place themselves in the 1st decile. Most of the experimental work

seems to carry a presumption that the population divides evenly into the k-ciles.

13



top two deciles, and 2i
10
rank themselves in the top i deciles for i = 3; 4; 5 can be rationalized.

However, data in which 3
10
of the population place themselves in the top decile can not

be explained as rational. (Although we have been emphasizing overcon�dent looking data,

there is a similar constraint put on undercon�dent looking data, and that is captured by

the second inequality in the theorem.) Let dne denote the least integer weakly greater than
n 2 R:

Theorem 3 The population ranking data x can be �-rationalized if and only if

kX
i

xj � 2

k
(1 + k � i) , i =

�
k + 1

2

�
; :::; k and

iX
1

xj � 2

k
i, i = 1; :::;

�
k � 1
2

�
Moreover, the rationalizing can be done with a symmetric signalling model.

Corollary 1 Population ranking data in which the median declared placement is as high as
the 75th percentile, but no higher, can be �-rationalized.

While almost everyone can rationally think they are better than the median, only half

can rationally think they are better than the 75th percentile.

Theorem 3 provides hope for detecting overcon�dence by the use of ranking question-

naires. It is worth looking at Svenson�s data in greater detail than that provided by his

population median data. Svenson questioned students in Sweden and the United States,

asking them both about their driving safety and driving skill. Swedish drivers placed them-

selves into deciles in the following proportions when asked about their safety:

Decile 1 2 3 4 5 6 7 8 9 10
Reports (%) 0:0 5:7 0:0 14:3 2:9 11:4 14:3 28:6 17:1 5:7

We �rst note that although the population ranking data has an overcon�dent feel to it,

the data is not, strictly speaking, apparently overcon�dent, since fewer than 10% of the

population ranks itself in the top 10%. More importantly, Theorem 3 implies that the data

can be �-rationalized, so that it is not indicative of cognitive biases.20 Note, for instance,

that while 65:7% of the people rank themselves among the top 40%, Theorem 3 would allow

up to 80% to rationally do so. Furthermore, the median ranking is between the seventh and

eighth decile, which Corollary 1 permits of a rational population. In fact, out of Svenson�s

four questions, only half yield answers that cannot be �-rationalized �namely, the American

answers. The median safety placement for American students is between 81% and 90%,

20Theorem 4 below shows that the data can also be ��rationalized.

14



which violates Corollary 1. While the median skill placement is in the acceptable 61� 70%
range, 46% of the population places itself in the top 20% of skill level, which is too many

to �-rationalize. Thus, Svenson does �nd some evidence of overcon�dence (if his subjects

based their answers on their median types), but it is not as strong as commonly believed.

Note that when 46% of the population place themselves in the top 20% this is only 6% too

many, not 26%.

Theorem 3 is our �rst positive result: if people self-evaluate using their median rank-

ings, then questionnaires have the potential to detect overcon�dence. Unfortunately, our

next result indicates that if people use their mean rankings, then even the more complete

population ranking data is useless.21

De�nition 11 The population ranking data x can be �-rationalized if there exists a sig-
nalling model in which nature assigns a fraction 1

k
of the population to each k-cile and the

expected number of people whose updated beliefs will place their mean type in the jth k-cile is

xj; j = 1; :::; k.

Theorem 4 Any population ranking data can be �-rationalized.

1.1.3 Reasonableness

The previous discussion has been in the rather abstract language of signalling models. Some

readers may wonder if the results depend upon signalling models that are somehow �bizarre�.

In this section, we address this concern.

One obvious reason for a person to consider herself a safe driver is that she has not had

any accidents. Thinking of driving as a �test�, and not having an accident as passing the

test, motivates the next de�nition.

De�nition 12 A testing model consists of a population of individuals and a type space
[0; 1] such that:

i) Nature chooses a type � 2 [0; 1] for each individual independently, resulting in some

distribution p; initially, each person�s beliefs about his own type are described by p.

ii) A person of type � receives a signal �pass�with probability � and �fail�with probability

1� �:
iii) Each person updates his beliefs about himself using Bayes�rule.

21Theorem 4 is the �rst result that relies on a signalling model that is not symmetric. This could be

considered to be a defect of the theorem, if there is a reason to believe that the trait under consideration

is symmetrically distributed in the population. As far as we know, no one in the literature has argued that

their data is signi�cant because the trait distriubtion is symmetric.
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A testing model is a natural and simple signalling model. In a symmetric testing model,

the prior distribution is symmetric.

Theorem 5 Population median data x, for any x 2 (0; 1), can be �-rationalized, �-rationalized,
and -rationalized by a symmetric testing model. Furthermore, data in which any fraction

x 2 (0; 1) of the population rank themselves strictly above any fraction q 2 (0; 1) of the

population can be �-rationalized by a symmetric testing model.

Theorem 5 implies Theorems 1 and 2 of Section 1.1.1. As it depends only upon a

symmetric testing model, which is quite simple and straightforward, it shows that those

results do not depend upon a strained signalling model.

While the simplicity of a testing model is a virtue, it has a cost: since it involves only two

signals, pass and fail, it can only generate data in which the population�s updated beliefs

divide into at most two sets. Thus, while population median data can be rationalized by

a testing model, population ranking data in which the population places itself into more

than two k-ciles (k > 2) cannot be. At the same time, a driver, for example, self-evaluates

using not only the number of accidents she has had, but also the number of near-accidents,

her beliefs about her re�exes and eyesight, and myriad other factors, which may be better

captured by the abstractness of a signalling model than by a more concretely speci�ed model.

What makes for a reasonable signalling model? A standard restriction found in the

literature is that a signalling structure (S;�; f) should satisfy the monotone likelihood ratio

property (mlrp): for all �0 > �, f�0 (s)
f�(s)

is increasing in s. The following proposition shows that

the mlrp has implications for population ranking data.

Proposition 2 For " < 1
14
, the population ranking data

�
"; "; 1

2
� "; 1

2
� "
�
cannot be ��rationalized

by a signalling model with a signalling structure that satist�es mlrp.

Proposition 2 stands in contrast to Theorem 3 of Section 1.1.2. This proposition leaves

open the possibility that population ranking data might be more useful than is implied by

that theorem. For instance, one might hope to argue that Svenson�s Swedish data is, in fact,

indicative of some overcon�dence, as it could not be rationalized by a �reasonable�signalling

model. While this possibility is intriguing, the following example shows that imposing mlrp

still leaves plenty of room for overcon�dence.

Example 1 The data x =
�
1
6
; 1
6
; 1
3
; 1
3

�
can be ��rationalized by a signalling model with a

signalling structure that satis�es mlrp. In particular, let the type space be � = f1; 2; 3; 4g, let
the set of signals be S = f1; 2; 3; 4g, and let the probability with which type � receives signal
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s be given by, for " < 7
180
, f� (s):

f1 (s) =

8>>><>>>:
1
3
+ 4" s = 1

1
3
� 2" s = 2

1
3
� 3:5" s = 3

1:5" s = 4

; f2 (s) =

8>>><>>>:
1
3
� 5" s = 1

1
3

s = 2
1
3
+ 3" s = 3

2" s = 4

f3 (s) =

8>>><>>>:
5
6
" s = 1
8
5
" s = 2
1
2
+ 1

2
" s = 3

1
2
� 44

15
" s = 4

, f4 (s) =

8>>><>>>:
1
6
" s = 1
2
5
" s = 2
1
6

s = 3
5
6
� 17

30
" s = 4

Finally, let the types be uniformly distributed. It is easily veri�ed that the signalling structure

satis�es mlrp. Moreover the fraction of people who see the signal s = 1 is 1
6
and the median

of their posteriors is � = 1; the fraction of people who see the signal s = 2 is 1
6
and the

median of their posteriors is � = 2; the fraction of people who see the signal s = 3 is 1
3
and

the median of their posteriors is � = 3; the fraction of people who see the signal s = 4 is 1
3

and the median of their posteriors is � = 4.

As to ��rationalizing, Theorem 5 shows that even a simple testing model permits any

fraction of the population to place their mean type in the top 1% of the population, so that

imposing mlrp has no hope of eliminating extremely overcon�dent looking data.

1.2 Scale Questions

In scale questionnaires, participants are asked to make evaluations using a scale. There are

variations, but in the version we consider people are asked to compare themselves to the

average person on a designated scale.22 For instance, Alicke et al. (1995) present subjects

with a personality trait, such as intelligence or dependability, and ask them �to rate the

extent to which the trait describe(s) themselves relative to the average college student of the

same sex, on a single 9-point scale (0=much less than the average college student;4=about

the same as the average college student;8=much more than the average college student).�

More generally, in a scale survey (of this type), a comparison scale T and �average�

m are speci�ed, and each person i is asked to compare himself to this average by choosing an

xi 2 T . Population scale data is a quadruple (T;m; n; �x) ; where T � R is the scale used

in the questionnaire, m 2 T is the speci�ed scale average, n is the number of individuals,
22In a common variant each person places him or herself on a scale from 1 to T and indicates the fraction

of the population that falls into each scale position. This is formally equivalent for de�ning apparent

overcon�dence. However, the notions of rationalizing becomes relatively involved, as the di¤erent population

distributions must also be explained.
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and �x = 1
n

Pn
i=1 xi, where each xi 2 T . The literature uses the notion that the population

scale data is apparently overcon�dent if �x > m.
Before proceeding, we must note that the fundamental methodology in many scale ques-

tionnaires seems a bit dubious. The basic idea, apparently, is that in a rational population,

the answers given should average out. But given the subjective nature of many of these

scales, it is unclear why this should be so, even when there is no uncertainty at all and

everyone is in perfect agreement. Imagine the following question posed to two drummers, A

and B, in a room:

On an integer scale from �5 (much worse), 0 (the same) to 5 (much better),
please rate yourself as a drummer compared to the other drummer.

Suppose that, as it happens, both A and B are of the opinion that the only skill that

matters in a drummer is accurate time keeping. Furthermore, they both agree that A�s time

keeping is 80% accurate, while B�s is 30% accurate. There seems to be little scope for �true�

overcon�dence (or undercon�dence). There also seems to be nothing wrong with A rating

himself with a 4, and B rating herself with a �2. After all, the scale markings are subjective.
Nonetheless, the standard measure indicates overcon�dence since the average rating is 1, not

0.23

Despite our reservations, we will proceed as if the scales are interpreted in a consistent

manner by all concerned. Alternatively, we will only be considering scale questionnaires in

which there is an objective scale. As an example, Weinstein (1980) asks students how their

chances of obtaining a good job o¤er before graduation compare to those of other students

at their college, with choices ranging from 100% less than average to 5 times the average.

Here there is no ambiguity in the meaning of the scale, but two ambiguities remain; namely,

what is meant by an average student,24 and what a subject means by a point estimate of his

or her own type?

As we saw, in ranking questionnaires the median is the only notion of an average student

that it is reasonable for us to consider.25 It turns out that in scale questionnaires, only the

mean provides us with a useful notion of an average student, although it is reasonable for

respondents to use either the mean of the median.

23There are still other potential problems with scale questions. For instance, Schwarz et al. (1991) ask

subjects how successful they have been in life, and �nd that answers di¤er signi�cantly depending upon

whether subjects are presented with a scale from �5 to 5, or 0 to 10.
24Weinstein asks subjects to compare themselves to �other Cook students�using terms such as �50% less

than average�. Alicke et al. ask their subjects to compare themselves to the average student.
25More precisely, if the trait described is not symmetrically distributed, there is no reason for 50% of the

people to be ranked above the mean. If the trait is symmetrically distributed, then the mean equals the

median anyway.
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To illustrate, suppose for the sake of discussion that all of Weinstein�s subjects agree that

there are two types of students at their college, low and high, with job o¤er probabilities

pL = 0:3 and pH = 1, and that 80% of the population are low type. A reasonable interpre-

tation of an average student is one whose chance of obtaining an o¤er is 0:3. Consider a

respondent who thinks that there is a 50% chance that she is a low type. Her probability of

obtaining a good job o¤er is (:5� 0:3) + (:5� 1) = 0:65. A perfectly reasonable response to
Weinstein�s question is that her chances are 35% above average. Note that we are claiming

that a reasonable, perhaps the most reasonable, way to answer uses the median (or mode)

in determining the population average, but the mean (of her own beliefs) for self-evaluating.

It is not necessary that the reader accept this as the most reasonable way of answering, but

merely that he or she accepts this as a plausible way. Of course, this is not to deny that it is

also reasonable for a respondent to use the population mean in de�ning the average student

and her own mean for self-evaluating. Moreover, for other questions, in particular those not

involving probabilities, it may be reasonable for subjects to use their median type, rather

than mean type, when self-evaluating. Thus, just considering medians and means, there are

four ways to interpret answers to scale questions.

We will spare the reader the formalization of all four treatments. It is fairly obvious

that in the two cases where people self-evaluate using the median of their beliefs, apparent

overcon�dence will not imply overcon�dence, since there is no particular reason for the

weighted average of medians to equal the population median or mean. Example 2 below

shows that apparent overcon�dence also does not imply overcon�dence when people self-

evaluate using their mean belief, and the population �average� is taken to be the median.

Theorem 6 below covers the fourth case.

Example 2 Consider an experiment in which 150 subjects are asked to compare themselves
to others on a scale T = f0; 1; :::; 9; 10g, where 5 is �average�, 0 indicates �much below
average�, and 10 indicates �much above average.� Suppose that the number of people who

place themselves at 5 is 50, and that for each of 6, 7, 8, 9, and 10 the number is 20. Clearly,

the data is apparently overcon�dent, since nobody places himself below the average, and 2/3

of the people place themselves strictly above. We now show how to rationally explain this

data when the average 5 represents the median type, and respondents self-evaluate using their

mean type.

Suppose that, in fact, of the 150 subjects, 90 are 5�s and 60 are 10�s. Note that the median

type is 5. This general information is common knowledge. Beyond this, each person receives

a signal giving him further information about his own type. The set of signals is S =

f0; 1; :::; 9; 10g and, for the two types in the population, the probability of receiving a signal
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are given by:

f5 (s) =

8><>:
0 s < 5
5
9

s = 5
20�2s
45

s > 5

and f10 (s) =

(
0 s � 5
s�5
15

s > 5

Some simple calculations show that the expected number of people who will receive the signal 5

is 50, and that any one receiving this signal knows that his type is 5. For each i = 6; :::10, the

expected number who will receive the signal is 20, and, using Bayes�rule, a person receiving

the signal i has a mean type of i. Therefore, we expect 50 people to rationally rate themselves

as 5s, and 20 people to rationally rate themselves each of 6, 7, 8, 9, and 10, as reported in

the experiment.

The next theorem contrasts markedly with this example. It shows that if �average stu-

dent�is interpreted as the mean of the population, and people self-evaluate using the mean of

their beliefs, then apparent overcon�dence implies overcon�dence. More precisely, consider a

(large) population whose mean type is m, and whose members know the overall distribution

of types and learn about themselves over time. Then, if individuals report their mean type,

at any point in time, the expected average report must be m:

Theorem 6 Consider a population where individual i = 1; :::; n is of type ti 2 T � R, and m
is the mean type. Suppose that each person knows the distribution of types in the population

and receives a signal about his own type. Then E
�
1
n

Pn
i=1
�ti
�
= m, where �ti is the mean of

person i�s updated beliefs.

Theorem 6 provides the �rst case where the standard interpretation of the data found in

the literature has merit. Weinstein �nds that his subjects display apparent overcon�dence.

If we assume that his subjects consider the average subject to be represented by the mean

of the population, and that they self-evaluate using their mean type, then his subjects also

display overcon�dence. Since Weinstein asks his subjects for probability information, it does

seem most reasonable to interpret their responses as re�ecting their mean self-evaluations.

On the other hand, as we argued earlier, it may be more reasonable for subjects to consider

the average of the population to be the median individual, rather than the mean.

1.3 Small Samples

As we discussed in Section 1.1.1, our de�nitions of rationalizing, which rely on �expected

data�, can be understood as implicitly insisting that the data be generatable by in�nitely

large populations. Naturally, an experimenter prefers to have as large a subject pool as

possible, so that her results cannot be dismissed as a statistical aberration (or experimental

error). Thus, our implicit assumption that the data comes from an in�nitely large population
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provides the best case for the data. Nonetheless, actual experimental populations are, of

course, �nite, and many experiments involve quite small numbers. It is worth noting that

�nite samples permit data that is even more (seemingly) anomalous.

Consider the following quote from Camerer (1997):

The now-standard approach to games of imperfect information pioneered by

John Harsanyi presumes that players begin with a �common prior�probability

distribution over any chance outcomes. As an example, consider two �rms A

and B, who are debating whether to enter a new industry like Internet software.

Suppose it is common knowledge that only one �rm will survive-the �rm with

more skilled managers, say- so �rms judge the chance that their managers are

the more skilled. The common prior assumption insists both �rms cannot think

they are each more likely to have the most skill.

Despite the apparent plausibility of this statement, we now show that, using the �standard

approach,�each of two �rms can, in fact, concurrently hold the belief that it is more likely to

be the more skillful. Furthermore, this state of a¤airs can arise with probability arbitrarily

close to one. The following is a simple and straightforward model yielding this result.

1. Nature moves �rst. With probability 1
2
, Firm 1 has high skill, Firm 2 has low skill;

with probability 1
2
Firm 1 has low skill, Firm 2 has high skill. Both �rms know this,

but neither is told Nature�s choice.

2. Each �rm takes a test. The high skill �rm passes with probability ph, the low skill �rm

passes with probability pl, where ph > pl.

3. Each �rm uses Bayes�rule to determine the probability that it is the more skillful.

As an illustration, if ph = 0:99 and pl = 0:98, then, from Bayes�rule, a �rm that passes

the test believes there is a 0:502 chance that is the more skillful. Moreover, with probability

0:97 both �rms will pass the test. Thus, with probability 0:97 each �rm will believe that it

is more likely to be the more skillful. If ph = 1 and pl = 0:5, then with probability 1
2
both

�rms will pass the test, and each will then simultaneously believe it has a 2
3
chance of being

the more skillful. The following proposition generalizes these possibilities.

Proposition 3 For any p 2 (0; 1), the parameters in the above model can be chosen so that
with probability p each �rm will believe there is strictly more than a 1

2
chance that it is the

more skillful. In particular, the parameters can be chosen so that with a 50% chance each

�rm will believe there is a 2
3
chance that it is the more skillful; in order for the chance to be

more than 50%, the belief must be smaller than 2
3
, in order for the belief to be greater than

2
3
, the chance must be less than 50%:
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Proof of Proposition 3. The probability that a �rm that passes the test is high skill

is:

p (� = H j pass) =
1
2
ph

1
2
ph +

1
2
pl
>
1

2

The probability that both �rms past the test is phpl. Fixing p � pl <
p
p (to ensure that

1 � ph > pl), and setting ph = p
pl
establishes the �rst part.

To establish the second part, note that the solution to the problem

max
pl;ph

1
2
ph

1
2
ph +

1
2
pl

subject to phpl � 1
2
and ph > pl; is 23 at ph = 1; pl =

1
2
.

We note that the �rst part of the proposition has nothing to do with there being two

�rms �an arbitrary �nite number of �rms can all believe they are the best �rm with any

probability p 2 (0; 1).

2 Actions

We have emphasized the ambiguity inherent in the interpretation of replies to questionnaires.

A di¤erent approach to the study of overcon�dence circumvents this ambiguity by asking

subjects to take actions. The subjects�beliefs are then inferred from their actions. In this

section we look at two such studies.

2.1 Entry

In an oft-cited paper, Camerer and Lovallo (1999) test for overcon�dence using an experiment

meant to model �rms�entry decisions. N subjects (��rms�) must decide whether to play

In or Out. After the entry decisions are made, the subjects who have played In are ranked.

The payo¤ to playing In is greater than the payo¤ to playing Out if and only if an entrant

is ranked in the top k < N (hence, all subjects who play In do better than all subjects who

play Out if fewer than k choose In). There are two treatments.

1. Treatment 1. The subjects who play In are ranked randomly.

2. Treatment 2. The subjects who play In are ranked according to their results on a skill

or trivia test. (The test is administered after the entry decisions, but subjects are given

sample questions beforehand).

Since the number of subjects that can pro�tably play In is independent of the treatment,

the authors test for overcon�dence on the part of subjects by testing if the number of
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entrants is greater under Treatment 2 than under Treatment 1.26 They �nd that, indeed,

more subjects enter under the second treatment than the �rst. But is this an indication of

overcon�dence, with its implication of irrationality, or apparent overcon�dence, with no such

implication?27

We now show that if more subjects enter under Treatment 2 than Treatment 1, this only

shows apparent overcon�dence.

We proceed with a slightly simpler setup than the one used by Camerer and Lovallo;

the basic methodology and conclusions remain valid for their more intricate setup. Suppose

there are two subjects (N = 2), and that only one of them can pro�tably play In (k = 1).

Speci�cally, if both subjects enter, the higher ranked one earns 1, the lower ranked one loses

3. A subject who enters alone, again earns 1. A subject who does not enter earns 0. We can

write �the subjective expected payo¤matrix�for the game as follows, where pi is subject i�s

belief that he or she will be the higher ranked:

In Out

In p1 � 3 (1� p1) ; p2 � 3 (1� p2) 1; 0

Out 0; 1 0; 0

Since there are only two participants, the two treatments in this case are:

1. Under Treatment 1, if both subjects enter, the higher ranked subject is randomly

chosen with probability 1
2
.

2. Under Treatment 2, if both subjects enter, their ranking is determined by a trivia test.

The test is administered only after entry decisions have been made, but each subject

is shown a sample question before.

To explain Camerer and Lovallo�s �nding of more entry under Treatment 2 than Treat-

ment 1 as the result of apparent overcon�dence, rather than overcon�dence, we must specify

a signalling model (preferably, a �reasonable�one); Section 1.3 provides one. Suppose that,

before seeing the sample question, each subject believes there is a 1
2
chance that he will do

better on the test, and (correctly) believes that if he is to do better (resp., worse) on the

test, he will know the answer to the sample question with probability ph (resp, pl, pl < ph).

26As they write �The di¤erence in the number of entrants in the random and skill conditions is the primary

measure of interest.�
27In fact, as a test of any kind of overcon�dence, the results of the paper are muddied by several com-

plicating issues, including the risk attitudes of the participants and their ability to play to an equilibrium.

We consider the best case scenario (for their paper) in which participants are risk-neutral and play to an

equilibrium.
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Suppose also that phpl > 1
2
, so that there is a greater than 50% chance that both subjects

will correctly answer the test (and each will think he is likely to be the more skillful).

We �nd symmetric equilibria of the games induced by the two treatments:

1. Under the �rst treatment, each subject enters with probability 1
2
. The expected number

of subjects that enters is 1.

2. Under the second treatment, each subject adopts the following strategy: If I answer the

the sample question correctly, I enter with probability ph+pl
4phpl

> 1
2
, if I answer incorrectly,

I do not enter. The expected number of �rms that enter is 1
4phpl

(ph + pl)
2.

Note that 1
4phpl

(ph + pl)
2 > 1. Therefore, an experimenter should expect to �nd that more

subjects enter under Treatment 2 than under Treatment 1, but this is only an indication of

apparent overcon�dence, not overcon�dence.28 Interestingly, this increased entry occurs even

though a subject that answers the sample question correctly realizes that there is a good

chance that the other subject will also consider himself to probably be the more skilled.

2.2 A Vocabulary Test

Hoelzl and Rustichini (2005) divide subjects into groups and present them with two options:

1. Option 1. You will be given a monetary prize M with probability 1
2
, as determined by

the toss of a die.

2. Option 2. Everyone in your group will be administered a vocabulary test. You will be

given M if your score places you in the top half of your group.

Hoelzl and Rustichini write, �Since only half of the subjects will win if the test decides

the winner, any excess over a half of the subjects voting for the test indicates an erroneous

evaluation of their own relative skills�. This statement, which forms the basis of their

analysis, is incorrect.

To see why the statement is incorrect, �rst note that a subject will prefer the test con-

dition if she thinks that there is more than a 50% chance that her performance will be in

the top half. If we assume, as Hoelzl and Rustichini do, that each person believes that

test taking ability can be summarized by a single parameter, or type, then a person will

28A di¤erent test is on the expected pro�ts that subjects make, rather than the number of �rms. If subjects

are (truly) overcon�dent under Treatment 2, rather than ostensibly overcon�dent, they will make negative

expected pro�ts (see Section 5). However, Camerer and Lovallo do not �nd that subjects make negative

pro�ts (in the setting that does not su¤er from a self-selection problem, which is a separate issue that the

authors identify)
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prefer the test if the median of her beliefs about herself is better than the group median. If

more than 50% of the people (strictly) prefer the test, then the population displays apparent

overcon�dence; this apparent overcon�dence �indicates an erroneous evaluation�only if the

data cannot be �-rationalized (given that people are using their median types). However, as

Theorem 1 indicates, any amount of apparent overcon�dence can be �-rationalized.29 Thus,

there is no error in judgement implied when more than half the subjects vote for the test.

In fact, even without the formalization in this paper, it is rather trivial to see that there

is nothing wrong with more than half the subjects voting for the test. Imagine, for the sake

of argument, 10 subjects who reach the following conclusion in the waiting room: Nine of

them are native English speakers, with a perfectly ordinary command of the language, while

one is a Haitian with a more recent knowledge of English. There is certainly nothing wrong

with the nine native speakers voting for an English vocabulary test on the grounds that this

gives each of them a 5
9
> 1

2
chance of winning the prize. Thus, the experimental design of

Hoelzl and Rustichini cannot possibly prove what they set out to prove.

The authors actually run two treatments of their experiment, one in which the vocabulary

test is easy, one in which it is di¢ cult. In both cases, subjects vote on the options before

the test is administered, but are shown sample questions (either easy or di¢ cult) before

the vote. Hoelzl and Rustichini �nd that more subjects vote for the test option when the

test is easy, than when it is di¢ cult (64% vote for the test when it is easy, 39% vote for

the test when it is di¢ cult). They write �Two interpretations of this result are possible.

The �rst interpretation is that subjects confuse �being good�with �being better�... A second

interpretation is possible in terms of ambiguity aversion�. In fact, a third interpretation is

possible within a completely rational framework. In Section 4.2 we show that one should

expect apparent overcon�dence when the test is easy and apparent undercon�dence when

the test is di¢ cult.30 To understand this result in the present context, imagine that the

di¢ cult (on average) test is a Haitian Creole vocabulary test. Now we should expect nine

of the subjects to vote against the test, on the grounds that it would give each of them a
4
9
< 1

2
chance of winning.

29More precisely, Theorem 1 says that any degree of apparent overcon�dence short of 100% can be �-

rationalized. Given that any experiment must allow a margin for error, one could argue that even 100%

apparent overcon�dence is not problematic. Moreover, �-rationalization is (implicitly) for an in�nite popu-

lation; for a �nite rational population 100% ostensible overcon�dence can be obtained without experimental

error.
30In fact, Propostion 3 can also be turned on its head to the same e¤ect.
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3 Testing for (true) Overcon�dence

While the experiment run by Hoelzl and Rustichini does not provide a proper test of over-

con�dence, we now provide two modi�cations that do provide a proper test. The validity of

both experiments derives from Theorem 7 below, which generalizes the necessary conditions

of Theorem 3.

First Experiment
Suppose subjects are given the following two options:

1. Option 1. You will be given a monetary prize M with probability 1
2
, determined by

the toss of a die.

2. Option 2. Everyone in your group will be administered a vocabulary test. You will be

given M if your score places you in the top x% of your group.

A subject prefers the test condition if she thinks that there is more than a 50% chance

that she will perform in the top x% of her group. That is, a person will prefer the test if her

median type is in the top x%. From Theorem 7, at most 2x% of the people can rationally

hold such a belief (at least if the population is large), so that a choice of x smaller than 50

by the experimenter provides a viable test. For instance if x = 30 so that a subject wins if

he or she places in the top 30%, then at most 60% can rationally vote for the test.31

Second Experiment
Suppose that 10 subjects are given the option between winning M with probability 6

10
,

and winningM if they place among the top 5 in a vocabulary test. As the following theorem

indicates, at most 8 of the subjects can rationally prefer the test.

Theorem 7 A fraction y or greater of a population can rationally believe that there is at

least a probability q that their types are strictly better than the worst type in the top x% of

the population if and only if qy � x:

4 Apparent Overcon�dence?

Recent work has questioned the universality of overcon�dence. In particular, there is evidence

that when the skill under consideration is objectively measurable, populations do not display

much apparent overcon�dence, and that they even display apparent undercon�dence when

the skill is a di¢ cult one to master. In this section, we explain these facts within our rational

framework.
31We gratuitously (since we have not run an experiment) remark that we doubt that more than 60% would

vote for the test.
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4.1 Objectivity

Moore (2007) writes �Attributes that are speci�c, public, and objectively measurable tend to

show the weakest BTA [better-than-average] e¤ects, whereas vague, private and subjective

attributes tend to show the strongest BTA e¤ects�. It is reasonable to presume that people

have more information and, hence, tighter estimates of their own abilities for attributes that

are more objectively measurable. The following proposition indicates that when people are

quite certain of their types, there cannot be much apparent overcon�dence (or undercon�-

dence).

For simplicity, suppose the type space � is �nite. For any two probability distributions

p and q on �, let the distance between them be

d (p; q) = max
j
jpj � qjj :

We say that a distribution q is ��close to a degenerate if there exists a j � j�j such that
for ej (the jth canonical vector) d (q; ej) � �:

Proposition 4 Consider a signalling model in which the proportion of individuals strictly
above the median of the population distribution is �. For all " there is a � and a t such that,

if the expected fraction of the population who have beliefs (after receiving their signals) that

are �-close to a degenerate is at least t, then jxm � �j < " and jx� � �j < ", where xm (x�) is
the expected population median data when people self-evaluate using their median type (mean

type).

This proposition is a �continuous�analogue of Proposition 1, which shows that population

median data cannot be apparently overcon�dent when people�s beliefs about themselves are

degenerate.

4.2 Con�dence and Di¢ culty

Kruger (1999) �nds a �below-average e¤ect in domains in which absolute skills tend to be

low�. Moore (2007), summarizing similar work, writes �When the task is di¢ cult or success

is rare, people believe that they are below average�. Standard explanations for the con�dence

discrepancy between easy and di¢ cult skills focus on cognitive errors, such as a tendency

for people to �focus egocentrically on their own skills and insu¢ ciently take into account

the skills of the comparison group� (Kruger (1999)). In this section, we o¤er a rational

explanation (of course).

Imagine a large pool of subjects who are informed that the level of �g-ability� in the

population varies uniformly from 0 to 1. Since none of them has ever heard of g-ability, each
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one (rationally) considers that his or her g-ability is equally likely to be anywhere from 0 to

1. Now suppose that they are given a test which measures g-ability. They are told that the

test is an easy one: a person with ability t will pass with probability 0:7 + 0:2t.

What will a person who passes the test conclude about his ability? He certainly will

not be surprised that he passed, since he expected to pass the test regardless of his ability.

Nonetheless, his con�dence in his g-ability will increase, if only slightly. More precisely,

using Bayes�rule, he will ascribe probability 0:7+0:2t
:8

= 0:25t + 0:875 to being of type t. His

median type will be :53 and his mean type will be :52,32 both better than the median (or

mean) of the population. Thus, whether he ranks himself by his median type or mean type,

he will consider himself to be better than average. Furthermore, his beliefs about himself

will strictly �rst order stochastically dominate the prior. But, (about) 80% of population

will pass the test, and so the population will exhibit apparent overcon�dence. While the

population is apparently overcon�dent, it is not overcon�dent.

Now let us change just one thing: The test is a di¢ cult one, and everyone is so informed.33

Speci�cally, the probability of passing the test is now 0:1+0:2t, so that 80% of the people are

expected to fail. Using Bayes�rule, those who fail will have a median type of 0:47, and mean

type of 0:48, and the population distribution will strictly �rst order stochastically dominate

their beliefs. Thus a population facing a di¢ cult test will exhibit apparent undercon�dence.

Theorem 8 below formalizes the above argument using a testing model (de�ned in Section

1.1.3). Let p be the prior that nature uses in the testing model and P be the associated

cumulative distribution function. Then E (�) =
R
�dP is the average number of people who

pass the test, and this number is naturally interpreted as the di¢ culty of the test. We say

that a test is easy if E (�) < 1
2
and di¢ cult if E (�) > 1

2
. Let m be the median type.

Theorem 8 Suppose that beliefs are generated by a symmetric testing model with a non-
degenerate prior distribution p. Following the test, on average a fraction E (�) will consider

that their mean type is strictly better than the population median and will have beliefs about

themselves that strictly f.o.s.d the population distribution; a fraction 1� E (�) will consider
that their mean type is strictly worse than the population median and will have beliefs about

themselves that are strictly f.o.s.d by the population distribution. Furthermore, the fraction

E (�) will consider that their median type is weakly better than the population median. If p

has a density, or p (m) is small enough, the fraction E (�) (1�E (�)) will consider that their
median type is strictly better (worse) than the population median. Thus, if the test is easy

the population will exhibit apparent overcon�dence, while if it is di¢ cult, the population will

32The median is the solution to
R t
0
(0:25t+ 0:875) dt = 1

2 , while the mean is given by
R 1
0
(0:25t+ 0:875) tdt:

33The crucial di¤erence between our discussion here and the reasoning of Healy and Moore (2007), is that

here everybody knows precisely the di¢ culty of the test they are taking. See Section 7 for a discusion of

Healy and Moore (2007).
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exhibit apparent undercon�dence.

Thus, when a �task is di¢ cult or success is rare�we can expect apparent undercon�dence,

and when a task is easy, we can expect apparent overcon�dence.

5 Does it Matter?

In Section 2.1, we saw that apparently overcon�dent entrepreneurs might enter an industry

at a greater rate than entrepreneurs with neutral beliefs about their abilities. The same,

of course, is true about (truly) overcon�dent entrepreneurs. This invites the question: does

it really matter if a population is apparently overcon�dent but not overcon�dent, or is

the distinction merely semantic minutia? In this section, we argue that the distinction is

important.

Recall that in the two player game analyzed in Section 2.1, under the random ranking

treatment the equilibrium expected number of �rms is 1 while under the test treatment �

which leads to apparent overcon�dence �the equilibrium expected number of �rms is greater

than 1. Crucially, however, the expected pro�ts of each �rm is zero under both treatments

(as is easily veri�ed). In contrast, consider what happens when �rms are truly overcon�dent.

For instance, suppose each �rm irrationally believes there is a 3
4
chance that it is the more

skillful. Given these beliefs, entering is a dominant strategy for each �rm, and in equilibrium

each �rm earns �1. Thus, while the presence of overcon�dence requires us to rethink the
basic economic tenet that �rms will not enter an industry if there are negative pro�ts to be

made, the presence of apparent overcon�dence does not.

Some authors use overcon�dence as a springboard for assuming that agents have an irra-

tional bias. For instance, in an in�uential �nance paper, Malmendier and Tate (2005) write

�Our overcon�dence story builds upon a prominent stylized fact from the social psychology

literature, the �better-than-average�e¤ect. When individuals assess their relative skill, they

tend to overstate their acumen relative to the average�. Armed with this supposed evi-

dence of irrationality, Malmendier and Tate go on to assume that the CEOs in their model

overestimate the returns to their projects. However, if, as we have argued, the evidence is

only that people are apparently overcon�dent, then the evidence is consistent with agents

using all the information available to them in the best possible way, in which case it supplies

no justi�cation for assuming that agents make biased estimates. In particular, apparently

overcon�dent CEOs who are not overcon�dent will, on average, have a correct estimate of

the returns to their projects.

Should authorities regulate the behaviour of drivers by imposing speed limits, mandating

seat belt use, etc..., rather than simply informing them of the risks? One argument in

favour of such regulation would be that drivers have too much con�dence in their abilities.
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As Svenson writes, �Why should we pay much attention to information directed towards

drivers in general if [we believe] we are safer and more skillful than they are?�But if drivers

are only apparently overcon�dent, they may well pay attention. Note that in the driving

example from the introduction, the 3
5
of the population who rate themselves above average

still believe that with a probability of 4
9
they are no more skilled than average, so there is

certainly no reason for them to simply ignore advice pitched at the general population.

6 Evidence on Our Approach

The basic principle driving our results is that people who receive good signals will tend to

be con�dent, while those who receive bad signals will tend to be uncon�dent, regardless

of the underlying probabilities of receiving the signals. Thus, the previously noted �nding

that people tend to be apparently undercon�dent on di¢ cult tasks (where they fail relatively

often) and apparently overcon�dent on easy tasks lends support to our approach. In a similar

vein, recall that Hoelzl and Rustichini show people di¢ cult sample vocablulary questions

(which are likely to send a person the bad signal that he could not answer the question) and

easy sample questions (which are likely to send a good signal). A sample question is only

one signal among a lifetime of signals, so that it is unclear how a person should rank himself

given this piece of information. Nonetheless, ceteris paribus, a positive signal should induce

a higher ranking than a negative signal, and Hoelzl and Rustichini do �nd that people rank

themselves higher following an easy sample question than a di¢ cult one.

An accident is, presumably, a negative signal about a driver�s ability. Preston and Harris

(1965) ask drivers who have recently had accidents to rate themselves on a scale from 0 to

9. The mean of their self-ratings turns out to be �almost identical�to the mean self-rating

of a control group that has not had any accidents (the actual data is not reported). This

�nding tends to go against our reasoning. However, it should be noted that the accident

drivers were interviewed while still in the hospital, and many faced severe legal and �nancial

consequences as a result of the accidents, so there is considerable reason to view their answers

with skepticism. Indeed, only 15 drivers admitted responsibility for their accidents, while

police reports blamed 34; given the circumstances, these 19 denials can hardly be deemed

irrational or surprising. While Preston and Harris�evidence may be dubious, Marotolli and

Richardson (1998) �nd similar results in a more neutral setting. They interview drivers (not

selected for accident histories) in their homes, and still �nd no di¤erence in the con�dence

levels of drivers who have had adverse driving events (according to their own reports) and the

con�dence levels of those who have not. Speci�cally, 68% of both groups rate themselves as

being better than the average driver, and none rate themselves as being below average. On

the other hand, in our favour Groenger and Grande (1996) �nd that drivers�self assessments
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are positively correlated to the average number of accident-free miles they have driven.

Importantly, they also �nd that these self-assessments are uncorrelated to the number of

accidents the drivers have had. The number of accident-free miles would seem to be the

more relevant statistic, so Groenger and Grande�s �nding may help explain Marotolli and

Richardson�s negative result.34

We interpreted Proposition 4 of Section 4.1 as showing that populations should display

less apparent overcon�dence or undercon�dence with reference to objectively de�ned traits,

as researchers have found to be the case. Technically, the proposition says that popula-

tions in which people have tight estimates of their own skill levels should not display much

overcon�dence or undercon�dence. Bayesian updaters have tighter estimates of their own

skill as they gather more information. This suggests that we should expect drivers with

more experience to display less apparent overcon�dence. In line with this prediction, Wal-

ton (1999) interviews professional truck drivers, who have considerable driving experience

(each one drives approximately 100; 000 kilometers per year), and �nds no bias in their self-

assessments of their relative skills. Walton does �nd a majority of the truckers claiming to

be safer than average.35 However, it is quite possible that most of the truck drivers had

not had an accident, and had only had safe drving experiences, so that a majority should

rank themselves as safer than average.36 Mathews and Moran (1986) question young drivers

(18-25) and older drivers (35-50). They �nd that while the young drivers rate themselves as

being better overall drivers than their peers, the older drivers rank themselves comparably

to drivers in their age group. Similarly, Holland (1993) �nds no self-bias for drivers in their

�fties, or for drivers in their seventies either.37 On the other hand, Marotolli and Richardson

(1998) �nd a pronounced better than average e¤ect in a sample of drivers 72 years and older,

as does Cooper (1990) in a sample aged at least 55 years.

Thus, we �nd existing evidence in favour of our approach, although not all the evidence is

in our favour.38 We note that it would be wrong-headed to attempt a direct test of our model

by, say, trying to determine whether or not people actually know the distribution of types in

the population. That is at once only a simplifying assumption and one that makes it harder

34To push the point further, one might expect better drivers to drive more, raising their number of

accidents, so that the number of accidents itself would be a poor indicator of ability.
35Walton (1999) asks the drivers many questions, but skill and safety are the only ranking questions.
36That is, the notion that experience should dissipate apparent overcon�dence is too coarse. In the �short

run�, this need not be the case.
37Holland does �nd that drivers in their seventies consider themselves less prone to non-driving mishaps

(e.g., losing an important document) than average. However, Holland speculates that in this regard the

drivers may be comparing themselves to all seventy year olds, not just the driving subpopulation, so that

there is no apparent problem.
38In line with the rest of our paper, we accept the evidence without examining the quality of the work

(with the exception of the Preston and Harris paper).
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to rationalize the data �we could easily relax the de�nition of a signalling model to one in

which nature �rst picks one of several distributions, and people then receive signals about

their own types and the population distribution, without altering our basic conclusions.

7 Literature

There is a vast literature on overcon�dence, both testing for it and providing explanations

for it. We have already mentioned some of the evidentiary literature. On the explanatory

side, most of the literature accepts that there is something wrong when a majority of people

believe they are above average, and either explains the phenomenon as resulting from a

psychological �error�, or �nds a rational way around the data.

The �rst category of explanations include egocentrism (Kruger (1999)), incompetence

(Kruger and Dunning (1999)) and self-serving biases (Greenwald (1980)). Bénabou and

Tirole (2002) introduce a behavioral bias that causes people to become overcon�dent.

In the second category of explanations, Dunning et al. (1989) �nd that people may have

varying notions of what, say, constitutes a good driver. If people are interpreting the question

di¤erently, there is not even an apparent contradiction when most people report themselves

to be better than average (although there may be a self-seving bias in their interpretations).

Van den Steen (2004) and Santos-Pinto and Sobel (2005) push this further and propose

that as a result of these variances, people invest in skills in di¤erent ways. In the model of

Santos-Pinto and Sobel, �Without the ability to add to skills... precisely p percent of the

population would claim to be better than 1 � p percent of the others.�However, we have
shown that there is no need for there to be this perfect calibration, even if everyone agrees

on the evaluative criteria of skill and has no opportunity to invest in skills, provided only

that people do not know their own skills exactly.

In Healy and Moore (2007), people take a test that may be either di¢ cult or easy.39 Each

person is uncertain about his own ability, and about the di¢ culty of the test he is taking.

A person who takes the easy test and does well, is uncertain if this is because he is of high

ability or because the test is easy; hence he rationally assigns weight to both possibilities

and considers himself to be above average. Since most people who take the easy test do well,

those who take the easy test appear to be overcon�dent. By the same token, those who take

the di¢ cult test appear to be undercon�dent. More precisely, following the logic of Healy

and Moore, averaging over the entire population of test takers (those who take the easy and

the di¢ cult test), one should �nd no apparent overcon�dence or undercon�dence,40 but the
39Healy and Moore (2007) have several purposes to their paper. To compare their work to ours, we focus

on the extent to which their theory can provide a completely rational explanation of the overcon�dence data.

However, that is not their primary focus. We encourage the reader to consult their paper.
40One could �nd apparent overcon�dence if the subjects underestimate the fraction of tests that are
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analyst makes a mistake by focussing on the groups separately. Again following their logic,

if subjects understand the di¢ culty of their tasks, then their respective populations, even

viewed in isolation, should not rate themselves above or below average. However, we have

shown that there may be apparent overcon�dence and undercon�dence even in subjects who

understand their environments perfectly. As noted in Section 2.2, Hoelzl and Rustichini

�nd apparent overcon�dence when their subjects are given an easy test and undercon�dence

when they are given a di¢ cult test. In their experiment subjects are told which test they are

taking (and it is obvious), so that Healy and Moore�s analysis does not apply.41 Similarly,

Kruger�s (1999) subjects consider easy tasks (e.g., riding a bicycle) and di¢ cult tasks (e.g.,

juggling) that are clearly delineated. Nonetheless, there are doubtless areas where it is hard

to judge di¢ culty and, even though that additional assumption is not necessary to generate

apparent overcon�dence, it may yield greater overcon�dence.

While the above literature tries to explain how anomalous data can arise, we show that

the data is, in fact, not anomalous at all. In this regard, Zábojnik (2004) is more in the

spirit of our paper, although his approach is very di¤erent. In his model, agents can choose

to forego consumption in order to learn about their abilities, which may be either high or

low. Given certain technical assumptions � in particular U (at), an individual�s utility as

a function of his ability, is strictly convex, and EU (at) =U (at) is decreasing �the optimal

learning rule of agents leads them to halt their learning in a biased fashion. As a result,

a disproportionate number end up ranking themselves as high in ability, despite the fact

that they are all rational Bayesians. Hence, like us, Zábojnik �nds that the mere fact that

a disproportionate number of people rank themselves in the top x% does not indicate a

problem. However, as Zábojnik readily admits, he is not really concerned with explaining

much of the experimental evidence, where his experimentation story is not very compelling.

Furthermore, he requires technical assumptions which play no role in our work. For instance,

we show that apparent overcon�dence can rationally arise whether or not an agent�s utility is

convex. Beyond this, Zábojnik does not consider the possibility that people use their median

types to self-evaluate, and has a model with only two types of agents and two signals.

In a tangentially related paper, Ledyard (1986) argues that Bayesian rationality imposes

almost no restrictions on an agent�s behaviour. Speci�cally, only the use of a dominated

strategy can be ruled out. Our paper di¤ers in many respects. First of all, at a purely

technical level, the two sets of results are unrelated. Second of all, we do obtain important

easy. However, as previously noted, we are interested in the extent to which Healy and Moore provide an

explanation that does not rely on errors.
41More precisely, the analysis of Healy and Moore does not apply if subjects know which test is easy

and have a good idea of just how easy and di¢ cult the tests are. There is evidence that the subjects did

understand the degree of di¢ culty: Hoezl and Rustichini ask them to guess the mean scores of the tests and,

for the tests they actually take, their estimates are remarkably close to the actual results.
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restrictions, as shown by Theorems 3, 6, and 7, so that the underlying messages of Ledyard�s

paper and ours are quite di¤erent. Finally, as Section 1.1.3 makes clear, our results do not

depend upon pushing the Bayesian assumption to its �limits�.

8 Conclusion

Consider two populations. In population A, about 50% of the people declare themselves

to be better than the median. In population B, about 80% of the people make the same

declaration. On the face of it, population A has good self knowledge, while population B

is somewhat delusional. Nevertheless, we have shown that unless agents have a very good

idea of their own skills, the declaration of population B is no more aberrational than the

declaration of population A. Put di¤erently, there is no more reason to try and �justify�

B�s data than A�s; both sets of data can naturally arise as the result of agents receiving

information about their skills.

Is there a tendency for people to be overcon�dent? We do not know, and have no stake

in the answer one way or the other. Psychologists do have theories independent of the

�better-than-average�evidence we have cited for believing in overcon�dence. However, it is

imperative to have a clear statement of the problem (which we hope to have provided), and

to conduct proper empirical tests (such as the ones suggested in Section 3). As it stands,

much of the supposed evidence for overcon�dence shows nothing of the sort, even if the

evidence is taken completely on its own terms.

At the most abstract level, our reasoning makes it no more likely that a population

will rate itself above average than below average. Thus, if populations consistently rate

themselves as being better than average, a puzzle remains. However, recent evidence has

shown that the supposed universality of overcon�dence has been overstated. In particular,

populations appear to be undercon�dent with respect to di¢ cult skills, and there is little

apparent overcon�dence, or undercon�dence, when the skill is objectively de�ned. Our

theory predicts these di¤erences. Moreover, even if it were to turn out that the relative

number of studies pointing to overcon�dence rather than undercon�dence cannot be fully

accounted for by an easy/di¢ cult skill distinction, it is important to emphasize that the

statement, �there are many studies, which taken together as a whole indicate that people

are overcon�dent�is a very di¤erent, and weaker, statement than �there are many studies,

each of which individually indicate that people are overcon�dent�.

We emphasize that our goal is not so much to provide a concrete explanation for the

better-than-average data as much as it is to show that the data has been misinterpreted.

Thus, we have argued that even making the extreme, and possibly unrealistic, assumptions

that everybody knows the distribution of types in the population exactly, that they use
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Bayes�rule perfectly, and that the subject pool is arbitrarily large, apparently overcon�dent

data can be generated. There is no need for recourse to errors of any kind. At the same time,

in keeping with our goal, we have accepted the experimental as given, although criticisms

could be made.42

Some psychologists will reject our approach out of hand, on the prior grounds that in-

dividuals do not use Bayes� rule and, for that matter, may not even understand simple

probability. Even for these researchers, however, the basic challenge of this paper remains:

To indicate why a �nding that a majority of people rank themselves above the median is

indicative of overcon�dence. If such a �nding does not show overcon�dence in a Bayes�

rational population, there can be no presumption that it indicates overcon�dence in a less

rational population.

9 Appendix

Proof of Proposition 1. We present the proof for the case in which the type space and

the signal space are �nite; the proof when either is in�nite is technically more involved, but

the essential reasoning is the same.

Let p describe the distribution of types in the population. Suppose that person i is of type

�̂
i
; p
�
�̂
i
�
> 0; and that i has received the signal si. Since the posterior of i is degenerate,

there is a e�i such that
Pr
�e�i j si� = 1,

Pr
�
si j e�i�Pr�e�i�Pn

i=1 Pr
�
si j �i

�
Pr
�
�i
� = 1

, 8� 6= e�is.t. p (�) > 0, Pr �si j �i� = 0:
Since only type e�i receives the signal si with strictly positive probability, we have �̂i = e�i.
Thus, if beliefs are generated by a signalling model and these beliefs are degenerate, they

are correct, and it cannot be that more than half the population believes it is better than

the median.

Proof of Theorem 1. Fix the population median data that is to be rationalized,

1 > x > 1=2 and �x y < 1
2
� x

1+x
: We now de�ne the elements of a symmetric signalling

model that will �, �, and  rationalize the population data x. The signalling structure

consists of the signal space S = f0; 1g, the type space� =
�
3x�1
2
; x; 1+x

2

	
, and the probability

42For instance, most researchers fail to determine whether subjects are comparing themselves to the

population median or mean. Also, the ecological validity of many experiments in unclear. In a slightly

di¤erent context Gigerenzer et al. (1997) write �there is apparently not a single study on con�dence in

knowledge where a reference class has been de�ned and a representative (or random) sample of general-

knowledge questions has been drawn from this population.�
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distributions f� (1) = �. The types are distributed in the population according to the prior p,

which assigns probability 2y to x, and 1
2
� y to each of 3x�1

2
and 1+x

2
. The expected fraction

of people who observe s = 1 is x. A person that observes 1 has a posterior belief given by

p (� j 1) =

8><>:
1+x
2x

�
1
2
� y
�

� = 1+x
2

2y � = x
3x�1
2x

�
1
2
� y
�
� = 3x�1

2

:

We now check that this posterior distribution (strictly) �rst order stochastically dominates

the prior:

p

�
1 + x

2
j 1
�

=
1 + x

2x

�
1

2
� y
�
>
1

2
� y = p

�
1 + x

2

�
p (x j 1) = 2y = p (x)

p

�
3x� 1
2

j 1
�

=
3x� 1
2x

�
1

2
� y
�
<
1

2
� y = p

�
3x� 1
2

�
Thus, the population ranking data x can be -rationalized.

To see that the population ranking data x can be �-rationalized, notice that the posterior

mean of a person who observes 1 is strictly larger than the prior mean, x, which is also the

prior median.

To see that the population ranking data x can be �-rationalized, notice that the posterior

median of a person that observes 1 is (1+x)
2
, since

p

�
1 + x

2
j 1
�
>
1

2
, 1 + x

2x

�
1

2
� y
�
>
1

2
, 1

2
� x

1 + x
> y

by construction. Furthermore, (1+x)
2
> x.

Proof of Theorem 2. Pick any 1 > x; q > 1=2. Let the signalling structure be given

by S = f0; 1g, � =
�
3x�1
2
; x; 1+x

2

	
, and f� (1) = �. On �, de�ne a probability distribution

p that assigns probability 2q � 1 to x, and 1 � q to each of 3x�1
2
and 1+x

2
. Notice that the

fraction of the population whose type is at most x is q.

An observation of 1 occurs with probability x. A person that observes 1 has a posterior

belief given by

p (� j 1) =

8><>:
1+x
2x
(1� q) � = 1+x

2

2q � 1 � = x
3x�1
2x
(1� q) � = 3x�1

2

and an expected type that is strictly larger than x. Therefore, the expected fraction of people

who will have a mean type strictly greater than the fraction q of the population is x.

The case 0 < x; q < 1
2
is symmetrical, while the remaining cases are easy.

We prove necessity in Theorem 3 with a lemma that will be used elsewhere.
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Lemma 1 A fraction y or greater of a population can rationally believe that there is at least
a probability q that their types are: strictly better than the worse type in the top x% of the

population only if qy � x; weakly better than a type �� such that p (� � ��) = x only if qy � x;
weakly worse than a type �� such that p (� � ��) = x only if qy � x

Proof. For the �rst claim, note that given p, the worse type in the top x% is �� =

min fz : p (� � z) � 1� xg, which implies p (� > ��) � x: Let Sw � S be the set of signals s
such that p (� > �� j s) � q; and let F denote the marginal distribution over signals so that
y = F (Sw). Then,

x � p (� > ��) =
Z
p (� > �� j s) dF (s) �

Z
Sw

p (� > �� j s) dF (s) �
Z
Sw

qdF (s) = qy:

For the second claim, let S�w � S be the set of signals s such that p (� � �� j s) � q; and
let F denote the marginal distribution over signals so that y = F (S�w). Then,

x = p (� � ��) =
Z
p (� � �� j s) dF (s) �

Z
S�w

p (� � �� j s) dF (s) �
Z
S�w

qdF (s) = qy:

The third claim is analogous to the second, and omitted.

We prove Theorem 3 using the following lemma, which we prove below.

Lemma 2 Let �k be the simplex in Rk : �k =
�
x 2 Rk : xi 2 [0; 1] ; i = 1; :::; k;

P
xi = 1

	
.

Fix x 2 �k and suppose that

kP
j=i

xj � 2

k
(1 + k � i) , i =

�
k + 1

2

�
; :::; k and

iP
j=1

xj � 2

k
i, i = 1; :::;

�
k � 1
2

�
Then there exists a k � k matrix P; such that xP =

�
1
k
; :::; 1

k

�
; and for pi the ith row of P;

pi 2 �k;
Pi

j=1 p
i
j � 1

2
and

Pk
j=i p

i
j � 1

2
:

Proof of Theorem 3. Necessity. To prove necessity, simply apply claims 2 and 3 of
Lemma 1 with q = 1=2 and x = i=k for i = 1; 2; ::; k.

Su¢ ciency. Let P , pi be as in Lemma 2. Consider the following simple signalling

structure, S = f1; 2; :::; kg, � = [0; k], the distribution of the population is uniform over

the type space, and types in k�cile j observe signal i with probability fj (i) = kpijxi, for

i; j = 1; :::; k.

Note the following:

1)

Pr
�
si
�
=
P

j Pr
�
si j k � cile j

�
Pr (j) =

P
j kp

i
jxi
1

k
=
P

j p
i
jxi = xi

P
j p

i
j = xi,
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so that a fraction xi of the population see the signal j.

2)

Pr (� 2 k � cile j j s = i) = Pr (si j j) Pr (j)
Pr (si)

=
kpijxi

1
k

xi
= pij,

so that an individual who sees the signal i, ascribes the probability pij to being in k�cile j.
3) Since

Pi
j=1 Pij =

Pi
j=1 p

i
j � 1

2
and

Pk
j=i Pij =

Pk
j=i p

i
j � 1

2
, the median type of an

individual that observes signal i is in k�cile i.
1), 2), and 3) together imply the su¢ ciency part of the Theorem.

Proof of Lemma 2. Fix an x 2 �k. We say that r 2 �k can be justi�ed if there exists

a k � k matrix Q; such that xQ = r; and for qi, the ith row of Q, qi 2 �k,
Pi

j=1Qij � 1
2

and
Pk

j=iQij � 1
2
: Let R be the set of distributions that can be justi�ed. Note that R is

non-empty, since x itself can be justi�ed by the identity matrix. Furthermore, R is closed

and convex. We need to show that
�
1
k
; :::; 1

k

�
2 R.

Suppose not. Then, since f (t) =
t� � 1

k
; :::; 1

k

�2 is a strictly convex function, there is
a unique

�
1
k
; :::; 1

k

�
6= r = argmint2R f (t). Let Q be a matrix that justi�es r.

Since r 6=
�
1
k
; :::; 1

k

�
there exists some ri 6= 1

k
, and since r 2 �k, there must be some

i for which ri > 1
k
, and some i for which ri < 1

k
. Let i� = max

�
i : ri 6= 1

k

	
and i� =

min
�
i : ri 6= 1

k

	
.

Step 1: We have ri� ; ri� <
1
k
.

Suppose instead that ri� > 1
k
(a similar argument establishes that ri� <

1
k
). Then, for all

j > i�, rj = 1
k
and for some i < i�; ri < 1

k
. Let ei = max�i : ri < 1

k

	
: We show that for all

i > ei (a) for any j such that j � ei or j > i, either xj = 0 or Qji = 0; (b) either xi = 0 orPk
j=iQij =

1
2
:

To see (a) �x an i0 >ei and suppose xj0 > 0 and Qj0i0 > 0 for some j0 �ei or j0 > i0. De�ne
the matrix eQ by eQj0ei = Qj0ei+"Qj0i0, eQj0i0 = (1� ")Qj0i0, and for all (f; g) =2 n(j0; i0) ;�j0;ei�o,eQfg = Qfg . We have

For i 6= j0,
Pi

j=1
~Qij =

Pi
j=1Qij � 1

2
and

Pk
j=i

~Qij =
Pk

j=iQij � 1
2

If j0 �ei, Pj0

j=1
~Qj0j =

Pj0

j=1Qij � 1
2
and

Pk
j=j0

~Qij =
Pk

j=iQij + "Qj0i0 � "Qj0i0 � 1
2

If i0 < j0,
Pj0

j=1
~Qj0j =

Pj0

j=1Qij + "Qj0i0 � "Qj0i0 � 1
2
and

Pk
j=j0

~Qij =
Pk

j=iQij � 1
2

9>=>; (i)
For " su¢ ciently small, de�ne er = x eQ.
We have erei = rei + xj0"Qj0i0, eri0 = ri0 � xj0"Qj0i0, and for i =2

n
i0;eio, eri = ri. ThereforePk

i=1 eri =Pk
j=1 ri = 1. For small enough ", 1 � eri0 � 0 for all i, since xj0 ; Qj0i0 > 0 implies

that ri0 > 0. Hence er 2 �k and, given (i), er 2 R.
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We now show that f (~r) < f (r).

f (~r)� f (r) =

�
rei + xj0"Qj0i0 � 1

k

�2
�
�
rei � 1

k

�2
+

�
ri0 � xj0"Qj0i0 �

1

k

�2
�
�
ri0 �

1

k

�2
= (xj0"Qj0i0)

2 + 2xj0"Qj0i0

�
rei � 1

k

�
+ (xj0"Qj0i0)

2 � 2xj0"Qj0i0
�
ri0 �

1

k

�
= 2 (xj0"Qj0i0)

�
xj0"Qj0i0 + rei � 1

k
� ri0 +

1

k

�
= 2 (xj0"Qj0i0) [xj0"Qj0i0 + rei � ri0 ]

Recall that r~{ < 1
k
, and since i0 >ei, ri0 � 1

k
. Hence, for " su¢ ciently small, [xj0"Qj0i0 + rei � ri0 ] <

0. We have a contradiction, since, by de�nition r = argmint2R f (t).

To see (b), suppose that for some i0 > ei we have x0i0 > 0 and
Pk

j=i0 Qi0j >
1
2
. Pick

some j0 � i0 with Qi0j0 > 0: For " su¢ ciently small, de�ne eQ by eQi0ei = Qi0ei + "Qi0j0,eQi0j0 = (1� ")Qi0j0 , and for all (f; g) =2 n(i0; j0) ;�i0;ei�o, eQfg = Qfg . De�ne er = x eQ. As
before, er 2 R and f (~r) < f (r), a contradiction.

Given (a) and (b), and recalling the de�ntion of ei, we have
k �ei
k

<
Pk

t=ei+1 rt =
kX

t=ei+1
kX
j=1

xjQjt

=
kX

t=ei+1
kX

j=ei+1
xjQjt (by (a), j � ~{ implies xj = 0, or Qjt = 0)

=
kX

j=ei+1
xj

kX
t=ei+1

Qjt =
kX

j=ei+1
xj

kX
t=j

Qjt (by (a), j > t > ~{ implies xj = 0, or Qjt = 0)

=
kX

j=ei+1
xj
2
(by (b) either xj = 0 or

kX
t=j

Qjt =
1

2
)

� k �ei
k

(by assumption of the Lemma)

Thus we have a contradiction.

Step 2: From Step 1 there exists an bi, i� < bi < i�, such that rbi > 1
k
. Since rbi =Pk

j=1 xjQjbi, for some j� Qj�bi > 0. We now show that this leads to a contradiction.
Consider a small enough ".

If j� < bi, de�ne eQ by eQj�bi = (1� ")Qj�bi , eQj�i� = Qj�i� + "Qj�bi, and for all (j; h) =2n�
j�;bi� ; (j�; i�)o, eQjh = Qjh. If j� > bi; de�ne eQ by: eQj�i� = Qj�i� + "Qj�bi, eQj�bi =

(1� ")Qj�bi, and for all (j; h) =2
n�
j�;bi� ; (j�; i�)o, eQjh = Q. In either case, for all i 6= j�;

~Qij = Qij so
Pi

j=1
~Qij � 1

2
and

Pk
j=i

~Qij � 1
2
; for i = j� if j� <bi; Pi

j=1
~Qij =

Pi
j=1Qij � 1

2

and
Pk

j=i
~Qij =

Pk
j=iQij � "Qj�bi + "Qj�bi � 1

2
; for i = j� if j� > bi; Pi

j=1
~Qij =

Pi
j=1Qij �
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"Qj�bi + "Qj�bi � 1
2
and

Pk
j=i

~Qij =
Pk

j=iQij � 1
2
. For ~r = x eQ it is easy to show (as in Step

1) that f (er) < f (r) �a contradiction.
If j� = bi, Qj�j� > 0 and so

Pj�

j=1 Qj�j > 1=2 or
Pk

j=j� Qj�j > 1=2. Suppose thatPj�

j=1 Qj�j > 1=2 (an analogous argument can be made if
Pk

j=j� Qj�j > 1=2). De�ne eQ
by eQj�i� = Qj�i� + "Qj�j�, eQj�j� = (1� ")Qj�j�, and for all (j; h) =2 f(j�; j�) , (j�; i�)geQjh = Qjh. One can then verify that for small enough "; for all i;

Pi
j=1

~Qij � 1
2
andPk

j=i
~Qij � 1

2
. De�ning ~r = x eQ, we obtain f (er) < f (r) �a contradiction.

This concludes the proof.

Proof of Theorem 4. Let J = fj 2 f1; :::; kg jxj > 0g and write J = fs1; :::srg. We
de�ne a signalling model with n people, where n = ak for a 2 N; and a > 3k, individual i
is of type �i; and the set of signals is fs1; :::srg. De�ne f�n�r+j (sj) = 1 for j = 1; ::; r. For
i = 1; :::; n�r, j = 1; 2; :::; r de�ne f�i (sj) so that 1n

Pn
i=1 f�i (sj) = xsj . We now describe the

types �i in greater detail. First we �x any numbers �i such that �i is strictly increasing in i

for i = 1; :::; n�r and n�1
n
�n�r < �1. Considering only individuals 1; :::; n�k, for i = 1; :::; k,

let mi be a median type of k-cile i (the kth k-cile is r members short of nk ).

Note that for j = 1; :::; r, p (� = �n�r+jjs = sj) =
1
n

xsj
� 1

n
. Therefore,

Pn�r
i=1 p (� = �ijs = sj) �i �Pn�r

i=1 p (� = �ijs = sj) �n�r = �n�r
Pn�r

i=1 p (� = �ijs = j) � �n�r n�1n < �1 < msj . Set �n�r+j
so thatE (�js = sj) =

Pn
i=1 p (� = �ijs = sj) �i =

Pn�r
i=1 p (� = �ijs = sj) �i+p (� = �n�r+jjs = sj) �n�r+j �

msj and �n�r+j 6= �i for all i 6= n�r+j. Note that the types which form each k-cile may have
now shifted slightly, since we may have �n�r+j < �n�r for some j. However, since n > 3k2;

the number of types in each k�cile is larger than 3k, so that msj is still in k-cile sj.

A person who sees signal sj has mean type E (�js = sj) � msj . Therefore, a person who

sees signal sj has mean type in the jth k�cile. Furthermore, a fraction xsj of the population
sees signal sj, and we are done.

Proof of Theorem 5. The proofs of Theorems 1 and 2 used symmetric testing models,

in which a signal of 1 is �pass the test�. Therefore, those proofs also prove this theorem.

Proof of Proposition 2. Suppose data
�
"; "; 1

2
� "; 1

2
� "
�
= (x1; x2; x3; 1� x2 � x3)

can be �-rationalized by a signalling structure � = (S;�; f) that satis�es mlrp. It can be

shown that it is w.l.o.g. to assume that S = (1; 2; 3; 4) and that a person who sees signal

i = 1; 2; 3; 4 declares himself to be of type i. Since � satis�es mlrp, f1 (4) � f2 (4) � f3 (4).
Since the signalling structure rationalizes the data, the expected number of people who

observe signal j is xj. Hence

4X
i=1

fi (1) = 4x1;
4X
i=1

fi (2) = 4x2 and
4X
i=1

fi (3) = 4x3
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Since those who observe signal s = 4 believe their median type is in quartile 4, we have

1� f4 (1)� f4 (2)� f4 (3)
4�

P4
i=1 fi (1)�

P4
i=1 fi (2)�

P4
i=1 fi (3)

� 1

2

4X
i=1

fi (1) +

4X
i=1

fi (2) +

4X
i=1

fi (3) � 2 + 2f4 (1) + 2f4 (2) + 2f4 (3) (1)

Since those who observe signal s = 3 believe their median type is in quartile 3, we have

f3 (3) + f4 (3)P4
i=1 fi (3)

� 1

2

2f3 (3) + 2f4 (3) �
4X
i=1

fi (3) (2)

f3 (3) + f4 (3) � f1 (3) + f2 (3) (3)

Inequalities (1) and (2) together imply

2f3 (3) + 2f4 (3) �
4X
i=1

fi (3) � 2 + 2f4 (1) + 2f4 (2) + 2f4 (3)�
4X
i=1

fi (1)�
4X
i=1

fi (2)

f3 (3) � 2 + f4 (1) + f4 (2)�
P3

i=1 fi (1)�
P3

i=1 fi (2)

2
:

Thus

f3 (4) = 1� f3 (1)� f3 (2)� f3 (3)

� 1� f3 (1)� f3 (2)�
2 + f4 (1) + f4 (2)�

P3
i=1 fi (1)�

P3
i=1 fi (2)

2

=
f1 (1) + f2 (1)� f3 (1)� f4 (1) + f1 (2) + f2 (2)� f3 (2)� f4 (2)

2

Given that f1 (4) � f2 (4) � f3 (4), we have

f1 (4) � f2 (4) � f3 (4) �
f1 (1) + f2 (1)� f3 (1)� f4 (1) + f1 (2) + f2 (2)� f3 (2)� f4 (2)

2
(4)

From 4, and since
P4

j=1 fi (j) = 1 for any i,

f1 (3) + f2 (3) = 2� (f1 (1) + f2 (1))� (f1 (2) + f2 (2))� (f1 (4) + f2 (4))
� 2� (f1 (1) + f2 (1))� (f1 (2) + f2 (2))

� (f1 (1) + f2 (1)� f3 (1)� f4 (1) + f1 (2) + f2 (2)� f3 (2)� f4 (2))
= 2� 2 (f1 (1) + f2 (1))� 2 (f1 (2) + f2 (2)) + f3 (1) + f4 (1) + f3 (2) + f4 (2) (�)

Since
P4

i=1 fi (j) = 4xj for any j we have that

(�) = 2� 2 (4x1 � f3 (1)� f4 (1))� 2 (4x2 � f3 (2)� f4 (2)) + f3 (1) + f4 (1) + f3 (2) + f4 (2)
= 2� 8x1 � 8x2 + 3 (f3 (1) + f4 (1) + f3 (2) + f4 (2))
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Given 3, we obtain

f3 (3) + f4 (3) � f1 (3) + f2 (3)

� 2� 8x1 � 8x2 + 3 (f3 (1) + f4 (1) + f3 (2) + f4 (2)) � 2� 8x1 � 8x2:

4x3 =

4X
i=1

fi (3) � 4� 16 (x1 + x2)

4

�
1

2
� "
�

� 4� 16 (2")

" � 1

14

Proof of Theorem 6. Let p be the distribution of types in the population and Pr (s)

be the probability that someone sees the signal s. We have

X
s

Pr (s) p (� = tjs) =
X
s

(X
�

p (�) f� (s)

)
ft (s) p (t)P
� f� (s) p (�)

=
X
s

ft (s) p (t) = p (t)

Let �t (s) =
P

t tp (� = tjs). Then

E (�t (s)) =
X
s

Pr (s) �t (s) =
X
s

Pr (s)

 X
t

tp (� = tjs)
!

=
X
t

t
X
s

Pr (s) p (� = tjs) =
X
t

tp (t) = E (p) :

By de�nition E (p) = m. Hence, E (�t (s)) = E (p) = m, and E
�
1
n

Pn
i=1
�ti
�
= m; as was to

be shown.

Proof of Theorem 7. Necessity is proved by the �rst claim in Lemma 1. For su¢ ciency
take any q; y and x such that qy � x: Let the type space be � = [0; 1] ; let the population
be distributed uniformly on [0; 1] ; and let S = f0; 1g :
If y � x let the signalling structure be such that f� (1) = y�x

1�x for � � 1�x; and f� (1) = 1
for � > 1 � x. Recall that a type z is in the top x% of the population if p (� � z) � 1 � x;
so the worst type in the top x% is 1� x and p (� > 1� x) = x: Then,

p (� > 1� x j s = 1) =
Pr (1 j � > 1� x) p (� > 1� x)

Pr (1 j � > 1� x) p (� > 1� x) + Pr (1 j � � 1� x) p (� � 1� x)
=

x

x+ (1� x) y�x
1�x

=
x

y
� q:

If y < x; let the signalling structure be such that f� (1) = 0 for � � 1� y; and f� (1) = 1
for � > 1� y. Then, y% observe signal 1 and

p (� > 1� x j s = 1) = 0 + p (� > 1� y j s = 1) = y=y = 1 � q
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as was to be shown.

Proof of Proposition 4. Consider a signalling structure (S;� = (�1; :::; �n) ; f�) and

population distribution p with median m and a fraction � of types strictly greater than m.

For any � < 1
2
and distribution q over � that is �-close to being degenerate, let �� (q) 2 � be

such that q (�� (q)) � 1� �. Note that �� (q) is the median of q. Also, there exists a �� such
that if � < �� then for any distribution q whose mean is greater than m, we have �� (q) > m,

and for any distribution q whose mean is less than or equal to m, we have �� (q) � m. Set t
and � < �, such that � < (1� �) (� + "+ t� 1) and 1� � < (1� �) (t� � + ") :
Let (p j s) denote the posterior of p given s; and de�ne S� ={s 2 S : (p j s) is �-close

to degenerate}, Ŝm = fs 2 S : median of (p j s) > mg, Sm = fs 2 S� : �� ((p j s)) > mg,
Ŝ� = fs 2 S : (p j s) has mean > mg and S� = fs 2 S� : (p j s) has mean > mg.
Suppose, by way of contradiction, that P (S�) � t and P

�
Ŝm
�
= xm � �+ ". Note that

P (Sm) � xm � (1� t). We have

� = P f� > mg =
X

s
P (� > m j s)P (s) �

X
Sm
P (� > m j s)P (s)

�
X

Sm
(1� �)P (s) = (1� �)

X
Sm
P (s) = (1� �)P (Sm) � (1� �) (xm � 1 + t)

� (1� �) (� + "� 1 + t)

which is a contradiction. A similar argument establishes a contradiction if we assume that

P
�
Ŝ�
�
= x� � � + ", (with S� playing the role of Sm).

Let Ŝm = fs 2 S : median of (p j s) � mg, Sm = fs 2 S� : �� ((p j s)) � mg and suppose
that P

�
Ŝm
�
= xm � � � ". Then,

1� � = P f� � mg =
X

s
P (� � m j s)P (s) �

X
Sm
P (� � m j s)P (s)

�
X

Sm
(1� �)P (s) = (1� �)

X
Sm
P (s) = (1� �)P (sm) � (1� �) (1� xm � 1 + t)

� (1� �) (t� xm) � (1� �) (t� � + ") ;

which is a contradiction. Again, the argument for x� is similar.

The proof of Theorem 8 is a corollary of the following lemma, versions of which are well

known (see Wolfstetter (1999) Chapter 4). We will use the strict inequalities in this version

of our lemma, and in addition we do not require that the probability distribution has a

density.

Lemma 3 The posterior after passing a test fosd the prior, which fosd the posterior after
failing the test. Moreover, letting n denote a fail, y a pass, and letting p be the population

distribution, for any x such that 1 > p (� � x) > 0,

p (� � x j n) > p (� � x) and p (� � x) > p (� � x j y)
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Proof of Lemma 3. We only compare the prior to the posterior after n; since the

comparison between the prior and the posterior after y is symmetric. From Bayes�Rule we

must show that

p (� � x j n) =

R x
0
(1� z) dp (z)R 1

0
(1� z) dp (z)

�
R x
0
dp (z) = p (� � x)

,
R x
0

"
1� zR 1

0
(1� z) dp (z)

� 1
#
dp (z) � 0

,
R x
0

E (�)� z
1� E (�)dp (z) � 0 (5)

and that the inequality is strict whenever p (� � x) > 0. First notice that for any x �
E (�), the last inequality is trivially satis�ed. The integrand in the last inequality is strictly

decreasing in z, and is 0 for z = E (�) : If for some x > E (�) we hadR x
0

E (�)� z
1� E (�)dp (z) < 0; (6)

then for any x0 > x we would also haveR x0
0

E (�)� z
1� E (�)dp (z) < 0;

since E(�)�z
1�E(�) < 0 for all z > x > E (�). But this contradicts

R 1
0
E(�)�z
1�E(�)dp (z) =

E(�)�E(�)
1�E(�) dp (z) =

0:

Now let us turn to the strict inequalities. Pick any x � E (�) ; with 1 > p (� � x) > 0: If
x = E (�) ; we know that p (� < x) > 0 (because p is non degenerate), and since the integrand

in inequality (5) is strictly positive for all z < E (�), we must have that the integral is strictly

positive, as was to be shown. If x < E (�) ; the strictly positive integrand and p (� � x) > 0
ensure that the integral is also strictly positive.

Pick any x > E (�) ; and assume thatR x
0

E (�)� z
1� E (�)dp (z) � 0:

Since 1 > p (� � x) holds, we must have p (� > x) > 0: But then, E(�)�z
1�E(�) < 0 for all z � x >

E (�) and p (� > x) > 0 imply that

0 =
R 1
0

E (�)� z
1� E (�)dp (z) =

R x
0

E (�)� z
1� E (�)dp (z) + inf

w>x

R 1
w

E (�)� z
1� E (�)dp (z)

� 0 + inf
w>x

R 1
w

E (�)� z
1� E (�)dp (z) < 0

which is a contradiction.
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Proof of Theorem 8. Let y denote passing the test, and n denote failing it. We will

develop the arguments for the posterior after y; since those for n are analogous. By Lemma

3, the posterior p (� j y) strictly fosd the population distribution, which implies that the
posterior mean is strictly larger than the prior mean, which is also the median by symmetry.

Let m be the population median. By Lemma 3, the fraction E (�) who observe y consider

that their median type is weakly larger than the population median. Suppose �rst that the

population distribution has a density. Then,

p (� � m j y) =
R m
0
�dp

E (�)
<
m
R m
0
dp

E (�)
=
mp (� � m)
E (�)

= p (� � m) = 1

2

so that m is no longer the median belief of a person who has seen y. As we know, the

person�s median belief is weakly larger than m, so in fact it must be strictly larger.

If the distribution does not have a density, assume that p (m) is small enough that

p (m)m+ p (� < m)E (� j � < m) < m=2

Then,

p (� � m) =
Z m

0

dp � 1

2
>
p (m)m+ p (� < m)E (� j � < m)

m
=

R m
0
�dp

E (�)
= p (� � m j y)

and again which establishes that m is not a median of the posterior after y:
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