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Abstract. This paper is concerned with the question of defining the bargaining set, a cooperative game 

solution, when cooperation takes place in a dynamic setting. The focus is on dynamic cooperative games in 

which the players face (finite or infinite) sequences of exogenously specified TU-games and receive 

sequences of imputations against those static cooperative games in each time period. Two alternative 

definitions of what a ‘sequence of coalitions’ means in such a context are considered, in respect to which 

the concept of a dynamic game bargaining set may be defined, and existence and non-existence results are 

studied. A solution concept we term ‘subgame-stable bargaining set sequences’ is also defined, and 

sufficient conditions are given for the non-emptiness of subgame-stable solutions in the case of a finite 

number of time periods. 

 

 

1. Introduction and Review of Literature 

The study of repeated non-cooperative games – that is, the study of games whose 

structure is given by a discrete finite or infinite temporal framework in which at each 

time period a non-cooperative game is played and payoffs are determined accordingly – 

is one of the most richly studied topics in game theory. It has a history stretching back 

over half a century – the celebrated Folk Theorem of repeated non-cooperative game 

theory, to take just one example, was proved in the 1950s – and has influenced theories in 

several different disciplines, including political science, philosophy and evolutionary 

theory. 

 

In contrast to the abundance of research in repeated non-cooperative games, to date the 

study of the analogous situation, in which the game played in each time period is a 

cooperative game, has been relatively sparse and comparatively quite recent. This is 

perhaps surprising, because the study of repeated cooperative games can be motivated 

just as readily as that of repeated non-cooperative game – many, if not most, cooperative 

endeavours occur more than once, or repeatedly over time. Examples can be easily 

adduced, such as multi-year profit-sharing arrangements, cost-sharing agreements, supply 

relationships, labour contracts, renewable treaty negotiations, and so forth. The insights 

gained from further progress in this topic should be expected to have broad implications. 

 

To the best of our knowledge, the first papers devoted entirely to the systematic study of 

cooperative games played iteratively appeared in 2000, independently by [Oviedo; 2000] 

and [Kranich, Perea, Peters; 2001]. To those pioneering efforts have been added 
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contributions by [Kranich, Perea, Peters; 2005], [Predtetchinski et al; 2002, 2004, 2006] 

and [Predtetchinski; 2007] and [Breden; 2007]. 

 

The above papers in the main concentrate on extensions, to the repeated setting, of the 

cooperative solution concepts the core and the Shapley value. It is the intention of this 

paper to contribute to the literature by considering to the bargaining set solution concept 

in the repeated setting, largely inspired by the frameworks for studying the core in 

repeated situations appearing in [Oviedo; 2000] and [Kranich, Perea, Peters; 2005].   

 

Aside from the concentration on the bargaining set, as opposed to the core, this paper also 

differs from these other papers in the following way: [Oviedo; 2000] assumes throughout 

that paper that the underlying stage-games are super-additive – we study both super-

additive and non-super-additive games; [Kranich, Perea, Peters; 2005]  restrict their study 

to finite numbers of time periods, and to what is defined in our paper as ‘repeated 

coalitions’, as opposed to ‘dynamic coalitions’. On the other hand, [Kranich, Perea, 

Peters; 2005] work with general time-dependent utility functions. In this paper, however, 

similar to the case in [Oviedo; 2000], the change in the utilities of payoffs over time is 

determined by a constant and universal discount factor tδ , 10 << δ . 

 

 

2. Preliminaries 

A (static) cooperative transferable utility (TU) game consists of a pair ),( vN  such that N 

is a set of n elements, termed players, where n is a positive integer and R→Nv 2: , 

0)( =∅v  is termed the characteristic function of the game. A coalition is a subset of N. 

For any coalition S, S
R denotes the S –dimensional Euclidean space in which the 

dimensions are indexed by the members of S. Given any n-tuple x and coalition NS ⊆ , 

∑ ∈
≡

Si ixSx )( .  

 

If the characteristic function satisfies, for all coalitions NTS ⊆, ,  

 

∅=∩+≥∪ TSTvSvTSv  if     )()()(  

 

then the game is superadditive. Superadditivity will be assumed here only when 

explicitly noted. On the other hand, it will be assumed without loss of generality that 

0)( ≥Sv  for all functions and all characteristic coalitions.  

  

A coalition structure for NS ⊆  is a partition of S. We will denote by )(SC , where 

NS ⊆ , the set of all coalition structures over S. If R  is a coalition structure for N, we 

will write, by a slight abuse of notation, )(iR  to stand for the element R∈Q  such that 

Qi∈ . 
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If ),( vN  is a game and R  is a coalition structure for N, the triple ),,( RvN  is a game 

with coalition structure. For any ),,( RvN ,  

 

} allfor  })({ and ,every for  )()(|{),,( NiivxSSvSxxvNI i

N ∈≥∈≤∈= RR R  

 

denotes the set of imputations of ),,( RvN . Given a coalition structure R  for S, two 

players Sji ∈,  will be said to be partners with respect to R , denoted ji
R

~ , if both 

Pi∈  and Pj∈  for some R∈P .  

 

Given Nlk ∈, , with lk ≠ , denote }|}{\{)( SklNSTNT klkl ∈⊆== . Then an objection 

of k against l at ),,( RvNIx∈ is a pair ),( yP  satisfying 

 

klTP∈ , Py R∈ , ii xy ≥  for all Pi∈ , kk xy >  and )()( PvPy ≤ . 

 

A counter-objection to an objection ),( yP  of k against l at x is a pair ),( zQ  satisfying 

 

lkTQ∈ , Qz R∈ , ii xz ≥  for all Qi∈ , ii yz ≥  for all QPi ∩∈  and )()( QvQz ≤ . 

 

An imputation ),,( RvNIx∈  is stable if for every objection at x there exists a counter-

objection. The (static) bargaining set ),,( RvNM  is defined by  

 

}stable is |),,({),,( xvNIxvNM RR ∈= . 

 

A game without transferable utility (NTU game) is a pair ),( VN  where SSV R⊆)( for 

each coalition S, and ∅=∅)(V , along with the following additional conditions: 

 

i. for all ∅≠S , )(SV is non-empty and closed 

ii. if )(SVx∈  and ii xy ≤  for all Si∈ , then )(SVy∈  

iii. for every Ni∈  there is an R∈im  with }|{})({ ii mxxiV ≤∈= R , and, in 

addition 
ii

N mxxNV ≥∈∩ |{)( R  for all }Ni∈  is compact. 

 

An NTU game with coalition structure R  is denoted ),,( RVN . If NS ⊆ and SA R⊆ , 

eA  is the set of weakly Pareto optimal elements of A, that is  

 

|{ AxA
S

e ∈=  for all Ay∈  there exists Si∈  such that }ii yx ≥  

 

Denote eR RVVNX )(),,(
R

R ∈Π=  , ii vxXxVNI ≥∈= |{),,( R for all }Ni∈  and denote 

by ),,(),,(),,( RRR VNIVNXVNIX ∩= . 
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The definition of bargaining set for NTU games is as follows:  Let ),,( RVNIXx∈  and 

let Rlk ∈, , lk ≠ , for some R∈R . An objection of k against l is a pair ),( yP  such that  

 

klTP∈ , )(PVy∈ , and ii xy ≥  for all Pi∈ , with kk xy > . 

 

A counter-objection to an objection ),( yP  is a pair ),( zQ  such that 

 

lkTQ∈ , )(QVz∈ , PQPQ xz // ≥  and QPQP yz ∩∩ ≥ . 

 

An objection ),( yP  is justified if there is no counter-objection to ),( yP . A vector 

),,( RVNIXx∈  is stable if there is no justified objection at x, and the bargaining set of 

),,( RVN  is the set of stable vectors. 

 

 

3. Dynamic Games 

Turning to the intertemporal context, assume that time is divided into discrete time 

periods. Let m be either a non-negative integer or ω . If m is a finite integer, the relevant 

time periods are taken from },...,1,0{ mT = . If m is ω , T is ,...}1,0{ . To enable infinite and 

finite sequences to be dealt with in a unified manner as far as possible in this paper, a 

sequence of numbers written here as ),...,,( 10 mxxx  will be understood to stand for the 

infinite sequence ,...),( 10 xx  if m is ω . 

 

Fix N, a sequence of characteristic functions ),...,,( 10 mvvv=v , a coalition structure R , 

and a discount factor 10 << δ . Then ),1,,,( δ+mN Rv  will be termed a dynamic 

cooperative game. The special case in which there is a single characteristic function v 

such that vvt =  for all time periods t can, in analogy to what is customary in the non-

cooperative case, be called a repeated cooperative game based on the stage-game 

),,( RvN . In any case, for each integer mt ≤≤0 , ),,,( twN t
R  will refer to the static 

cooperative game defined by the characteristic function  

 

)()1()( SvSw ttt δδ−=  

 

 over N and R , and will be called the stage-game played at time t. The set of stage-game 

imputations at time t is defined
1
 by 

 

}every for  )()(|{),,,( RR ∈≤∈= QQwQxxtwNI tNt
R  

 

                                                 
1
 Note that we do not demand that each stage-game imputation satisfy individual rationality in its respective 

time period, thus enabling greater flexibility in the choice of stage-game imputations. Over-all individual 

rationality relative to the dynamic game, however, is required. 
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A sequence of vectors ),...,,( 10 mxxx=x  such that tx  is an imputation vector of the stage-

game ),,,( twN t
R  for each t and ∑∑ ==

≥
m

t

tm

t

t

i iwx
00

})({  for each player i, is an 

imputation sequence of the dynamic game ),1,,,( δ+mN Rv . The set of imputation 

sequences of the dynamic game  ),1,,,( δ+mN Rv  will be denoted by ),1,,,( δ+mN RvI . 

Given ),...,,( 10 mxxx=x , we will let ix  refer to the sequence of real numbers 

),...,,( 10 m

iii xxx , where t

ix  is the payoff given to player Ni∈ according to the imputation 

tx  at time t. We will also denote ∑= t

t

ii xx
v

, and ),...,,( 10 nxxxx
vvvv

= .  

 

Intuitively, a dynamic cooperative game is intended to model a situation in which a group 

of players are to play a sequence of cooperative games 1+m  times. At each time period, 

a stage-game imputation determines how much each player receives from that round of 

play.  

 

Analogous to the case of static cooperative games with coalition structures, it will be 

assumed here, at least intuitively, that within each coalition in the coalition structure 

R the players will contend with each other regarding their shares of the imputations, and 

that they will do so by presenting each other with potential objections and counter-

objections. In the dynamic game, however, we assume that each player cares only about 

the sum total of payoffs he or she receives over time, rather than particular imputations in 

each period – in other words, each player prefers an imputation sequence y  to x  

precisely when 
ii xy
vv

> .  

 

4. Dynamic and Repeated Coalitions and Bargaining Sets 

Again, in analogy with the static case, we assume that players communicate openly with 

each other and sign binding and enforceable contracts specifying coalition formation and 

accompanying imputations. But in dynamic games, the contracts are assumed to cover all 

the 1+m  time periods. In a static cooperative game, objections and counter-objections 

are defined against all possible coalitions containing one player but not another, but in the 

dynamic game setting one needs to consider sequences of coalitions, because an 

objection in the dynamic game raised by a player to a sequence of imputations might 

involve different coalitions in each time period. 

 

This requires new definitions. We consider here two different possibilities for what a 

‘sequence of coalitions’ may mean, and show that they have very different implications 

for solutions of dynamic-games. 

 

Denote by )(St
CR ∈  a coalition structure over NS ⊆ at time t, and then define a 

coalition structure sequence over S by ),...,,()( 10 mS RRR=R , over the 1+m  time 

periods, where each )(St
CR ∈ .  
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The main definitions focus on particular subsets of the set of all coalition structure 

sequences. Given a coalition structure sequence ),...,,()( 10 mS RRR=R , two players 

Sji ∈,  are dynamic partners with respect to )(SR  if there exists a sequence of players 

),...,( 1 kpp  and a set of coalition structures ),...,,( 1 12
GGG +k , where each ,...),( 10

RRG ∈l  

for 1+≤ kl , such that 1~ pi
1G

, 21 ~ pp
2G

, …, kk pp
kG

~1− , jp
kk 1G +

~ . A coalition 

structure sequence )(SR  is a dynamic coalition over S if for each pair Sji ∈, , i is a 

dynamic partner of j with respect to )(SR .  

 

The intuitive reasoning for this definition is as follows. A static coalition S is a group of 

players who are conceived of as signing a single-period contract to achieve together as 

partners the value )(Sv  and divide it amongst themselves. A dynamic coalition )(SR  

should intuitively be conceived of as a group of players S who sign a multi-period 

contract that determines a coalition structure in each period – i.e. it determines for each 

period who partners with whom in a standard coalition in that period. If )(SR  is not a 

dynamic coalition, then there are players in S who ‘do not need’ the other players in S in 

the sense that they can sign a multi-period contract amongst themselves without affecting 

the others in any way, neither with respect to the coalitions they form in each period nor 

with respect to their payoffs. 

 

The second type of coalition sequence is a subset of the set of dynamic coalitions. A 

repeated coalition over S is ),...,,()( 10 mS RRR=R  such that for each time period t, 

}{St =R  – in simpler words, in the repeated coalition the single-period coalition S is 

formed again and again in each and every time period. In this situation, S can be termed 

the base coalition of the repeated coalition )(SR . This perhaps corresponds more closely 

to the naïve view of what a multi-period coalition means – a group of players who agree 

in each time-period to cooperate together in the same coalition.  

 

Given R∈∈Rlk,  and ),1,,,( δ+∈ mN RvIx , a dynamic [respectively repeated] 

coalition objection of k against l at x  is a triple )),...,,(,...),,()(,( 1010 myyyPP == yDDR  

such that )(PR  is a dynamic [repeated] coalition, satisfying  

 

klTP∈  

 Pty R∈ for all },...,0{ mt∈  

ii xy
vv

≥  for all Pi∈  and kk xy
vv

>  

∑ =
≥

m

t

t

i iw
0

})({y
v

 for all Pi∈  

for each },...,0{ mt∈ , for each tD D∈ , )()( DwDy tt ≤  

 

A dynamic [repeated] coalition counter-objection to an objection )),(,( yPP R  of k 

against l at ),1,,,( δ+∈ mNI Rvx  is a triple )),...,,(,...),,()(,( 1010 mzzzQQ == zBBR  

such that )(QR  is a dynamic [repeated] coalition, satisfying 
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lkTQ∈   

Qtz R∈  for all },...,0{ mt∈  

ii xz ≥  for all Qi∈   

ii yz ≥  for all QPi ∩∈  

∑ =
≥

m

t

t

i iwz
0

})({
v

 for all Qi∈  

for each },...,0{ mt∈ , for each tB B∈ , )()( BwBz tt ≤   

 

A dynamic [repeated] coalition objection of player i for which player j has no dynamic 

[repeated] coalition counter-objection is a justified dynamic [repeated] coalition 

objection. A sequence ),1,,,( δ+∈ mNI Rvx  is dynamic [repeated] coalition stable if for 

each dynamic [repeated] coalition objection at x  there is a dynamic [repeated] coalition 

counter-objection. The dynamic [repeated] coalition bargaining set, is the set of all 

dynamic [repeated] coalition stable members of ),1,,,( δ+mN RvI .  

 

We now proceed to show by a series of examples that contemplation of cooperative 

dynamic games adds new and interesting considerations beyond those encountered in 

static cooperative games
2
:  

 

Example 1. Let 4=n  and the set of players be denoted by },,,{ QPAI . Consider a 

cooperative dynamic game with the stage game defined by },,{ QPIA=R  and 

48)()()( === AQvAPvIAv , 74)()( == IQvIPv . The value of every other possible 

coalition, including single-player coalitions and the grand-coalition, is equal to zero.  

 

The stage-game imputation )0;0;24,24(=x  is in the single-period stage-game bargaining 

set: any objection by I must necessarily involve either the coalition IP or IQ , but in 

either case, A can form a counter-objection by way of a coalition with whichever player 

was excluded in I’s objection; A is in an even weaker position than I with respect to 

justifiable objections.  

 

However, the 2-period imputation sequence ),( 10 xx=x , where )0;0;24,24)(1(0 δ−=x  

and )0;0;24,24()1(1 δδ−=x  is not in the dynamic coalition bargaining set of the dynamic 

game ),2,,,( δRvN  when 13/12>δ  – despite the fact that each single-period imputation 

is in the (standard) bargaining set when attention is limited to one period alone. Player I 

has the following justified dynamic coalition objection: for 2<ε , let the objection be the 

triple }),(,{ ySS R  where )(IPQS = , }),{},,({)( PIQQIPS =R  and 210 },{ ×∈= Syy Ry  is 

given by )0,50,24)(1(0 εεδ −+−=y  with )50,0,24()1(1 δδ−=y . Player A can offer no 

counter-objection. Any proposed counter-objection can give to either player Q or P at 

most the sum )2424)(1( δδ +− , which is insufficient to persuade either one to give up 

the greater reward offered by player I in his objection. 

                                                 
2
 Note that the dynamic game in each of these three examples is actually a repeated game, because the same 

characteristic function is used in each time period. 
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Example 2. Let 6=n , with the set of players N denoted by }6,5,4,3,2,1{ . Again consider 

a dynamic game with the stage game defined by }6,5,4,3,12{=R  and 2)12( =v , 

5)4,3,1( =v , 3)6,5,1( =v , 5)6,5,2( =v , 3)4,3,2( =v , 20)6,5()4,3( == vv . The value of 

every other possible coalition, including single-player coalitions and the grand-coalition, 

is equal to zero.  

 

Consider a 2-period dynamic game based on the stage-game ),,( RvN  with δ  extremely 

close to 1, and disregard the δ−1  multiplier, so that in effect we can think of 

),2,,,( δRvN  as ),,( RvN  repeated twice.  

 

We now show this dynamic game has an empty dynamic coalition bargaining set.  

 

Let x  be an imputation sequence in ),2,,,( δRvNI . Because 2)12( =v , 421 ≤+ xx . 

Suppose that 21 ≤x  and let 2/1<ε . Then player 1 has the objection }),(,{ yPP R  where 

)6,5,4,3,1(=P , })34,156{},56,134({)( =PR , and 210 },{ ×∈= Pyy Ry  is given by 

)10,10,5.02,5.02,1(0 εεε −−+=y  with )1,1,10,10,1(1 =y . Player 2 has no feasible 

counter-object – he or she cannot offer players 5 and 6 enough to counter-object by 

forming a coalition with them in both periods, and therefore needs to include players 3 

and 4 in a dynamic coalition, but there is no way that those player can be guaranteed an 

amount equal to what they are receiving under y .  

 

On the other hand, if 22 ≤x , player 2 has a symmetric justified objection }),(,{ zQQ R  

where )6,5,4,3,1(=Q , })56,234{},34,256({)( =QR , and 210 },{ ×∈= Qzz Rz  is given by 

)5.02,5.02,10,10,1(0 εεε −−+=z  with )10,10,1,1,1(1 =z . The conclusion is that the 

dynamic coalition bargaining set is empty. 

 

Example 3. Let 3=n , with the set of players N denoted by }3,2,1{ , and let the dynamic 

game be defined by the stage game as given by the coalition structure }3,12{=R , with 

0)123()3()2()1( ==== vvvv , 100)12( =v , 100)13( =v , 50)23( =v . The bargaining set 

of the one-period stage game consists of a single imputation, )0;25,75( . 

 

Repeat the game over three periods, with an arbitrary δ . Consider the imputation 

sequence given by ),,( 210 xxx=x , where )0;20,80)(1(0 δ−=x , )0;28,72()1(1 δδ−=x , 

and )0;39,61()1( 22 δδ−=x . Then it is the case that )},,,( twNIx tt
R∉  for all t = 0, 1, 2, 

but never the less, ),3,,,( δRvIx N∈ , because the sum total produced by players 1 and 2 

over the three periods is 175 units, which are then divided amongst themselves by 

granting player 1 three-quarters and player 2 one-quarter – exactly reflecting their relative 

‘bargaining strengths’ vis-à-vis objections and counter-objections. 
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These three examples show that, in general, the dynamic coalition bargaining set may be 

empty, and that even when it is non-empty it is possible for the every element in an 

imputation sequence to be in the stage-game bargaining set for its respective time period 

without the sequence itself being in the repeated coalition bargaining set, while 

conversely, even if every element in an imputation sequence fails to be in the in the 

stage-game bargaining set, the sequence itself might still be in the repeated coalition 

bargaining set. 

 

The reason that the dynamic coalition bargaining set may be empty stems from the 

following fact (a similar observation appears in (Kranich, Perea, Peters; 2005)): every 

cooperative dynamic game ),1,,,( δ+mN Rv  can be associated with a static non-

transferable utility coalitional game:  

 

Given NS ⊆ , m, v, and δ  as above, and ),...,,()( 10 mS RRR=R , a coalition structure 

sequence with each )(St
CR ∈ , define  

 

=))(( SRI  

} allfor  })({ and ,every for  )()( , , allfor |),...,,{( 10 iiwxPPwPxxtxxx
t

t

t

t

i

tttStm ∑∑ ≥∈≤∈ RR

 

 

Definition. The static NTU-game associated with a cooperative dynamic game 

),1,,,( δ+mN Rv  is given by ),( VN , with 

 

|),...,{()(
21

S

iii S
,SV R∈= xxx

vvv
 there is a )(SR with ))}(( SRIx∈  

 

where ∑= t

t

ii xx
v

 for each Si∈ . 

 

 

The following observation is nearly immediate from the definitions: 

 

Proposition 1. The dynamic coalition bargaining set of the dynamic cooperative game 

),1,,,( δ+mN Rv  is non-empty if and only if the bargaining set of its associated static 

NTU game is non-empty. 

 

Proof. Let ),1,,,( δ+∈ mNI Rvx  be in the dynamic coalition bargaining set of 

),1,,,( δ+mN Rv . Unravelling definitions, it follows that the vector 
N

iii N
, R∈= ),...,(

21
xxxx
vvvv

 is contained in ),,( RVNIX  of the associated NTU game. 

Suppose there is a justified NTU-objection ),( y
v

P  of player k against player l at x
v
. Then 

there is a coalition structure sequence over P, )(PR , such that 
klTP∈ , there is a 

))(( SRIy∈  corresponding to y
v
, and 

ii xy
vv

≥  for all Pi∈ , against which there is no 

counter-objection. But then )),(,( yPP R is a justified objection in the sense of the 
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dynamic coalition bargaining set of the TU-game ),1,,,( δ+mN Rv , which is a 

contradiction. The proof in the other direction is similar.  QED 

 

 

Given that NTU games in general do not have non-empty bargaining sets (see [Peleg; 

1963]), it is not surprising that the dynamic bargaining set of repeated TU-games may 

also be empty. 

 

In contrast to the dynamic coalition bargaining set, the repeated coalition bargaining set is 

guaranteed to be non-empty.  

 

Definition.  Given ),1,,,( δ+mN Rv  and  mt < , define ∑ =
=

m

tl

lt SwSq )()( . 

 

Definition. The static TU-game associated with a dynamic game ),1,,,( δ+mN Rv  is 

given by ),,( RqN , with 

 

∑ =
==

m

t

t SwSqSq
0

0 )()(:)(  

 

for every NS ⊆ .  

 

 

Definition. Given ),,( RqN  associated with ),1,,,( δ+mN Rv  and an element 

),,( RqNMx∈ , define each player i’s relative share with respect to x as 

))((
)(

iq

x
x i

i
R

=α . The monotonic imputation sequence with respect to x, 

),...,,()( 10 maaax =a , is defined by setting ))(()( iwxa t

i

t

i Rα= .   

 

When the context of ),,( RqNMx∈  is clear, )(xiα  will sometimes be written here 

simply as iα . 

 

 

Proposition 2. If ),,( RqNI  is not empty, the repeated coalition bargaining set of a 

dynamic cooperative game ),1,,,( δ+mN Rv  is not empty – for each ),,( RqNMx∈ , the 

associated static TU-game, every feasible imputation sequence ),...,,( 10 mccc=c  such 

that ii x)(ac
vv

=  for each player i, including )(xa
v

 itself, is in the repeated coalition 

bargaining set. 

 

Proof.  By well-known results, the associated static TU-game ),,( RqN  has a non-empty 

bargaining set – i.e. there exists at least one vector ),,(),...,( 1 RqNMxxx n ∈= , such that 

no player k has a justified objection against another player l at x relative to the 

characteristic function q. Let x be an arbitrary such vector. 
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Writing )(: xii αα = , trivially, for each R∈S , 1≤∑ ∈Si iα  because )(Sqx
Si i ≤∑ ∈

. Let 

),...,,( 10 maaa=a  be the monotonic imputation sequence with respect to x, as defined 

above. The sequence is feasible for each R∈S , because )()()()( SaSwSa tt

Si i

t ≤= ∑ ∈
α . 

We have in addition that for each Ni∈ , ∑= t

t

ii aa
v

= it i

t

i xiqiw ==∑ ))(())(( RR αα , so 

that ),...,,( 10 maaa=a  represents a way of granting each player an amount in each time 

period in such a way that the sum total over all time periods is exactly equal to the vector 

),...,( 1 nxx . By definition, the same applies to any feasible imputation sequence 

),...,,( 10 mccc=c  such that ii x)(ac
vv

=  for each player i. 

 

Suppose that ),( yP  is a repeated coalition objection of player k against player l at c . 

Then 
ii cy
vv

≥  for all Pi∈  and 
kk cy
vv

> . By the definition of repeated coalitions, it must be 

the case that for each time period t, )()( PwPy tt ≤ , hence )()()( PqPwPy
t

t

t

t =≤∑∑ . 

But, because ii x=c
v

, this means that the pair ),( y
v

P  is an objection of  player k against 

player l at x in the game ),,( RqN . As x is in the bargaining set of ),,( RqN , there is by 

definition a counter-objection ),( zQ  to ),( y
v

P  of l against k.  

 

Defining the fractions 
))(( iq

zi
i

R
=β  and setting ),...,,( 10 mbbb=b , ))(( iwb t

i

t

i Rβ= , it 

follows that ii z=b
v

, so ii cb
vv

≥  for all Qi∈ , ii yb
vv

≥  for all QPi ∩∈ , and hence ),( bQ  

is a repeated coalition counter-objection to ),( yP  at a in ),1,,,( δ+mvN R .  

 

The conclusion is that c  is in the repeated coalition bargaining set of ),1,,,( δ+mvN R .

 QED 

 

A similar line of proof shows that if the stage-games are superadditive, there is no point 

to distinguishing between dynamic coalitions and repeated coalitions: 

 

Proposition 3. If the stage games of a dynamic cooperative game ),1,,,( δ+mN Rv  are 

superadditive, then the dynamic coalition bargaining set of ),1,,,( δ+mN Rv  is equal to 

the repeated coalition bargaining set. 

 

Proof. Again, form the associated single-stage TU-game ),,( RqN  by setting, for every 

NS ⊆ , ∑= t

t SwSq )()( .  Assuming ),1,,,( δ+mN RvI  is not empty, select arbitrarily 

an imputation sequence ),...,,( 10 mxxx=x  in ),1,,,( δ+mN RvI .  

 

Suppose that )),...,,(,...),,()(,( 1010 myyyPP == yDDR  is a dynamic coalition objection 

of k against l at x . Denote by ),...,,( )(21

t

tE

tt ddd  the partition of P given by each t
D . For 
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each t, super-additivity implies ∑ == ≥
)(

1

)(

1 )()(
tE

j

t

j

tt

j

tE

j

t dwdw U . Since the objection 

imputation at each time t must be feasible, for each tt

jd D∈ , )()( t

j

tt

j

t dwdy ≤ . By 

definition, t

j

tE

j dP )(

1== U , so it follows that )()( PyPw tt ≥  and therefore 

)()()( PqPvPy
t

t

t

t =≤∑∑ .  

 

Forming the sequence ),...,,( 10 maaa=a  by setting 
)(Pq

yi
i =α  and )(Pwa t

i

t

i α=  for each 

Pi∈ , it follows that ii ya
vv

= , and hence the net effect of the repeated coalition objection 

),( aP  is equivalent to the net effect of the dynamic coalition objection )),(,( yPP R . 

Similarly, any dynamic coalition counter-objection )),(,( zQQ R  can be achieved equally 

well by the repeated coalition counter-objection ),( bQ  where ),...,,( 10 mbbb=b  is 

derived by setting 
)(Qq

yi
i =β  and )(Qwb i

i

t

i β=  for each Qi∈ . The conclusion is that 

under the assumptions of the proposition, any ),1,,,( δ+∈ mN RvIx  is dynamic coalition 

stable if and only if it is repeated coalition stable.       QED 

 

 

 

These results make clear that the reason dynamic coalitions in non-supperadditive 

situations can lead to dynamic game bargaining set solutions that diverge from solutions 

derived directly from stage game solutions – as in example 1 presented above – is 

because in that situation, the associated TU-game does not reflect accurately what can be 

attained in the dynamic game. A dynamic coalition over NS ⊆  can, in certain cases, 

attain for its members a total pay-off greater than )(Sq  by cleverly arranging different 

coalition structures over S in different time-periods – but that total pay-off may not 

necessarily be freely transferable between the members of S. 

 

5. Credit Sequences 

Assume in this section that in any imputation sequence ,...),( 10 xx=x , )()( SwSx tt =  for 

all time periods t. 

 

By Proposition 2 of the previous section, the set of bargaining set solutions for a dynamic 

game ),1,,,( δ+mN Rv  is at least as large as the set of bargaining set solutions of its 

associated static TU-game ),,( RqN  – for each solution ),,( RqNMx∈ , the monotonic 

imputation sequence )(xa  is a solution of ),1,,,( δ+mN Rv . But this by no means begins 

to exhaust the set of solutions of the bargaining set of ),1,,,( δ+mN Rv , as the same 

proposition extends that set to any feasible imputation sequence ),...,,( 10 mccc=c  such 

that ii x)(ac
vv

=  for each player i. 
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Consider the repeated cooperative game based on the stage-game ),,( RvN  of example 3 

above. The associated static TU-game of that example, for any 1<δ , has a single 

bargaining set solution given by 4/31 =α , 4/12 =α , 13 =α , in terms of player share. In 

sharp contrast, the bargaining set of ),3,,,( δRvN  has an infinite number of solutions. 

Example 3 exhibits one such solution, which deviates from the monotonic imputation 

sequence in each time period. But clearly a solution in the bargaining set of the dynamic 

cooperative game cannot allow every feasible imputation in every period – for example, 

any imputation sequence ),,( 210 xxx=x  with )0;75,25)(1(0 δ−=x  must lie outside the 

bargaining set of ),3,,,( δRvN , even if 1x and 2x  are each feasible imputations in their 

respective time periods. 

 

The intention of this section is to give a finer characterisation of the possible solutions of 

the bargaining set of a dynamic cooperative game by establishing bounds on the payoffs 

that can be granted to each player in each time period within the context of a repeated 

coalition bargaining set solution.  

 

Returning to a consideration of example 3, with the solution given by ),,( 210 xxx=x , 

)0;20,80)(1(0 δ−=x , )0;28,72()1(1 δδ−=x , and )0;39,61()1( 22 δδ−=x , one way to 

regard the solution is to interpret it as if player 1 ‘justifies’ the first-period imputation of 

)0;20,80( , which deviates from the static bargaining set solution of )0;25,75( , by 

‘borrowing’ 5 units from player 2. The debt is then re-paid, with interest implicit in the 

discount-factor (which reduces the value of the total payoff that can be divided), over the 

next two time periods.  

 

This is, of course, only an anthropomorphic story that is overlaid over a particular 

solution to a mathematical construct – and in fact, there are many such ‘stories’ that can 
be told relative to each solution – but it so enhances intuitive insight that we present here 

a formalisation of the idea of players borrowing and repaying debts over time. Within the 

context of studying the core in dynamic situations, [Kranich, Perea, Peters; 2001] and 

[Breden; 2007] consider what they term inter-temporal transfers, in which players receive 

more in some time periods at the expense of less in other time periods. This takes the 

form of postulating a sequence }{ t

ic  for each player such that 0
0

=∑ =

m

t

t

ic  which changes 

the player’s payoff in each time period relative to an imputation sequence 

),...,,( 10 mxxx=x  from t

ix  to t

i

t

i cx + . We expand here on this idea, explicitly taking into 

account the need for one player to borrow from another player in each time period in 

order to increase his personal payoff, which then also imposes a requirement on the 

debtor to repay the creditors in a later time period. 

 
This motivates the following: 

 

The players first select a ‘goal’ vector ),,( RqNMg∈ , from the bargaining set of the 

associated TU-game. This is intended to be interpreted as an agreement between them 
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that the sum-total of the imputation sequence of the 1+m -period game they are to play 
will be the vector g. The vector g, along with the array of associated relative shares per 

player )(giα , can be regarded as determining an over-all canonical ‘income distribution’. 

The monotonic imputation sequence given by these relative shares with respect to g, 

),...,,()( 10 maaag =a , also serves as a ‘baseline’ against which deviations in imputations 

in particular time-periods are interpreted as credits and debits. 

 

   

Definition. A credit sequence relative to a dynamic cooperative game ),1,,,( δ+mN Rv  

and a vector ),,( RqNMg∈  is composed of real numbers }{ ,

t

jid , }{ ,

t

jip  defined 

inductively at each time period for each pair of players Nji ∈, , subject to the following 

list of constraints: 

 

i. 0, ≥
t

jid ; 0, =t

jid  whenever i and j are not in the same partition of R ; 0, =
t

iid  for 

all Ni∈ and times 0≥t . We also define 01

, =−
jid  to initiate the induction, for all 

Nji ∈,  

 

ii. 0, ≥
t

jip ; 0, =t

jip  whenever i and j are not in the same partition of R ; 0, =
t

iip  for 

all Ni∈ and times 0≥t . We also define 01

, =−
jip  to initiate the induction, for all 

Nji ∈,  

 

iii. l

ji

t

l

l

ji

t

ji pdp ,

1

0 ,, ∑
−

=
−≤  for all 0≥t , for all Nji ∈,  

 

iv. For each Ni∈  and time period t, defining t

ij

t

ij

t

ji

t

ji

t

ji

t

ji pdpdcc ,,,,

1

,, : +−−+= −  for 

each j and ∑ ∈
=

Nj

t

ji

t

i cc ,: , constrain t

ic  to be ∑ +=
≤

m

tl

l

i

t

i ac
1

 (with the 

understanding that 0
1

=∑ +=

m

ml

l

ia ), where t

ia  is given at each t by the monotonic 

imputation sequence )(ga   

 

v. t

iNj

t

ij

t

ij

t

ji

t

ji apdpd ≤+−−∑ ∈ ,,,,  for each time period t and each player Ni∈  

 

 

Given a credit sequence }}{},{{ ,,

t

ji

t

ji pd  relative to ),,( RqNMg∈ , a feasible imputation 

sequence ),...,,( 10 mxxx=x  will be said to be derivable from }}{},{{ ,,

t

ji

t

ji pd  if for each 

Ni∈  and time period t, ∑ ∈
+−−+=

Nj

t

ij

t

ij

t

ji

t

ji

t

i

t

i pdpdax ,,,, . 

 

These constraints are justified by intuitive interpretations. Each pair t

jid ,  is to be 

interpreted as saying that ‘i is indebted to (or borrows from) j in period t the amount t

jid , ’ 
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or equivalently that ‘j has an IOU written by i in period t for t

jid ,  units’, and each pair 

t

jip ,  is intended to represent a (possibly partial) re-payment of a debt made by player i to 

j in period t. Constraint (i) then says that debts are always counted in positive units, that 

players only borrow from their partners relative to the coalition structure, and that a 

player can never borrow from himself. Constraint (ii) says much the same about debt re-

payments.  

 

The term l

ji

t

l

l

ji pd ,

1

0 ,∑
−

=
−  represents ‘total outstanding debt’ owed by player i to player j in 

time period t – it sums up all IOUs given over all previous time periods by i to j, and 

subtracts all repayments made against them. Constraint (iii) then states that in time period 

t player i can not give player j more in debt re-payments than the total outstanding debt 

he owes to j (this does not prevent i from giving j more than l

ji

t

l

l

ji pd ,

1

0 ,∑
−

=
−   –  but any 

transfer from i to j greater than that sum will be counted as a loan from i to j). 

 

In each time period t, t

ic  represents the ‘cumulative debt portfolio’ held by player i, as it 

takes into account all loans given to other players, all loans taken and all the respective 

re-payments to date. Note that although each t

jid ,  is greater than or equal to zero, t

jic ,  

may be positive or negative – if it is positive, then player i is a net debtor with respect to 

j, and if it is negative, i is a net creditor with respect to j. It also follows from the 

definitions that t

ij

t

ji cc ,, −= , and hence that in any single time period and for any single 

R∈S , 0=∑ ∈Si

t

ic . 

 

Under that interpretation, constraint (iv) establishes an important ‘credit limit’ for each 

player i, in the following sense. The vector g determines the ‘total income’ for player i as 

ig , which by definition equals ∑= t

t

ii aa
v

. At each time period t, therefore, ∑ +=

m

tl

l

ia1  

represents player i’s future income stream. Constraint (iv) is intuitively a ‘no-default’ 

condition: at no time is a player permitted to have outstanding positive cumulative debt 

which is greater than his future income stream – total debt in this system is always staked 

against future income. 

 

Note, however, that because constraint (iv) applies to the total debt portfolio of a player, 

there is an implication under this system that a player can borrow both against future 

income and against previously issued IOUs he holds. In effect, ‘debt securities’ which are 

tradable and negotiable instruments arise naturally from the system. 

 

Constraint (v) exists to ensure that under any imputation sequence ),...,,( 10 mxxx=x  

derivable from a credit sequence, no player transfers to others so much in loans and re-

payments that he receives less than zero. 

 

Proposition 4. In the context of a dynamic cooperative game ),1,,,( δ+mN Rv , each 

imputation sequence ),...,,( 10 mxxx=x  derivable from a credit sequence }}{},{{ ,,

t

ji

t

ji pd  
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relative to a vector ),,( RqNMg∈  is located within the repeated coalition bargaining 

set. Conversely, for each ),...,,( 10 mxxx=x  in the repeated coalition bargaining set, there 

is at least one credit sequence }}{},{{ ,,

t

ji

t

ji pd  relative to ),...,,( 10 ng xxxx
vvvv

==  such that 

x  is derivable from }}{},{{ ,,

t

ji

t

ji pd . 

 

The proof appears in the appendix. 

 

 

Proposition 5. In a dynamic cooperative game ),1,,,( δ+mN Rv , if the players agree on 

an over-all goal vector ),,( RqNMg∈ , then in any imputation sequence 

),...,,( 10 mxxx=x , at time period t, the largest value received by any player is bound by 

))),((min( i

tt

i giwx R≤  and the smallest by ))(,0max(
1

1

0∑ ∑∑≠ +=

−

=
+−≥

ij

m

tl

l

j

t

l

l

j

t

i

t

i aaax . 

 

Proof. Obviously, player i cannot receive at time t more than the total produced by the 

coalition to which he belongs, hence not more than )(Swt . What he receives, however, is 

also limited by the fact that ),...,,( 10 mxxx=x  must be derivable from a credit sequence 

}}{},{{ ,,

t

ji

t

ji pd , as per the previous proposition. Under any credit sequence, at time t he 

cannot borrow more than his ‘future income stream’, given by ∑∑ +=≠
≤

m

tl

l

iij

t

ji ad
1, , and 

the most he can receive in debt-repayment is limited by the most he could have lent in 

past periods, given by ∑
−

=

1

0

t

l

l

ia , so the most he can pocket in time t is 

i

t

i

t

l

l

i

m

tl

l

i gaaa =++∑∑
−

=+=

1

01
. The maximal value of t

ix  is then the smaller of )(Swt  or 

ig . 

 

For calculating the least value of t

ix , clearly player i cannot receive less than 0. Again, 

what he receives is also limited by the fact that ),...,,( 10 mxxx=x  must be derivable from 

a credit sequence }}{},{{ ,,

t

ji

t

ji pd . As a lender, he cannot give the other players in his 

coalition more than their ‘credit limit’ at time t, which is represented by ∑ ∑≠ +=ij

m

tl

l

ja1 , 

their ‘future income streams’. On the other hand, as a (former) borrower the most he can 

now repay is limited by the most they could have lent him, which is given by their past 

income streams ∑ ∑≠
−

=ij

t

l

l

ja
1

0
. This means the greatest downward deviation from t

ia  

possible is limited by ∑ ∑∑≠ +=

−

=
+

ij

m

tl

l

j

t

l

l

j aa )(
1

1

0
.    QED 

 

 

6. Subgame Stable Sequences 
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The paradigm in which the players negotiate a target goal vector ),,( RqNMg∈  relative 

to a dynamic cooperative game ),1,,,( δ+mN Rv , against which they then negotiate a 

contract establishing the detailed imputation sequence ),...,,( 10 mxxx=x  they will share 

‘once and for all’, enfolds within it implicit assumptions regarding enforcement. 

Cooperative game theory itself, of course, leans on an implicit enforcement postulation – 

even in the single-stage case, the players negotiate an imputation of the payoff they will 

receive for forming a coalition.  

 

In the multi-stage case, the assumption of an enforcement mechanism is even more 

critical, especially given the interpretation presented in the previous section of the 

imputation sequence as encoding ‘inter-temporal’ borrowing from one player to another: 

a player who has ‘borrowed heavily’ in the earlier rounds and in later rounds is expected 

to ‘repay’ the loans by accepting imputations outside the bargaining set, has a strong 

incentive to defect to another coalition, thus ‘defaulting’ on his debt to the detriment of 

the other players.  

 

A couple of examples can further elucidate this possibility: 

 

Example 4. Going back to example 3 above, the imputation sequence in the repeated-

coalition bargaining set presented there, ),,( 210 xxx=x , where )0;20,80)(1(0 δ−=x , 

)0;28,72()1(1 δδ−=x , and )0;39,61()1( 22 δδ−=x , presents player 1 with an incentive to 

‘default’ as early as period 1. With period 0 concluded, at period 1 player 1 can present 

player 2 with an objection according to which he will defect to a coalition with player 3 

over the next two periods, by offering to share with player 3 the payoffs )25,75()1( δδ− , 

and )25,75()1( 2δδ− . Player 2 has no counter-objection against this, and is likely to agree 

to ‘re-negotiate’ the contract with player 1, changing x  to )',',(' 210 xxx=x  with 

)0;25,75()1('1 δδ−=x , and )0;25,75()1(' 22 δδ−=x . This has the effect of raising player 

1’s overall payoff at the expense of player 2.  

 

Example 5. This example is similar to the above, but in contrast to it, the characteristic 

functions are not equal in each time period. Again there are three players and three time 

periods. The characteristic function for the first time period is 100)12(0 =v , 100)13(0 =v , 

50)23(0 =v ; for the second it is 100)12(1 =v , 50)13(1 =v , 100)23(1 =v , and in the third 

it is exactly equal to that of the second. With arbitrary δ , select the canonical monotonic 

sequence ),,( 210 xxx=x , with )0;6.58,6.41)(1(0 δ−=x , )0;6.58,6.41()1(1 δδ−=x , and 

)0;6.58,6.41()1( 22 δδ−=x .  Player 2, who is weaker in the first time period but stronger 

in the next two, has an incentive to default by presenting player 1 with an objection that 

cannot be countered in both periods 1 and 2, thus gaining more than he could by sticking 

to the monotonic sequence. 

 

 

The idea of players mistrusting each other when multiple rounds of a game are being 

player appears in several early papers (such as [Gale; 1978] and [Becker, Chakribarti; 
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1995]) and in particular has become a theme in studies of the core in dynamic 

cooperative games, where concepts such as the weak and strong sequential cores have 

been developed to analyse such situations (see [Kranich, Perea, Peters; 2005], 

[Predtetchinski et al; 2002, 2004, 2006] and [Predtetchinski; 2007]).  It is in that spirit 

that we present the following definition. 

 

Definition. An imputation sequence ),...,,( 10 mxxx=x , relative to a dynamic game 

),1,,,( δ+mN Rv , is subgame stable if for each time period t, the sub-sequence of vectors   

),...,,( 1 mtt xxx +  is in the bargaining set of the static TU-game ),,( R
tqN  defined by the 

characteristic function ∑ =
=

m

tl

lt SwSq )()(  for all NS ⊆ .  

 

Subgame stability guards against player defection in later rounds by replicating the 

stability of the bargaining set with respect to future time periods at any point in time: any 

suggested defection by a player with respect to future time periods by way of an 

objection can be met by a counter-objection. Examples 4 and 5 show that the set of 

subgame stable sequences, if it exists, is generally strictly smaller than the set of repeated 

coalition bargaining set sequences. 

 

Definition.  A sequence of characteristic functions ),...,,( 10 mvvv=v  defined relative to a 

set of players N and a coalition structure R  is sequentially essential if for each time 

period t and each R∈S , ∑ ∈
≥

Si

tt ivSv })({)( . 

 

Proposition 6. If m is finite and ),...,,( 10 mvvv=v  is sequentially essential relative to N 

and R , the set of subgame stable sequences of ),1,,,( δ+mN Rv  is not empty.  

 

Proof. This is proved by a ‘backwards induction’ argument (hence the condition of 

finiteness of m). Begin the induction by selecting an arbitrary element mx  in the 

bargaining set of ),,( R
mqN . 

 

Suppose, for mt < , the sequence ),...,,( 21 mtt xxx ++  is in the bargaining set of ),,( 1
R

+tqN . 

Naively, it might seem that in order to define tx  it would suffice to select arbitrarily an 

element ),,( R
tqNMx∈  and set ∑ +=

−=
m

tl

l

ii

t

i xxx
1

 for each player i. The problem is that 

there is no guarantee this procedure will yield a non-negative value for each ix . 

 

This potential flaw can, however, be avoided by a tweak to the procedure. Instead of 

working with tq , define the characteristic function 

 










∅=

∈=+

=

∑ +=

otherwise                           )(

                                  0

  },{       })({

)(

1

Sq

S

NiiSiwx

Sb

t

m

tl

tl

i

t  
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It must now be shown that the set ),,( R
tbNI  is non-empty. Select arbitrarily R∈S , and 

define ∑ ∈
−=

Si

tt ibSqr })({)( . The assumptions that ),...,,( 10 mvvv=v  is sequentially 

essential and that each element of ),...,,( 21 mtt xxx ++  is a feasible vector at its respective 

time period implies that ≥+= + )()()( 1 SwSqSq ttt ∑ ∑∈ +=
+

Si

m

tl

tl

i iwx
1

})))({( , but the last 

term is equal to ∑ ∈Si

t ib })({ , so that 0≥r . Defining the S -vector x′  by 

)/(})({ Sribx t

i +=′ , we have )()( SqSx t=′ . As S was selected arbitrarily, it follows that 

),,( R
tbNI  is not-empty.  

 

We can therefore select a vector x  in the bargaining set of ),,( R
tbN , and now set 

∑ +=
−=

m

tl

l

ii

t

i xxx
1

 , confident that this will not lead to negative values, and that by 

construction ),...,,( 1 mtt xxx +  is in the bargaining set of ),,( R
tqN . Continuing with this 

backward induction to time period 0, we are done with identifying a sub-game stable 

imputation sequence for ),1,,,( δ+mN Rv .     QED 

 

 

Finally, we show by an example that the contrast between the set of repeated coalition 

bargaining set sequences and the set of subgame stable sequences goes beyond the fact 

that the latter is generally a subset of the former. As shown in Proposition 2, in seeking a 

repeated-coalition bargaining set sequence, the players may first select any solution in the 

associated static TU-game bargaining set and then fit a sequence to that static solution. 

But if the players seek a subgame stable sequence, they might not be able to rely on first 

considering the associated static game and then finding a sequence that fits that, as the 

next example shows: 

 

Example 6. Let 5=n , with the set of players N denoted by }5,4,3,2,1{ . Consider a 2-

period dynamic game ),2,,,( δRvN , with δ  close enough to 1 to be disregarded, with 

coalition structure }5,4,3,12{=R  and ),( 10 vv=v  defined by 100)12(0 =v , 

200)15()14()13( 000 === vvv , 200)2345(0 =v , 100)12(1 =v , 50)1345(1 =v , 

100)2345(1 =v . The value of every other possible coalition at all time periods is equal to 

zero.  

 

The associated TU-game includes the imputation )0,0,0,50,150(  in its bargaining set, and 

therefore sequences of imputations summing to that vector are in the repeated-coalition 

bargaining set of ),2,,,( δRvN . But there can be no subgame stable sequence summing 

to this vector, because )0,0,0,75,25(1 =x  must be the second element in any subgame-

stable sequence ),( 10 xx .  
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In conclusion, we can state the following about subgame stability: in the repeated-game 

setting (in which the same characteristic function holds true in each time period), a 

subgame stable solution always exists – even when there are an infinite number of time 

periods – because the canonical monotonic sequence is always subgame stable. In the 

dynamic game setting, the monotonic sequence might not be subgame stable – as shown 

in example 5. Example 6 shows that there might not be a subgame stable sequence 

summing to each solution of the associated static game. When there are a finite number 

of time periods, a subgame stable solution can be found, even in the dynamic game 

setting, as shown in Proposition 6. It is unclear, as of this writing, whether that result can 

be extended to the case of an infinite number of time periods.  

 

 

 

Appendix 

Proof of Proposition 4. Suppose ),...,,( 10 mxxx=x  is a feasible imputation sequence 

derivable from a credit sequence }}{},{{ ,,

t

ji

t

ji pd  relative to vector g. First of all, for each 

t, tx  is feasible: because 0, =t

jid  and 0, =t

jip  whenever i and j are not partners in the 

same partition of R , we can write =tix ∑ ∈
+−−+

)( ,,,,ij

t

ij

t

ij

t

ji

t

ji

t

i pdpda
R

. Given R∈Q , 

0,,,, =+−−∑ ∑∈ ∈Qi Qj

t

ij

t

ij

t

ji

t

ji pdpd , so that we reach the conclusion 

)(Qwax t

Qi

t

iQi

t

i ==∑∑ ∈∈
.   

 

Next, suppose there is a last period m. Define ∑ ∈
+−−=−=∆

Nj

t

ij

t

ij

t

ji

t

ji

t

i

t

i

t

i pdpdax ,,,,: . 

By condition (iv), in time period m, for each player i 0≤m

ic . But 0=∑ ∈Ni

t

ic , hence 

0=m

ic  must hold for each i. As by definition, ∑ ∑ ∈
+−−=

t Nj

t

ij

t

ij

t

ji

t

ji

m

i pdpdc ,,,, , we 

conclude that 0
0

=∆∑ =

m

t

t

i , so i

m

t

t

i

m

t

t

i gax ==∑∑ == 00
. 

 

If there is no last period, then for each player i, 0→tic  as t grows, because ∑ +=

ω

1tl

l

ia  is 

continually shrinking. Reasoning similar to that in the above paragraph leads to the 

conclusion that 0
0

→∆∑ =

t

l

l

i  as t grows, so that i

t

it gx =lim  .  

 

In the other direction, suppose that ),...,,( 10 mxxx=x  is an imputation sequence, with the 

goal of exhibiting a credit sequence from which x  is derivable. This is done inductively, 

with a round of re-payments defined first in each time period, followed by a round of 

debt allocations. Intuitively, the construction here is rather simple: in each time-period, 

each player strives to re-pay as much debt as possible. After that, all other deviations 

from tx  are ‘explained’ by way of transfers undertaken through loans. 
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To decrease some of the clutter of symbols, define l

ji

t

l

l

ji

t

ji pdo ,

1

0 ,, : ∑ −

=
−=  and 

∑ ∈
=

Nj

t

ji

t

i oo ,: . As before, ),...,,()( 10 maaax =a  is the monotonic sequence defined 

against g. 

 

Suppose that }}{},{{ ,,

l

ji

l

ji pd  has been defined for all time period less than t. In period 0, 

no re-payment is effected. Otherwise, the re-payment round is defined as follows: each 

player ‘re-pays as much as possible’ of outstanding debt t

io , re-payment capped only by 

t

ia , so the sum total of re-payment by player i in time period t is given by ),min( t

i

t

i oar = . 

Let +t
iD  be the set of players such that for each player +∈ t

ij Dl , 0, >t

li j
o , and order them 

by decreasing ‘debt’ size, i.e. jl  comes before 
kl  only if 1

,

1

,

−− ≥ t

li

t

li kj
oo , with arbitrary 

ordering when this last semi-inequality is an equality. Next, set )(in  to be the smallest 

integer such that t

i

in

j

t

li ao
j
≤∑ =

−)(

1

1

,  under this ordering. For )(1 inj ≤≤ , let 1

,,

−= t

ji

t

ji op , and 

for 1)( += inj , if there exists an element 1)( +inl  in +t
iD , let ∑ =

−−=
)(

1

1

,,

in

k

t

ki

t

i

t

ji oap . 

 

After the round of re-payments has been completed, we have for each player i the value 

∑∑ ∈∈
+−=

Nj

t

ijNj

t

ji

t

i

t

i ppaf ,,: , and it is against these values that the round of debt 

allocation is conducted. Let ∑ ∈
+=−=∆

Nj

t

ij

t

ji

t

i

t

i

t

i ppaf ,,: , and, for an arbitrary R∈S , 

order the players in S as kii ,...,1  by decreasing size of t

i∆ . Further define 

}0|{ >∆∈=∆+
t

i

t Si  and }0|{ <∆∈=∆−
t

i

t Si . List the elements t

+∆  as },...,{ 1 kjj , ordered 

by decreasing size of t

j∆ , and similarly list the elements of t

−∆  as },...,{ 1 lhh , ordered by 

decreasing size of t

h∆ .  

 

Define for each member of t

+∆  a set of ‘creditors’ in t

−∆  as follows. Set 

},...,{: )(1 11 jmj hhC =  such that t

j

jm

i

t

hi 1

1 )(

1
∆≥∆∑ =

 , where )( 1jm  is the smallest integer such 

that this inequality holds. Set t

h

t

hj ii
d ∆=,1

 for )( 1jmi < , and ∑
−

=
∆−∆=

1)(

1,

1

1)1(1

jm

i

t

h

t

j

t

hj ijm
d .  

 

For calculating 
sj

C , for 1>s , first set t

hj

t

h

t

hj
sjmssjmsjms

dd
)1(1)1()1( ,, :

−−−−
−∆= and then set 

},...,{ )()( 1 sss jmjmj hhC
−

=  such that t

j

jm

jmi

t

h

t

hj s

s

s isjms
d ∆≥∆+∑ += −−

)(

1)(,
1)1(

 and )( sjm  is the 

smallest integer such that this inequality holds. Set t

h

t

hj iis
d ∆=,

 for )()( 1 ss jmijm <<− , 

and ∑
−

+= −
∆−∆=

1)(

1)(,
1)(

s

s issjms

jm

jmi

t

h

t

j

t

hjd . 

 

It remains to be shown that following these steps leads to an admissible credit sequence 

}}{},{{ ,,

t

ji

t

ji pd . Constraints (i) and (ii) are trivially met by the constructed credit 
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sequence. Constraint (iii), which limits the size of re-payments, is explicitly guaranteed 

by the construction, as is constraint (v).   

 

To see that constraint (iv) is met, note that by the way }}{},{{ ,,

t

ji

t

ji pd  are constructed, for 

any player i and time period t, t

i

t

l

l

i

t

l

l

i cax +=∑∑ == 00
 . On the other hand, by assumption 

∑∑ ==
=

m

l

l

i

m

l

l

i ax
00

. Hence, if ∑ +=
>

m

tl

l

i

t

i ac
1

, ∑∑ ==
=

m

l

l

i

t

l

l

i ax
00

, which would require 

∑ +=

m

tl

l

ix1  to be a negative quantity in order to ensure i

m

l

l

i gx =∑ =0
. This is impossible, 

and we conclude constraint (iv) holds.   QED 
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