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Selection protocols such as Box—Jenkins, variance analysis, method
switching and rules-based forecasting measure data characteristics and
incorporate them in models to generate best forecasts. These protocol
selection methods are judgemental in application and often select a single
(aggregate) model to forecast a collection of series. An alternative is
to apply individually selected models for to series. A multinomial logit
(MNL) approach is developed and tested on Information and commu-
nication technology share price data. The results suggest the MNL model
has the potential to predict the best forecast method based on measurable
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data characteristics.

I. Introduction

Selection protocols such as Box—Jenkins, variance
analysis (Gardner and McKenzie, 1988), method
switching (Goodrich, 1990), Automatic Identification
(Vokurka et al., 1996) and rules-based forecasting
(Collopy and Armstrong, 1992; Adya et al., 2001)
measure data characteristics and incorporate them in
models to generate best forecasts. These protocol
selection methods are judgemental in their applica-
tion and often select a single (aggregate) model to
forecast a collection of series. Fildes (1989) suggests
there are gains to be made in forecast accuracy when
applying individually selected models by series. Shah
(1997) applies discriminant analysis to select the best
forecasting model based on the discriminant scores
of data characteristics and demonstrates that an
individual selection approach provides more accurate
forecasts than an aggregate sclected model. In this
study, an alternative individual selection approach

is developed wusing a multinomial logit (MNL)
approach to relate data characteristics to out-of-
sample forecast accuracy. The results, applied to
information and communication technology (ICT)
share price data, suggests the MNL model has the
potential to predict the best forecast method based on
measurable data characteristics. In particular, the
MNL-based procedure is trialled on ICT share price
data for recent Growth-to-Bust (January 1993 to
March 2000) and Bust-to-Recovery (October 2001 to
December 2002) phases, and for the periods
combined.

Il. Model Selection Using the Multinomial
Logit Model

The application of the MNL model to individually
select a forecast model for a series assumes the

*Corresponding author. E-mail: gary.madden@cbs.curtin.edu.au
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post-sample forecast accuracy of a forecasting
method is a function of measurable sample char-
acteristics that are sufficient in describing a series.
It also implies a sampled series is well forecast by one
of the models applied to these data." To develop
selection rules using the MNL approach, an optimal
forecast method from a selection of methods for a
series is first determined based on a minimum error
criterion. This is done by omitting a set of observa-
tions from the estimation period and selecting the
method that generates the highest accuracy in one-
step ahead forecasts for all the omitted observations.
Next, the MNL model is estimated to statistically
identify any relationships that exist between the best
forecast method, data moments and time-series
characteristics. Best forecast model probabilities are
then calculated and compared against the best
forecast methods.
The MNL model is specified as:

7 b

J B
Zm:l et

where z; is a vector of data series characteristics and

P(Y, =)= j=1,...,J (1)

j indexes associated forecast methods. The MNL

approach is useful as it allows the estimation of
conditional probabilities that relate the success of a
forecasting model of a series, Y;, based on collected
data characteristics for the series z, From the
conditional probabilities, forecasts are generated for
methods with the greatest posterior probability and
compared against the individual forecasting method
that generates the lowest error for comparison.

Ill. Forecasting Models

The forecasting methods employed for the analysis
are exponential smoothing and ARMA-based
models, viz., the ARARMA, ARIMA, Holt,
Holt-D, Holt-Winters, Robust Trend and simple
exponential smoothing (SES). These models are
chosen as they consistently perform well in the
M-competition of Makridakis er al. (1993) and
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Makridakis and Hibon (2000). Exponential smooth-
ing models assume a series comprises of a systematic
and a random variation that can be described by level
and trend (Meade, 2000). The corresponding smooth-
ing methods considered are Holt, Holt-D, Holt-
Winters (Holt-W) and simple exponential smooth-
ing.> As an alternative approach, Grambsch and
Stahel’s (1990) robust trend (RT), a nonparametric
version of a linear trend, is also estimated. RT
provides a good base for comparison because it is
median-based model that is not sensitive to outliers.
The ARMA-based models that are applied are
ARARMA and ARIMA (p,d, q). Parzen’s (1982)
ARARMA model is a long-memory method that uses
a best fit AR model, according to the least Akaike
information criterion (AIC) statistic, as a filter to
difference series prior to estimating the best fitting
ARMA model (also selected by the AIC statistic).’
The ARIMA (p, d, g) model is chosen as it is suitable
for nonstationary share prices. Adopting this
ARIMA model specification assumes share prices
are not seasonally influenced or affected by other
factors.*

To select a best fit ARIMA (p,d,¢q) model for
estimation the Meade (2000) procedure is applied.
First, the number of differences required to render
a series stationary is determined by applying the
Geweke and Porter-Hudek (GPH; 1983) method. The
GPH method is useful as it estimates the number of
differences as a real number for the autoregressive
fractionally integrated moving average model and can
be used as an approximation to estimate the number
of differences for the ARIMA. As ARIMA requires
differencing to be an integer, the estimated GPH
value for a series is converted to an integer by the
rule, when d < 0.5 then d=0, otherwise d=integer
part of d+0.5. After differencing, alternative
ARIMA models are estimated by series via a grid
search of up to 7 lags generating 49 ARIMA models
per differenced series.” From the estimated ARIMA
models a best fitting model is chosen by the least AIC
statistic. Estimation for a series begins at observation
10 to allow a maximum seven period lag estimate for
the ARIMA and ARARMA models. Forecasts are

' A series is regarded as ‘belonging to a method” if that method generates the lowest out-of-sample forecast errors. However,
this does not imply the associated model is the data generating process for the series.
2Holt-D is a deseasonalized Holt model. A thorough description of other exponential smoothing models is given by Gardner

and McKenzie (1988).

3 While Parzen (1982) uses an autoregressive transfer function (CAT) criterion to select a best AR filter he notes the selection

of the filter by the CAT and AIC are similar.

“In this situation, seasonal ARIMA or ARMAX models could be applied.
3 A grid search estimates all possible lag combinations of ARIMA(p, d, ¢) and selects the best fitting model based on an error

statistic.
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then generated for best models by method. Holt,
Holt-D, Holt-W, RT and SES models have a fixed lag
length and do not require grid searches to select the
best model.® The grid search for an optimal lag length
for the ARARMA and ARIMA models are based on
the least AIC statistic.

IV. Forecast Error Measures

Selection of best forecast model is based on the
geometric root mean squared error (GRMSE; Fildes,
1992) and root mean squared error (RMSE) forecast
error statistics. Fildes and Ord (2002) argue the
GRMSE is the preferable measure as it is unaffected
by scale change. Also, Armstrong and Collopy (1992)
consider the GRMSE is the more reliable as it is
sensitive to small changes but unaffected by outliers.
The RMSE statistic is calculated to provide a basis
for comparison. To estimate the GRMSE and RMSE
for each series and method, the /-step ahead forecast
error ¢ 7,(h) made in forecasting period 74/ for
series 7 for method j is calculated as,

ei.7,j(h) = [Ai 74n; — Fi.1./(h)]

where 7 is the end point of the estimation period and
forecast origin, F; 1 (h) is the h-step forecast for series
i and method j and 4,7, is the actual value at
period T+ h for series i. From the forecast error, the
h-step mean squared error MSE;r(h) for series i
and method j is,

1
MSE; 1,i(h) = p Z (s T+/n./)2

where 7 is the length of the forecast period beginning
with T+ 1. The h-step root mean squared error
RMSE; 1 (h) for series i and method j is,

RMSE; 1, /(h) =/ MSE; 1 j(h).

The scale-invariant /-step GRMSE error statistic
GRMSE; 1 (h) for series i and method j is,

. 1/2n
GRMSE; 7 j(h) = <H 8?, z,j)
1

V. ICT Industry Share Price Data

ICT industry share prices experienced substantial
volatility from 1994 to 2002. From 1994 to 2000,
deregulation of global ICT markets ushered in
an industry-wide boom (1 January 1994 to 6 March
2000). However, the ‘dot.com’ bubble burst due to an
overly rapid rate of infrastructure investment. This
investment created an excess supply of productive
capacity, relative to demand growth, that led to a
spectacular collapse in stock prices from 10 March
2000 to 30 September 2001 (Cooper and Madden,
2004). It is estimated that approximately US$ 2
trillion of market value for these companies was lost
as a result of the bursting of the ICT bubble
(Hausman, 2004). While the ICT industry has
managed a sustained period of slow recovery
(1 October 2001 to 31 December 2002) it seems
unlikely these companies will revisit the high valua-
tions of the boom period. Accordingly, this volatile
period presents an ideal opportunity to test whether
the MNL-based protocol can guide the making of
better forecasts for historical ICT share price series.

The share price sample is separated into distinct
Boom (1 January 1994 to 9 March 2000—1616
observations), Bust (10 March 2000 to 3 October
2001—666 observations), Combined (1 January 1994
to 3 October 2001) and Recovery (4 October 2001 to
31 December 2002—320 observations) phases
(Fig. 1). These data are acquired from DataStream
International and consist of 108 United States (US)
ICT company share market prices from 1 January
1994 to 31 December 2002 (2610 observations).’
A representative specimen of these data is shown
in Fig. 2. The shares prices are daily closing share
prices denominated in US dollars (USS).

Figure 2 suggests these data exhibit characteristics
typical of a nonstationary time series (which is a
feature common of share prices). Nonstationarity is
often caused by a tendency for share prices to
experience positive drift. When applying a model to
nonstationary data a common econometric practice is
to first-difference the series prior to model estimation.
Differencing renders an ARI series stationary.
However, the method also removes features of these
data, such as drift, that may assist in obtaining
accurate forecasts. An alternative procedure that

®Linear, no-trend and nonseasonal Holt, and Holt-W models are considered. Parameters are estimated and not fixed

arbitrarily.

"These data consist only of share prices for ICT companies that survived the sample period. Hence, the study results may

exhibit survivorship bias.
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Source: Thomson Financial (2004).
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| Estimation

Model selection | Forecast

Step! ———>—--

Step 2

Re-estimation

Estimation _
Model selection-------------- .
Forecast >

Fig. 3. MNL estimation and forecast procedure

Note: The procedure is applied to the Boom Phase (1 January 1994 to 9 March 2000); Bust Phase (10 March 2000 to 3 October
2001); and Combined Phase (1 January 1994 to 3 October 2001).

might be considered is the incorporation of series
characteristics into modeling the data generating
process. For this study, series characteristics are
collected and used to determine which of these
characteristics are helpful in determining the best
forecasting model via a MNL model. Data charac-
teristics collected for this purpose are series moments
(mean, variance, skewness and kurtosis) and selected
time-series characteristics (coefficient of variation,
number of outliers, step changes, turning points,
trend direction, extreme last observations and ARCH
effects).

To enable MNL model estimation, data on series
characteristics are collected. Of the characteristics
described by Collopy and Armstrong (1992), Shah
(1997), Fildes et al. (1998) and Meade (2000), the
mean, median, variance, skewness, kurtosis, step
changes, turning points, number of outliers, coeffi-
cient of variation, presence of ARCH effects, trend
direction and the presence of an extreme last
observation are calculated.® Outliers are defined as
observations that exceed 3 SDs of a series mean. Step
changes and turning points are as defined by Shah
(1997). A turning point captures oscillating behaviour
by a series X, while a step change identifies structural
breaks in a series. That is, a turning point is any
observation contained in a series (1 <¢ < T) for which
X, 1 <X,and X, < X,or X,_; > X,and X, | > X,.
A step change occurs in a series when the absolute
difference of an observation and its lagged mean X,_,
exceed twice the lagged SD of the series S,_;, viz.,

X, = X| > 2500, t=1,...,T

A series with a relatively large number of structural
breaks will exhibit relatively many step changes.
Trend direction and the presence of an extreme last
observation are as defined by Meade (2000). Trend
direction is a binary variable that determines whether
the basic and recent trend of a series is similar in
direction. The basic trend is the gradient of the
regression of a series against time containing all
observations, while the recent trend is the gradient of
a similar regression performed with only the last six
observations. The trend variable value equals unity
when the basic and recent trend of a series is in the
same direction and zero otherwise. An extreme
last observation is any last observation that is
greater than 90% of the largest observation,
X7>09x Max(Xy,...,X7_1), or 1is less than
110% of the smallest observation,
Xy > 1.1 Min(Xy,..., X7_;). Hence, this variable
has the value unity is the presence of an extreme
last observation and zero otherwise. The variable for
the presence of an ARCH effect is a binary variable
that is determined by the result of Engle’s (1982)
Lagrange multiplier (LM) test with a one-period lag.
The variable has the value unity when an ARCH
effect is detected by the LM test and zero otherwise.
The LM test for ARCH is applied to the residuals of
the best fitting ARIMA model determined by the
lowest AIC.

VI. Best Forecast Model

To determine the best forecast model for a series
the post-sample performance of the seven forecast

8 Other data characteristics described by these studies are not collected as they either describe similar series features or are

highly correlated other characteristics.
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Table 1. Boom phase data characteristic summary—108 series

Mean SD Skewness Kurtosis Minimum Maximum
Mean 0.0009 0.0007 0.7466 4.5320 —0.0007 0.0034
Variance 0.0008 0.0005 0.5760 2.7088 0.0001 0.0025
Skewness 0.4085 0.8829 —0.2059 2.8901 —1.7648 2.4452
Kurtosis 13.3092 34.6624 5.3303 31.7958 0.9420 245.6450
Outliers 20.1111 4.7426 0.4638 3.4609 10.0000 35.0000
Step change 0.0486 0.0068 —0.6695 42114 0.0248 0.0652
Turn point 0.6344 0.0453 —7.4384 66.9699 0.2191 0.6760
Runs 1047 57 -8 77 502 1102

Notes: SD is the standard deviation; Step change is the ratio of step changes to number of observations; Turn point is the ratio
of turning points to number of observations and Outliers is ratio of outliers that are larger than 3 SDs to the number of
observations. The presence of ARCH is detected by fitting the most appropriate ARIMA model (lowest AIC) and tests for the
prescience of ARCH in the residuals. The sample proportion with an ARCH effect is 95.37%.

Table 2. Bust phase data characteristic summary—108 series

Mean SD Skewness Kurtosis Minimum Maximum

Mean —0.0002 0.0009 —0.1153 3.4598 —0.0030 0.0022
Variance 0.0016 0.0011 1.3015 6.8954 0.0002 0.0071
Skewness —0.1926 0.8054 0.0129 3.0058 —2.0570 2.1919
Kurtosis 8.1359 13.1480 3.2204 13.7959 0.2301 72.4225
Outliers 7.5741 2.4350 0.3722 2.9838 3.0000 15.0000
Step change 0.0481 0.0089 —0.7854 3.2918 0.0210 0.0615
Turn point 0.6544 0.0267 —3.9244 31.0762 0.4528 0.6987
Runs 440 14 -2 11 359 467

Notes: SD is the Standard deviation; Step change is the ratio of step changes to number of observations; Turn point is the
ratio of turning points to number of observations and Outliers is ratio of outliers that are larger than 3 SDs to the number of
observations. The presence of ARCH is detected by fitting the most appropriate ARIMA model (lowest AIC) and tests for the
prescience of ARCH in the residuals. The sample proportion with an ARCH effect is 50.93%.

Table 3. Boom and Bust data characteristic summary—108 series

Mean SD Skewness Kurtosis Minimum Maximum
Mean 0.0005 0.0005 0.7000 4.0124 —0.0004 0.0022
Variance 0.0010 0.0007 0.6734 3.2063 0.0001 0.0034
Skewness 0.0107 0.7314 —0.0274 3.5749 —1.7550 2.2538
Kurtosis 13.9811 24.9598 4.7328 30.8378 1.6141 198.5190
Outliers 29.7222 6.3405 0.5132 4.0909 16.0000 53.0000
Step change 0.0494 0.0057 —0.5028 2.7951 0.0338 0.0624
Turn point 0.6402 0.0380 —7.6470 70.3539 0.2872 0.6706
Runs 1486 66 -8 75 860 1549

Notes: SD is the standard deviation; Step change is the ratio of step changes to number of observations; Turn point is the ratio
of turning points to number of observations and Outliers is ratio of outliers that are larger than 3 SDs to the number of
observations. The presence of ARCH is detected by fitting the most appropriate ARIMA model (lowest AIC) and tests for the
prescience of ARCH in the residuals. The sample proportion with an ARCH effect is 85.19%.

models are related to in-sample series characteristics That is, the variable has the value unity for the best
via an MNL model. To do so a dependent forecast method that generates the lowest errors and
polychotomous variable is generated that indicates a zero for the remaining six forecast methods.

best series forecast method based on an error statistic. However, only the results based on the GRMSE
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are reported. MNL models are estimated for the
Boom phase, Bust phase and a Boom and Bust
(Combined) period based on the raw stock price data.
This procedure is followed to allow for the possibility
that the structural relationship between the best
forecasting method and series characteristics may
change. MNL model estimation is intended to
indicate the importance of series characteristics in
determining best forecast method. That is, the
protocol potentially relates series data typology to
best forecast method.

From the seven models, sample forecasts are
generated. Figure 3 illustrates the MNL procedure
applied to the Bust, Recovery and Combined phases.
The best fit model is selected on the basis of out-of-
sample forecast accuracy for the Bust, Recovery and
Combined phases. To forecast out-of-sample, all
observations other than the last 22 of the Boom,
Bust and Combined phases are used for estimating
the forecasting models.” The estimated models are
then used to forecast the last 22 observations for a
phase. Based on forecasts generated from the models
by phase, a best fit model is chosen. The choice
is made by comparing the forecast errors of the last
22 observations according to an error statistic and
selecting the model that generates the lowest error by
phase. The best fit models by phase are then
re-estimated for the entire phase and forecasts are
generated for the subsequent phase. The first forecast
period focuses on forecasting the 666 Bust phase
observations, while the second and third periods
focuses on the remaining 320 observations in the
Recovery phase.

Vil. Sample Data Characteristics

Tables 1-3 present the summary statistics of the 108
returns series contained in the sample by phase,
respectively.

In the Boom phase, share prices experienced
frequent rises with market valuations typically
increasing through the period. Many firms consis-
tently experienced ‘new’ high prices. Table 1 presents
share price returns sample statistics for the 108 series
for the Boom phase. Consistent with increasing share
prices, the returns are on an average positive,
positively skewed and contain many outliers. The

statistics also reveal ~5% of the series contain step
changes and ~95% of series record an ARCH effect.
This outcome implies the increasing risk shares faced
over the Boom phase.

Inspection of the statistics for the share price
returns contained in Table 2 for the Bust phase show
a distinctly different picture to that of the Boom
phase. The Bust phase is characterized by falling
share prices after the bursting of the dot.com bubble.
The negative mean and negative skewness of returns
clearly illustrates this phenomenon. Other notable
differences from the Boom phase are that the series
generally exhibit a higher variance, less kurtosis,
fewer outliers and runs. Also there is a lower
percentage of series (~51%) recording an ARCH
effect. The proportion of step changes and turning
points to observations remain unchanged for the
sample across the Boom and Bust phases.

Table 3 reports the sample statistics for the
combined Boom and Bust phases. As might be
expected, the statistics show average returns have a
positive mean and are positively skewed. This out-
come results from the Boom period being twice as
long as that for the Bust period. Table 3 also reports
more outliers and runs for the combined period.
Further, the combined sample shows a relatively high
incidence of ARCH effects.

VIIl. Results

Boom phase MNL estimation

GRMSE results reported in Table 4 show the Holt-D
is the better forecast method, relative to SES, based
on these series characteristics. Holt-D is more likely
the better method forecast the larger is the mean,
skewness, kurtosis and coefficient of variation values,
and when ARCH, step changes and turning points
are present. Holt-D is less preferred when the series
variance and number of outliers is higher, and when
an extreme last observation occurs. The Holt model
is preferred when the series has fewer outliers and
runs with no extreme last observation, and when an
ARCH effect is detected. The ARIMA model
forecasts better, relative to SES, the lower is the
value of the skewness.'” The results reported in
Table 5 show that the MNL model based on
estimated GRMSE values is effective in selecting

° Twenty-two observations are chosen to represent a 30-day month with five weekly trading days.
' The trend variable is not included in the MNL estimation for this period due to a strong negative correlation with sample

kurtosis values.
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Table 5. Boom phase predictions based on GRMSE

Model Predicted Actual Percentage correct
ARARMA 54 57 94.7
ARIMA 0 4 0.0
Holt 1 6 16.7
Holt-D 1 2 50.0
Holt-W 3 13 23.0
RT 3 13 23.0
SES 0 13 0.0
Total 62 108 57.4
Predicted
Actual ARARMA ARIMA Holt Holt-D Holt-W RT SES Total
ARARMA 54 0 0 0 2 1 0 57
ARIMA 4 0 0 0 0 0 0 4
Holt 5 0 0 1 0 0 0 6
Holt-D 0 0 1 1 0 0 0 2
Holt-W 10 0 0 0 3 0 0 13
RT 10 0 0 0 0 3 0 13
SES 12 0 0 1 0 0 0 13
Total 95 0 1 3 5 4 0 108

the better forecasting model in the Boom phase.
The MNL model based on the GRMSE is able to
correctly indicate the best model in 57.4% of the 108
series. In particular, MNL model correctly predicts
the ARARMA and Holt-D models in 94.7% and
50.0% of the cases, respectively. However, the MNL
model is unable to correctly select the ARIMA, Holt,
Holt-W, RT and SES models when they perform
best.!!

Bust phase MNL estimation

The GRMSE results reported in Table 6 are, not
surprisingly, less definitive given the Bust period
share price turbulence.'” ARIMA forecasts better,
relative to the SES when an extreme last observation
occurs. The Holt model performs better when there
is no series trend and no extreme last observation
occurs. Holt-D’s performance is better, relative to
the SES, the greater is the kurtosis value, number of
turning points and when the series contains an
extreme last observation. Holt-D is not preferred to

the SES when there is a large number of step changes
and outliers in the sample. Holt-W is better when
there is a series trend and no extreme last observation
arises. The results contained in Table 7 for the MNL
model based on estimated GRMSE in the Bust phase
results are qualitatively dissimilar to those reported
for the Boom phase. The MNL model is not as
effective in indicating the better forecasting model for
the Bust phase. The model correctly indicates the best
model for 50.0% of the 108 series in the Bust phase
compared to 57.4% in the Boom phase. Also, Table 7
show the MNL model correctly indicates the
ARARMA, ARIMA, Holt-D and RT models in
69.4%, 50%, 66.7% and 50.0% of cases, respectively.
However, the MNL model is unable to correctly
select the Holt, Holt-W and SES models.'?

Combined period MNL estimation

The MNL model based on the GRMSE for the
combined Boom and Bust phases are reported in
Tables 8 and 9.'* The tables indicate that Holt-D and

""The MNL results based on the RMSE show the model correctly indicates the best model in 57.4% of the 108 cases.
The MNL indicates ARARMA model correctly in 94.8% of cases. However, the model is unable to correctly indicate the
ARIMA, Holt, Holt-D, Holt-W, RT and SES models. Results are available on request.

21n Bust phase MNL model estimation, the number of runs is excluded due to a high positive correlation with the number

of turning points.

13 The MNL model based on the RMSE correctly indicates the better model in 44.4% of the 108 series. The model correctly
indicates the ARARMA, Holt-D and RT models in 69.4%, 50.0% and 58.6% of cases, respectively. However, the model
is unable to correctly indicate the ARIMA, Holt, Holt-W and SES models. Results are available on request.

"“In combined phase, the coefficient of variation and extreme variable is omitted from the MNL estimation due to strong

positive correlation with skewness values.



R. Fildes et al.

1260

“TOAJ] 9%, G ) 1B JUBOYIUTIS SI , sisayjuated ur are sqs €970 St
(Au0 JUBISUOD € [IIM [OPOUI © JSUTESE) [POUI SIY) J0J 3 0TI POOYI[ANI] YL, "S[ENPISaT ) Ul HDYV JO 00udsard ay) 10§ Sunsd) pue (JIV 1s9M0]) [opowt YN[ 2ietrdordde
Jsow o) Suny AQ pawrtojrad are $159) HOYV SIMIdIO ‘()= PUB UOTIBAIISCO ISB[ QUIAIIX UL JO 9JUISIXD A} SI [= owanXy "A[9ANdadsar (SAep (¢ I1SB[ AU} JOA0) PUI} JUIDAI
9} SB UOJIIP QUWIBS O] UI SI PULI) JISBQ AU} UAYM [= PUR dSIMIIYIO )= PUB 109JJ0 HDYV UL JO 90uasaid oy) ur [= 2Ioym :S9[qELIBA AIRUIQ 1B PUAL] PUB HDYV ‘UONBLIBA
JO JUAIDIJJR02 Y] ST AD SAS € UBY} JOFIR[ SIAIINO SI AN SUONBAIISGO JO Jdqunu oY) Aq papIAlp sjutod Suruing oy a1 jurtod uIn] "UONBIAID PIEpurls AU} SI (S S910N

(TLo) orr (€800 990  (8L°0) s¢1— (sgL) gL~ (10D 0T0— (8¢L) 16 (0s€e)  oTTe— (S6'0) 860 (20'0) 100— (S1°0) 800 (+0°0) €0°0— ARt
(oD «18T (0T «1€87— (LO'D) €00 (b6'L) TS (€s¢)  90¢  (19°9) 90°¢T— (S6'L8)  €961— (ST'D) T8T (£0°0) 20'0— (€1°0) TT0— (€0°0) SO0 M-NOH
(0ST) ¥ (8L +S8L  (SI'D S60  (F9PED) 90°TIT— (TI'9T) +TT'8S— (€1°0TT) %T8'SET (8L°TTE) «SL'SLL— (b¥'S) «10°€l (81°0) 8TO (€9°D) LL'O  (LE0) 91°0— d-yoH
(20D +60°6T— (SO'T) %L6'LT— (€€°D T80— (9S°ST) vTL— (6v°€)  100— (ST 69  (19°L6)  L6'T (IL%) 89°0— (€0°0) 000 (¥T0) TI'0  (L0°0) 80°0— JOH

61'D L£0— D <€t (OTD €80— (0v'01) 81T (8c¢)  TS0— (65°6) €8y (Lses)  I1LL8— (€PD) 680 (00 900 (bT0) L0O (60°0) YO0— < VINIIV
(89°0) 790 (€00 690  (0L°0) 60°0— 8L9) St'0 061 98T  (159) 97— (Sove)  I€€ (10'1) +0'0— (20'0) T0'0— (I1T°0) 10°0— (£0°0) 10°0— VINIVIV

puai], QI XY HOYV AD RmnO jurtod uang, 3yo doig SISOy SSOUMAYS QUBLIBA UeBOIN [oPON

ASIARLD U0 paseq sajewnsd [Ppowr TNJA dseyd isng -9 djqe],

800z Jaquaildas 9z 0¥ :90 : v [ABo |ouyoal Jo A1isianiun ul11inp] :Ag papeo jumog



06:40 26 Septenber 2008

[Curtin University of Technol ogy] At:

Downl oaded By:

Optimal forecasting model selection and data characteristics 1261

Table 7. Bust phase predictions based on GRMSE

Model Predicted Actual Percentage correct
ARARMA 25 36 69.4
ARIMA 4 8 50.0
Holt 0 3 0.0
Holt-D 2 3 66.7
Holt-W 2 7 28.6
RT 16 32 50.0
SES S 19 26.3
Total 54 108 50.0
Predicted
Actual ARARMA ARIMA Holt Holt-D Holt-W RT SES Total
ARARMA 25 0 0 2 0 8 1 36
ARIMA 3 4 0 0 0 1 0 8
Holt 1 0 0 0 0 2 0 3
Holt-D 1 0 0 2 0 0 0 3
Holt-W 3 0 0 0 2 2 0 7
RT 11 1 0 0 2 16 2 32
SES 7 0 0 0 0 7 5 19
Total 51 5 0 4 4 36 8 108

the RT models forecast better, relative to the SES,
when a series contains more outliers. Holt-W fore-
casts better, relative to the SES, when a series has a
higher mean and lower SD. The results contained in
Table 9 for the MNL for the combined period are
similar to those for the Bust phase. The MNL model
is not effective in indicating the better forecasting
model for the Recovery phase. The model correctly
indicates the better model for 40.7% of the 108 series
compared to 57.4% and 50.0% in the Boom and Bust
phases, respectively. Finally, Table 9 shows the MNL
model correctly predicts the ARARMA and Holt-W
models in 62.2% and 63.2% of the sample, respec-
tively. However, the model is unable to correctly
predict the ARIMA, Holt, Holt-D, RT and SES
models. "

Forecasting the recovery phase

To demonstrate the accuracy of the MNL model, the
recovery stage is used as a hold-out sample for
forecast comparison.'® The forecast accuracy for one-
step ahead forecasts for the MNL selected forecast
method using estimation phases Boom, Bust and
Combined are compared against each individual

forecasting method. Table 10 reports the median
GRMSE and RMSE for comparison of the MNL
selected models and the forecasting methods esti-
mated with the Combined period. Among the
methods applied, the results show the MNL model
for the Combined period produces the lowest median
GRMSE and RMSE when forecasting the recovery
period. This suggests employing the MNL model
in the Combined period to individually seclect the
forecast method for each series may be useful in
selecting the best forecasting method for forecasting
stock price data.

I1X. Conclusion

In this article, a MNL model selection protocol
relates best forecasts to data moments and series
characteristics. The approach implicitly relies on a
stable underlying relationship between data charac-
teristics and forecast method. Encouragingly, the
MNL model is able to correctly predict the forecast
method with the lowest error very successfully for
Boom period, the MNL model is also successful in

'S The MNL model based on the RMSE correctly indicates the better model in 46.3% of the 108 series. The model correctly
indicates the ARARMA and Holt-W models in 67.6% and 77.7% of cases, respectively. Also, the estimated model is unable
to correctly indicate the ARIMA, Holt, Holt-D, RT and SES models. Results are available on request.

' The authors are grateful to an anonymous referee for suggesting the use of a hold-out sample to increase the “power’ of the

forecast results.
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Table 9. Combined period predictions based on GRMSE
Model Predicted Actual Percentage correct
ARARMA 23 37 62.2
ARIMA 0 8 0.0
Holt 0 10 0.0
Holt-D 0 3 0.0
Holt-W 12 19 63.2
RT 5 14 35.7
SES 4 17 23.5
Total 44 108 40.7
Predicted

Actual ARARMA ARIMA Holt Holt-D Holt-W RT SES Total
ARARMA 23 0 1 0 4 5 4 37
ARIMA 3 0 0 0 1 0 4 8
Holt 6 0 0 0 3 0 1 10
Holt-D 2 0 0 0 1 0 0 3
Holt-W 5 1 1 0 2 0 0 19
RT 7 0 0 0 2 5 0 14
SES 8 0 0 0 4 1 4 17
Total 54 1 2 0 7 11 13 108

Table 10. Recovery phase predictions by median forecast errors

Forecast error

Model GRMSE RMSE

MNL-Boom 1.1590 6.3105

MNL-Bust 1.1397 4.3766

MNL-Combined 1.1184 2.7081

ARARMA 1.2499 7.9319

ARIMA 1.1421 3.9225

Holt 1.1367 3.5071

Holt-D 1.1401 3.8170

Holt-W 1.1400 4.3430

RT 1.1225 2.9744

SES 1.1415 4.4086

Average 1.1490 4.4300

Note: Lowest median error statistics are in bold. The higher median value for the ARARMA

model is the result of several large errors.

selecting the best methods for each series when
forecasting the Recovery period. Not surprising,
successful prediction of better method by the MNL
model varies by period with the Bust period forecasts
less reliable. Finally, the study is exploratory in
nature and other sets of data characteristics, such as
stock return characteristics may prove more interest-
ing for the series being examined.
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