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Abstract. The purpose of this article is to analyze if spatial dependence is a synchronic effect in the 

first-order spatial autoregressive model, SAR(1). Spatial dependence can be not only contemporary 

but also time-lagged in many socio-economic phenomena. In this paper, we use three Moran-based 

space-time autocorrelation statistics to evaluate the simultaneity of this spatial effect. A simulation 

study shed some light upon these issues, demonstrating the capacity of these tests to identify the 

structure (only instant, only time-lagged or both instant and time-lagged) of spatial dependence in 

most cases. 

 
Key words: Space-time dependence, Spatial autoregressive models, Moran’s I. 

 
 
Resumen. En este artículo, se analiza la instantaneidad de la dependencia especial en el modelo 

auto-regresivo espacial de primer orden o SAR(1). En muchos fenómenos socioeconómicos, el 

fenómeno de dependencia especial puede ser no sólo contemporáneo o instantáneo, sino también 

retardado en el tiempo. Con ayuda de tres estadísticos espacio-temporales basados en el test I de 

Moran, evaluaremos la instantaneidad de este efecto especial. Además, se demostrará la 

capacidad de dichos tests para identificar la estructura de dependencia espacial (sólo instantánea, 

sólo retardada en el tiempo y mixta) de la mayoría de las distribuciones, a través de un ejercicio de 

simulación de Monte-Carlo. 
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1 INTRODUCTION 
 

The purpose of this article is to analyze the time-trend of spatial dependence in the first-order 

spatial autoregressive model, SAR(1), making a differentiation between two types of spatial 

dependence: contemporary or instant and non-contemporary or time-lagged. The first type is the 

consequence of a very quick interaction of the process over the neighboring locations, while the 

second implies that a shock in a certain location needs some time to extend over its neighborhood. 

It is not easy to separate both types of spatial dependence but both are present very frequently and 

should be considered when specifying a spatial autoregressive model. 

 
Spatial dependence has usually been defined as a spatial effect, which is related to the 

spatial interaction existing between geographic locations and takes place in a particular moment of 

time. In other words, spatial dependence is considered as the contemporary coincidence of value 

similarity with locational similarity. When spatial interaction, spatial spillovers or spatial hierarchies 

produce spatial dependence in the endogenous variable of a regression model, the spatial 

autoregressive model has been frequently mentioned as the solution in the literature (e.g. Florax et 

al. 2003). Analogous to the Box-Jenkings approach in the time-series analysis, spatial model 

specifications consider autoregressive processes. Particularly, in the first-order spatial 

autoregressive model, SAR(1), a variable is a function of its spatial lag (a weighted average of the 

value of this variable in the neighboring locations) for a same moment of time. 

 

However, in most socio-economic phenomena, this coincidence in values-locations is not 

only an instant coincidence but also (or perhaps only) a final effect of some cause that happened in 

the past, one that has spread through geographic space during a certain period. In this sense, there 

are some authors that have considered this pure simultaneity of spatial dependence as problematic 

(Upton and Fingleton 1985, pp 369), suggesting the introduction of a time-lagged spatial 

dependence term. Moreover, Cressie (1993, pp 450) proposes a generalization of the STARIMA 

models presented in Martin and Oeppen (1975) and Pfeifer and Deutsch (1980), among others, 

such that they also include not only time-lagged but also “instantaneous spatial dependence”. 

 

Recently, there are several contributions in this subject. For example, Elhorst (2001, 2003) 

presented several single equation models that include a wide range of substantive non-

contemporary spatial dependence lags, not only in the endogenous but also in the exogenous 

variables. Anselin et al. (2005) present a brief taxonomy for panel data models with different kind of 

spatial dependence structure for the endogenous variable (space, time and space-time), referring to 

them as pure space-recursive, time-space recursive, time-space simultaneous and time-space 

dynamic models. 
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Space-time dependence has also been specified in spatial autoregressive models in either 

theoretical frameworks (Baltagi et al. 2003; Pace et al. 1998, 2000) or panel data applications 

(Case 1991; Yilmaz et al. 2002; Baltagi and Li 2003; Mobley 2003). 

 

In this article, we analyze if spatial dependence is a synchronic effect in the SAR(1) model, 

allowing for not only horizontal (static) but also space-time interaction (dynamic). Similarly as in 

Pace et al. (1998, 2000), it is our aim to identify different components in the spatial lag term, 

splitting it into instant, space-time or both –instant and space-time- spatial dependence 

components. Therefore, we propose the identification and use –if necessary- of the space-time 

lagged endogenous variable in the SAR(1) model, since it reflects the effects due to spatial 

interaction as a spatial diffusion phenomena, which is not only “horizontal” – simultaneous – but 

also time-wise. 

 

For this purpose, we present some space-time Moran-based statistics in order to identify the 

spatial dependence structure in the SAR(1) model. We illustrate the performance of these statistics 

with a simulation exercise. 

 

The remainder of paper is organized as follows. In the next section, we derive three Moran-

based autocorrelation statistics to evaluate the simultaneity of the SAR(1) model. In section 3, we 

present three different specifications of spatial dependence in this model, as well as the behavior of 

the identification statistics in each one. In section 4, we evaluate the power of the tests with a 

simulation analysis. Some summary conclusions and references complete the paper. 

 

2 MORAN SPACE-TIME STATISTICS FOR THE EVALUATION OF SPATIAL DEPENDENCE IN 
THE FIRST-ORDER SPATIAL AUTOREGRESSIVE MODEL 
 
The first-order spatial autoregressive model, SAR(1), or simultaneous model dates back to the work 

of Whittle (1954). In matrix notation, it takes the form: 

 

( )20, n

z Wz

N I

ρ ε

ε σ

= +

∼
 (1)

 

where [ ] / yz y y σ= −  is a n by 1 vector of observations (variable vector y is expressed in 

deviations from the means form to eliminate the constant term in the model); W is the spatial weight 

matrix; ρ is the spatial autoregressive coefficient; and ε is a n by 1 vector of random error terms. W 
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is the familiar spatial weight matrix that defines the neighborhood interactions existent in a spatial 

sample (Cliff and Ord 1981). In this context, the usual row-standardized form of the spatial weights 

matrix can be used, yielding an interpretation of the spatial lag (Wz) as an “average” of neighboring 

values. 

 

The spatial term, Wz, is a way to assess the degree of spatial dependence of z in a same 

moment of time (from now on, it is denoted as Wzt). Nevertheless, in most socio-economic 

phenomena, the relationship between zt and Wzt is not only synchronic but also –or perhaps only- a 

final effect of some cause that happened in the past (Wzt-k; 1,2,...k = ). Consequently, before 

estimating a SAR(1) model, we should identify correctly the form of the spatial effect, Wzt, in this 

model. 

 

In this section, we present some Moran-based statistics that are useful to detect the 

existence of time-lagged spatial dependence. First, we briefly present the space-time Moran’s I 

statistic (STI), which evaluates spatial dependence in two instant of time. Secondly, we present two 

partial space-time Moran’s functions: the partial time-lagged Moran’s I (PLI) and the partial instant 

Moran’s I (PII). Our goal is to contribute towards obtaining appropriate indicators to evaluate the 

temporal structure of spatial dependence in the SAR(1) model. 

 

2.1 Space-time autocorrelation 

 

When considering both space-time dimensions, some Moran-based statistics can be defined 

to analyze and visualize the space-time structure of a distribution (Anselin et al. 2002). This is the 

case of the space-time Moran’s I (STI). This instrument is similar to others already proposed in the 

literature (e.g. Cliff and Ord 1981, pp. 23). 

 

The STI is an extension of Moran’s I. It computes the relationship between the spatial lag, 

Wzt, at time t and the original variable, z, at time t k−  (k is the order of the time lag). Therefore, 

this statistic quantifies the influence that a change in a spatial variable z, that operated in the past 

( t k− ) in an individual location i (zt-k) exerts over its neighborhood at present (Wzt). Hence, it is 

possible to define it as follows: 

 

,
t k t

t k t
t k t k

z WzI
z z
−

−
− −

′
=

′
 (2)
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where, the denominator can be substituted by n as this variable z is also standardized. The value 

adopted by this index, corresponds with the slope in the regression line of Wzt on zt-k. Note that for 

0k = , this statistic coincides with the familiar univariate Moran’s I that from now on, we denote as 

It. 

 

The significance of this statistic can be assessed in the usual fashion by means of a 

randomization (or permutation) approach. In this case, the observed values for one of the variables 

are randomly reallocated to locations and the statistic is recomputed for each such random pattern. 

 

A space-time Moran’s I function could be considered. It is the result of plotting all the values 

of the STI statistic, adopted by a variable z in time t, for different time lags k. The first value 

corresponds to the contemporary case, 0k = , which is the univariate Moran’s I (It), whereas the 

other ones are proper space-time Moran’s I coefficients (It-k,t). This function is a particular case of 

the “full” space-time autocorrelation function (Pfeifer and Deutsch 1980, Bennett 1979), which is a 

3-D plot that includes the correlation coefficients for all the space and time lags of a distribution. 

 

2.2 Moran space-time partial autocorrelation statistics 

 

There is no doubt that the spatial dependence measures that have been presented include 

different sources of dependence that are difficult to separate. 

 

( , ) 0it jsCov z z ≠  (3)

 

where sub-indexes i, j are different spatial locations and t, s are different instants of time.  

 

 Therefore, we consider the following types of dependencies: 

 

(a) There is a dependence in expression (4) that is the result of time evolution: 
 

( , ) 0it jsCov z z ≠
 ; i j∀ =  (4)

  

 This expression affirms that (for s t k= − ) the value of the z variable in period t is more or 

less related to t k− . This assertion is more correct for lower values of k. 

 

(b) There is a dependence in expression (4) that is the result of spatial interactions: 
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( , ) 0it jsCov z z ≠  ; t s∀ =  (5)

 

 This second type of dependence –spatial dependence- can be produced by two sources: 

 

(b1) Simultaneous or contemporary spatial dependence constitutes the usual definition of 

spatial dependence in the literature and it is the consequence of an instant, very rapid, spatial 

diffusion of a phenomenon in geographic space. It can be connected to or the consequence of a 

lack of concordance between a spatial observation and the region in which the phenomenon is 

analyzed. 

 

(b2) Time-lagged or non-contemporary spatial dependence is the result of a slower diffusion of 

a phenomenon towards the surrounding space. This kind of dependence is due to the usual 

interchange flows existing between neighboring areas, which requires of a certain time to be tested. 

 

Although it is very difficult to divide spatial dependence into its two dimensions (instant and 

time-lagged), it is worth trying to compute them separately in order to correctly specify a spatial 

process that exhibits spatial dependence. One of the aims of this article is to show a new range of 

Moran-based statistics that allow justifying the inclusion of both kind of spatial lags, contemporary 

(Wzt) and time-lagged (Wzt-k) ones, to explain zt in a spatial regression. Some coefficients can be 

defined to evaluate the inclusion of a space-time lag term in a spatial regression. 

 

Since the space-time Moran’s I (STI) –equation (2)- equals to the slope of the regression of 

Wzt-k on zt, it is possible to connect this statistic with the standard Pearson correlation coefficient 

between these two variables, as also derived by Lee (2001). So we can express the STI statistic as: 

 

, , ( )
tt kt k t tz WzI r Var Wz

−− =  (6)

 

where , tt kz Wzr
−

 is the Pearson linear correlation coefficient between zt-k and Wzt. 

 

The basic underlying idea consists of eliminating the influence of one of the dimensions in 

order to compute separately contemporary and non-contemporary spatial dependence. For this 

purpose, we substitute in (6) the space-time correlation coefficient by a partial correlation one. Two 

space-time partial autocorrelation statistics can be defined: 
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(a) Partial Time-Lagged Moran’s I (PLI) computes the correlation between variable z in period t-k 

and its spatial lag Wz in period t removing the influence of z in t: 

 

, ( , ) ( ) ; 1, 2,..., 1P
t k t t k t t tI Corr z Wz z Var Wz k t− −= = −  (7)

 

where 
,, ,

2 2
, ,

( , )
1 1

t k t t
tt t tt kt k

t t tt k

z zz Wz Wz z

z z Wz z

Corr z Wz z
r r r

r r
−

−−

−

⋅
=

⋅

−

− −
 is the partial correlation coefficient of 

variables zt-k and Wzt after eliminating the correlation from zt. Therefore, it is possible to express this 

statistic as a function of both Moran’s I and space-time Moran’s I:  

 

,

,
, 2 2

,

,

1 1
tt k

t k t tP
t k t

z z z Wz

tt k

t t

z z I
I

r r

I r

−

−

−
−

⋅

− ⋅
=

− −
 (8)

 

This indicator removes contemporary spatial dependence from the relationship between 

variables zt-k and Wzt. If the pattern of spatial dependence is one that can be totally captured by 

contemporary spatial dependence ( 0tI ≠ ), then the PLI will be close to zero.  On the contrary, if 

the process is one that can be captured by non-contemporary spatial dependence, then ,
P
t k tI −  will 

be significantly different from zero. Regarding to the sign, it is positive/negative depending on It-k,t 

sign. 

 

(b) Partial Instant Moran’s I (PII) is the complementary expression that consists of computing 

contemporary –or instant- spatial dependence after removing time-lagged spatial dependence 

by means of an index: 

 

( , ) ( ) ; 1, 2,..., 1kP
t t t t k tI Corr z Wz z Var Wz k t−= = −  (9)

 

 

where ( , )t t t kCorr z Wz z −  is the partial correlation coefficient of variables zt and Wzt after 

eliminating the correlation from Wzt-k. Therefore, it is possible to express this statistic as a function 

of both Moran’s I (It) and space-time Moran’s I (It-k,t). 
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,

2 2
, ,

,

1 1
k

t tt k t k

t t k tP
t

z z Wz z

tt kz zI
I

r r

r I

− −

−−

⋅

− ⋅
=

− −
 (10)

 

This indicator removes time-lagged spatial dependence from the contemporary spatial 

relationship between variables zt and Wzt. If the pattern of spatial dependence is one that can be 

totally captured by a time-lagged spatial autoregression, then the PPI will be close to zero. On the 

contrary, if the process is one that can be captured by contemporary spatial dependence, then PPI 

will be significantly different from zero. 

 

From (8) and (10), it is easy to derive the following expression: 

 

--

- -

2 2
, , ,

- ,2 2
, ,

1- 1- ·
 ;    1,  ..., -1

1- 1-
t t t k tt t k k

t tt k t k

Wz z Wz z z zP P
t t t k t

z z z z

r r r
I I I k t

r r
= + =  (11)

 

In this expression, spatial dependence (measured with Moran’s I statistic or tI ) is shown as 

the sum of two contributions: contemporary spatial dependence (PII or kP
tI ) and non-contemporary 

spatial dependence (PLI or - ,
P
t k tI ), both weighted by a corresponding scalar. 

 

In case of normal distribution, the inference of the common partial correlation coefficient can 

be applied to both Moran space-time partial autocorrelation statistics, as they are the result of 

multiplying the former by a constant. In case of non-normality, a permutation approach can be the 

solution to compute the moments. 

 

3. IDENTIFICATION OF SPATIAL DEPENDENCE STRUCTURE IN THE FIRST-ORDER 
SPATIAL AUTOREGRESSIVE MODEL 
 
The joint representation of the space-time Moran’s I coefficient (STI) in combination with the Moran 

space-time partial autocorrelation statistics (PLI, PII) is a useful tool to identify the simultaneity of 

spatial dependence in the SAR(1) model. The identification of spatial dependence structure should 

be conducted in two steps as follows: 

 

Step 1. The space-time Moran’s I function (STI) indicates the existence (or non-existence) of a 

temporal trend in the spatial term of the SAR(1) model (Wz). If the STI values are significant (using 
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the regular inference process), we can conclude that there is time-lagged spatial dependence in the 

corresponding distribution, and vice versa.  

 

Step 2. Secondly, the Moran space-time partial autocorrelation statistics (PLI, PII) are the 

instrument to determine whether the existent spatial dependence contains an instant and/or time-

lagged component. 

 

Contemporary or instant spatial dependence is present in a variable if only the partial 

instant Moran’s I (PII) has significant values. In this case, only the present values of the variable (zt) 

can explain its present spatial lag (Wzt). In a spatial regression, if an endogenous variable zt 

exhibits significant STI and PII values, we could capture spatial autocorrelation by a contemporary 

spatial lag of zt (Wzt) as an explicative variable in the model. 

 

t t tz Wzρ ε= +  (12)

 

where ρ is the spatial parameter to estimate and ε the error term. This is the SAR(1) model. 

 

Non-contemporary or time-lagged spatial dependence is present in a variable if only the 

partial time-lagged Moran’s I (PLI) has significant values. In fact, past values of variable z (zt-k) 

completely explain its present spatial lag (Wzt). In this case, we could capture spatial dependence 

in an endogenous variable zt introduction a space-time lag of z (Wzt-k) as an explicative, exogenous, 

variable in the model. 

 

t t k tz Wzρ ε−= +  (13)

 
Mixed contemporary and non-contemporary spatial dependence is present in a variable 

if both partial functions have high significant values for the same periods. In this case, not only 

present but also past values of variable z can completely explain its present spatial lag. Therefore, 

we could capture spatial dependence in an endogenous variable zt specifying both an instant and a 

time-lagged spatial lag of z (Wzt, Wzt-k) as explicative variables in the model. 

 

t 1 t 2 t k tz Wz Wzρ ρ ε−= + +  (14)  
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where ρ1, ρ2 are spatial parameters to estimate.  This model is the mixed regressive-spatial 

autoregressive model or space lag model, which includes as explicative not only the spatial-lagged 

endogenous variable (Wzt), but also real exogenous variables (Wzt-k). 

 
4. MONTE CARLO SIMULATION STUDY 
 

Next, we evaluate empirically the Moran space-time autocorrelation statistics (STI, PLI, PII) in a 

series of Monte Carlo simulation in order to obtain an initial assessment of their discriminating 

power of spatial dependence into instant and/or time-lagged. 

 
5.1. Experimental design 

 

 We consider two different moments of time t, s, such that s t< . For time s, we generate an 

instant spatial dependence process (zs) whereas for time t we set up three alternative processes 

(zt): instant spatial dependence (i), time-lagged spatial dependence (ii) and both instant and time-

lagged spatial dependence (iii). Formally: 

 

i) For time t, instant spatial dependence only:  

 

s s s

t t t

z Wz
z Wz

ρ ε
ρ ε

= +
= +

 (15) 

 

ii) For time t, time-lagged spatial dependence only:  

 

= +
= +

s s s

t s t

z Wz
z Wz

ρ ε
ρ ε

 (16) 

 

iii) For time t, both instant and time-lagged spatial dependence: 

 

1 2

s s s

t t s t

z Wz
z Wz Wz

ρ ε
ρ ρ ε

= +
= + +

 (17) 

 

where ρ, ρ1, ρ2 are the spatial autoregressive coefficients and εs, εt are the error terms for time s, t, 

respectively. For the sake of simplicity, we specify the same spatial weight matrix, W, in all cases. It 

is a queen-case contiguity matrix, as it is defined in Anselin (1988, p. 18). 
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 Clearly, we can obtain different degrees of instant and time-lagged spatial dependence by 

manipulating the values of the parameters and the characteristics of the error terms. In our 

experiments, we set the purely temporal dependence structure in variable z by means of the error 

terms (εs, εt), which are generated as a bivariate normal distribution with zero mean and ( )ijσΣ =  

covariance matrix, such that 1iiσ =  and ij rσ = . Temporal autocorrelation is defined by the r 

parameter considering three different cases: weak temporal autocorrelation ( 0.5r = ), moderate 

temporal autocorrelation ( 0.75r = ) and strong temporal autocorrelation ( 0.98r = ). 

 

 The spatial configuration we have consider is a regular lattice structure for a queen-type 

contiguity in square 10 by 10 (N = 100). The spatial weights matrix is used in row-standardized 

form. 

 

 In the case of expression (17) –both instant and time-lagged spatial dependence in time t, 

we also consider two different intensities in spatial dependence: 

 

a) Stronger instant spatial dependence: 1 2 1 22 andρ ρ ρ ρ ρ= + =  

b) Stronger time-lagged spatial dependence: 1 2 1 22 andρ ρ ρ ρ ρ= + =  

 

 Therefore, we compute the space-time partial autocorrelation statistics in time t, with 

respect to time s, for the different values of parameters r, ρ. We have only considered positive 

spatial autocorrelation structures, which is the most common tendency found in empirical cases 

(Griffith and Arbia 2006). In the simulations, we let ρ vary from 0 to 1, with increments of 0.05, to 

assess the effect of spatial lag autocorrelation. We have generated 9,999 replications for each 

situation. We have evaluated the power of the test statistics (STI, PLI, PII) to discriminate between 

instant, time-lagged or both kind of spatial dependence structure in the SAR(1) model. 

 

 

5.2. Power of the tests 

 

 Figures 1-4 present the simulation results. In the upper-left cell, we have plotted the power 

of the selection criterion as the number of times that a partial index is higher than the other one. 

The rest of the graphs show the average values of the STI, PLI and PII for the three types of 

temporal autocorrelation ( 0.5,  0.75,  0.98r = ). Each Figure specifies a different data generating 

process. 
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 In Figure 1, which corresponds to model (15), the average values of PII are quite similar to 

STI ones, while PLI adopts almost zero values. This gap is higher for lower temporal autocorrelation 

( 0.5,  0.75r = ), but in the case of 0.98r = , though PLI values are almost zero, PII coefficients 

move down away from STI. It is a natural effect, since such a strong temporal autocorrelation 

( 0.98r = ) induces an even stronger correlation between zt and zs (0.998) what leads to a practical 

identification between both processes. Regarding the power of the partial tests (number of times 

PII PLI> ) to select the correct model, it loose strength with higher temporal correlation (r), but it 

augments with stronger spatial autocorrelation (ρ). 

 

 When having the pure time-lagged spatial dependence situation shown in (16), both partial 

tests get positive average values (Figure 2). These figures decline with temporal autocorrelation so 

that in the extreme case of 0.98r = , both PII and PLI are nearly zero. In this situation, the number 

of times PLI PII>  is around 80% for moderate time-lagged spatial dependence ( 0.4ρ ≥ ) and 

weak temporal correlation ( 0.5r = ). This percentage declines for higher levels of temporal 

correlation but increases with spatial autocorrelation. 

 

 The situation described in model (17) –mixed instant and time-lagged spatial dependence- 

is more difficult to detect because they are intermediate cases between models (15) and (16). As 

previously described, we have considered two states: stronger instant spatial dependence (Figure 

3) and stronger time-lagged spatial dependence (Figure 4). In the first case, PII is always over PLI, 

though the gap is not as steeper as in the generating process shown in Figure 1. That is why the 

percentage of times that PII>PLI is smaller (about 70%). As in the other cases, higher temporal 

correlation produces an identification of both processes zt and zs, so that it is more difficult to 

differentiate between them. 

 

5 CONCLUSIONS 
 
The main aim of this paper is to analyze to what extent spatial dependence is an instantaneous 

effect in the SAR(1) model, making a differentiation between instant or contemporaneous and 

lagged or non-contemporaneous spatial dependence. The first is the consequence of a very quick 

diffusion of the process over the neighboring locations, while the second implies that a shock in a 

certain location needs of several periods to take place and be tested over its neighborhood. It is –

without any doubt- a subject to consider when working with space-time distributions, though it is not 

easy to differentiate between both kinds of dependencies, especially when dealing with highly 

correlated time-series. 
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 For the fulfillment of this aim, we propose the use of three Moran’s I-based statistics: space-

time Moran’s I, partial instant Moran’s I and partial time-lagged Moran’s I. 

 

 We illustrate the power of these tests for the identification of spatial dependence structure 

via a simulation exercise. Specifically, we build three data generating processes based on different 

spatial dependence structures: only instant, only time-lagged and both instant and time-lagged. 

 

 In the primary two cases, this experiment has clearly revealed the good performance of the 

Moran’s tests, mainly in processes with strong spatial autocorrelation (instant and/or time-lagged) 

and weaker temporal correlation. Nevertheless, in the extreme case of (nearly) null spatial 

autocorrelation and (nearly) perfect temporal correlation, it is very difficult to split both kind of spatial 

dependence, since there is a practical identification between the process in both –past and present- 

periods. 

 

 Regarding the mixed spatial dependence, the space-time Moran’s tests are less efficient in 

general. Only in the case of extreme spatial autocorrelation and weak temporal correlation, the 

performance of these statistics is acceptable in order to split spatial dependence into instant and 

time-lagged. 
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Fig. 1a-d. Power of space-time Moran’s I coefficients against instant spatial dependence only (9,999 replications). STI is the space-time Moran’s I, 
PII is the partial instant Moran’s I, PLI is the partial time-lagged Moran’s I. Case (a) shows the percentage of times that PII > PLI , case (b) 
computes the indices for weak temporal correlation ( 0.5r = ), case (c) computes them for moderate temporal correlation ( 0.75r = ) and case (d) 
corresponds to strong temporal autocorrelation ( 0.98r = ). 
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Fig. 2a-d. Power of space-time Moran’s I coefficients against time-lagged spatial dependence only (9,999 replications). STI is the space-time 
Moran’s I, PII is the partial instant Moran’s I, PLI is the partial time-lagged Moran’s I. Case (a) shows the percentage of times that PLI > PII , 
case (b) computes the indices for weak temporal correlation ( 0.5r = ), case (c) computes them for moderate temporal correlation ( 0.75r = ) and 
case (d) corresponds to strong temporal autocorrelation ( 0.98r = ). 
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Fig. 3a-d. Power of space-time Moran’s I coefficients against both instant and time-lagged spatial dependence, for stronger instant spatial 
dependence (9,999 replications). STI is the space-time Moran’s I, PII is the partial instant Moran’s I, PLI is the partial time-lagged Moran’s I. Case 
(a) shows the percentage of times that PII > PLI , case (b) computes the indices for weak temporal correlation ( 0.5r = ), case (c) computes 
them for moderate temporal correlation ( 0.75r = ) and case (d) corresponds to strong temporal autocorrelation ( 0.98r = ). 
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Fig. 4a-d. Power of space-time Moran’s I coefficients against both instant and time-lagged spatial dependence, for stronger time-lagged spatial 
dependence (9,999 replications). STI is the space-time Moran’s I, PII is the partial instant Moran’s I, PLI is the partial time-lagged Moran’s I. Case 
(a) shows the percentage of times that PII > PLI , case (b) computes the indices for weak temporal correlation ( 0.5r = ), case (c) computes 
them for moderate temporal correlation ( 0.75r = ) and case (d) corresponds to strong temporal autocorrelation ( 0.98r = ). 
 


