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Abstract: We study an optimal collusion-proof auction in an environ-

ment where subsets of bidders may collude not just on their bids but

also on their participation. Despite their ability to collude on partici-

pation, informational asymmetry facing the potential colluders can be

exploited significantly to weaken their collusive power. The second-best

auction — i.e., the optimal auction in a collusion-free environment —

can be made collusion-proof, if at least one bidder is not collusive, or

there are multiple bidding cartels, or the second-best outcome involves

a nontrivial probability of the object not being sold. In case the second-

best outcome is not weak collusion-proof implementable, we characterize

an optimal collusion-proof auction. This auction involves nontrivial ex-

clusion of collusive bidders — i.e., the object is not sold to any collusive

bidder with positive probability.
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1 Introduction

Collusion by participants often poses a serious threat to markets and organizations. Nowhere

is such a threat more intimately felt than in auctions where bidders can manipulate or simply

withdraw their bids to limit competition. Not surprisingly, auctions have provided the volume

and prominence to the study of collusion, with its evidence found in highway construction

contracts (Porter and Zona (1993)), timber sales (Baldwin et al. (1997)), and in school milk

delivery contracts (Pesendorfer (2000), and Porter and Zona (1999)).

In keeping with these evidences are the theoretical findings that “standard” auctions are

vulnerable to bidder collusion, even when the cartel members face mutual asymmetric informa-

tion. McAfee and McMillan (1992) demonstrate in their seminal article that asymmetrically

informed cartel members can structure a knock-out auction that enables them to (re)allocate

the good among themselves efficiently while limiting the seller’s revenue to at most her re-

serve price. The ability by the cartel members to exchange side payments (without getting

detected) is crucial for this result, but they can achieve the same effect via adjusting their bid

rotation or market shares, if auctions are repeated.1

If standard auctions are vulnerable to collusion, can one find an auction rule that is not?

This is the question we pursue in this paper. What makes this question nontrivial is the

informational asymmetry facing potential colluders. If colluders have complete information

about one another, then they can effectively act like a single agent and maximize their joint

payoffs. Then, there would be little room for auction design, for an optimal scheme would

simply reduce to textbook monopoly pricing. If bidders face mutual asymmetric information,

however, they may not effectively coordinate their behavior, and the seller may exploit this to

undermine collusion. Although standard auctions are not capable of this (as has been shown

by extant literature), other auction rule may enable the seller to exploit the bidders’ mutual

asymmetric information more effectively. We seek to identify such an auction rule.

In order to study an optimal response to collusion, one must understand a bidder’s incentive

to participate in collusion. In particular, one must deal with the question of what happens

after a bidder refuses to participate in collusion. What belief would they form about the

subsequent competition and about the types of bidders they face? Can the remaining cartel

members punish the defecting bidder, and if so, to what degree? How one models the (out-of-

equilibrium) belief and the cartel members’ ability to punish a defector determines a bidder’s

1Graham and Marshall (1987), McAfee and McMillan (1992), Mailath and Zemsky (1991), Eso and Schum-
mer (2003), and Marshall and Marx (2007) study collusion in one-shot auctions of various formats, while
Aoyagi (2003), Athey, Bagwell and Sanchirico (2004), Blume and Heidhues (2002), and Skrzypacz and Hopen-
hayn (2004) study collusion in repeated auctions.
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incentive to participate in a collusive arrangement, which in turn determines the scope and

the nature of the seller’s response. In this regard, we take an eclectic approach by considering

both weak and strong notions of collusion-proof auctions.

The weak notion postulates that collusion arises only when it benefits all types of bidders

relative to a non-cooperative play without any updating of beliefs. An auction rule is said to

be weak collusion-proof if it admits no such collusion. This notion is reasonable to the extent

that cartel members will often find it difficult to punish a defector more severely than bidding

competitively. At the same time, the weak notion restricts the bidders’ out-of-equilibrium

beliefs. Hence, we also consider a “strong” notion, which imposes no restriction on the cartel

members’ out-of-equilibrium beliefs or their ability to punish a defector: an auction rule is

defined to be strong collusion-proof if, under that rule, the seller enjoys in every Bayesian

Nash equilibrium the same expected revenue as she would absent any collusion. Further, we

require the strong collusion-proof auction to be robust to the specifics of the cartel operation.

While the alternative notions matter to some extent, they do not affect the main thrust

of our results. We find, largely irrespective of the particular notion used, that a seller can

overcome her vulnerability to collusion in a surprisingly broad range of circumstances. Specif-

ically, a seller can attain the highest revenue she can without any collusion, either if a cartel

is not all-inclusive or if the object is not sold to any bidder with some probability. This re-

sult holds with respect to the weak notion of collusion-proofness but also with respect to the

strong notion given an additional condition (which is satisfied for the case of the all-inclusive

cartel). When neither condition is met, we identify an optimal collusion-proof auction in some

restricted class of auctions. In the process, we establish an exclusion principle which states

that an optimal collusion-proof auction involves a positive probability of not selling to any col-

lusive bidder. The exclusion principle holds quite generally, regardless of the buyers’ support

of valuations, thus exhibiting a qualitative departure from the collusion-free auction design.2

In sum, the present paper suggests that a seller can overcome collusion completely in many

cases and do generally much better than she could if she would resort to simple monopoly

pricing.

The current paper is related to several recent papers.3 First, it is related to our companion

2As is well known, the standard optimal auction allocates the good to a buyer with probability one, if there
is at least one buyer whose infimum valuation is sufficiently high. See Myerson (1981).

3Other authors have studied optimal collusion-proof mechanisms in different contexts. Quesada (2004) finds
an optimal collusion-proof mechanism in the LM setting where an (informed) agent proposes a side contract.
In fact, she treats collusion on participation, but adopts the strong notion similar to Dequiedt (2007) where
the side contract can impose maximum punishment on refusing agents. Jeon and Menicucci (2005) shows that
second-best is achievable in the weak collusion-proof sense, much like Che and Kim (2007), in the nonlinear
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paper, Che and Kim (2007) (henceforth, CK), as well as Laffont and Martimort (1999, 2000)

(henceforth, LM), which studies a collusion-proof contract when, unlike the current setting,

agents can collude only after they participate in the contract. This latter assumption may not

be appropriate in many auctions where bidders are intimately familiar with their opponents

even before participating. In fact, an allegedly predominant form of collusion involves bidders

coordinating on their participation decisions: Colluders either refuse to participate or with-

draw their bids to let a designated cartel member win without facing competition. Further,

the idea of “selling the firm” to potential colluders, featured in Che and Kim (2007), relies on

the agents’ inability to collude on their participation decision. The current paper relaxes the

assumption by allowing the bidders to collude on their participation decision.

In this latter respect, the current paper is related to Dequiedt (2007) and Pavlov (2006),

who also study collusion-proof auctions when bidders can collude on their participation. De-

quiedt considers two bidders with binary types (i.e., of either low or high valuation). He shows

that, if a cartel can commit to punish a defector to his reservation utility, then the seller can

at most collect her reserve price when a bidder’s valuation exceeds that price. This seemingly

pessimistic result, however, has more to do with the binary type of the model than say with

the bidders’ ability to collude on participation or their ability to punish a defector (which in

fact corresponds to the strong notion in the current paper). With binary types, exclusion of

a low valuation type is equivalent to setting a reserve price equal to the high valuation type.

Hence, the optimality of this latter behavior, although completely explainable by our exclusion

principle, may appear to suggest that the seller can’t do any better than adopting a text-book

monopoly pricing. Our paper will show that the optimal collusion-proof auction does not

generally reduce to monopoly pricing, and will typically generate strictly higher revenue.

Like us, Pavlov (2006) considers a model with a continuous bidder types, and his main

result parallels some of the current paper, particularly Theorem 5. There are several dif-

ferences, however. His analysis concerns only the case of the all-inclusive cartel and focuses

only on ex ante symmetric bidders.4 The current paper goes much beyond that environment.

First of all, we consider the general case in which subsets of bidders are collusive. In fact,

the most important result concerns the case in which a proper subset of bidders is collusive

— i.e., at least one bidder is noncollusive or there are multiple bidding cartels — in which

case the second-best outcome is shown to be collusion-proof implementable. Second, we can

pricing context. Laffont and Martimort (1998), Celik (2004) and Faure-Grimaud et al. (2004) study the
optimality of delegation in the presence of collusive agents.

4Our results for the all-inclusive cartel case are obtained independently. As will be apparent, the methods
of analysis are quite different. Of course, the results on other subjects, particularly the subgroup collusion,
are completely new here.
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handle the case of ex ante asymmetric bidders, at least with the all-inclusive cartel: We show

that the second-best outcome is collusion-proof implementable, given a somewhat stronger

condition than is needed for the symmetric bidders case. Third, our model of collusion differs

from his in that we allow members of collusion to reallocate the good once it is sold to one of

the members.

Above all, the ability to handle collusion by a subset(s) of bidders is practically important

and useful. In many circumstances, not all bidders are in a position to collude. Government

auctions used in defense procurement, mineral extraction, or spectrum licenses often have

incumbents with long history of operation competing against relative new comers. Long

term interaction and shared experiences among the incumbents will put them in a better

position to collude than the new comers. Likewise, in auctions for construction repairs or

food service procurement, competition may involve both local and non-local providers, and

the former group may be able to collude more effectively, based on their regular contacts and

their interaction through trade associations. The problem of only a subset of bidders being

collusive introduces a new challenge, since the cartel may prey on noncollusive bidders as

much as on the seller. Hence, a collusion-proof design must eliminate incentives for the cartel

to engage in such behavior.

The rest of the paper is organized as follows. Section 2 introduces an auction model

and describes the second-best outcome in a collusion-free environment. Section 3 introduces

a model of collusion and the notion of weak collusion-proof auctions. Section 4 identifies

the properties of weak collusion-proof auctions and uses them to derive a condition that

is necessary and sufficient for implementing the second-best outcome in a collusion-proof

fashion. In Section 5, we characterize the optimal collusion-proof auction when the second-

best is not weak collusion-proof implementable. Section 6 characterizes strong collusion-proof

implementation. Section 7 concludes.

2 Primitives

A risk-neutral seller has an object for sale. The seller’s valuation of the object is normalized

to zero. There are n ≥ 2 risk-neutral buyers who each independently draw a value, θi, on

the object from an interval Θi := [θi, θi] ⊂ R+ according to distribution Fi, which has strictly

positive density fi on the support. We assume that both

Ji(θi) := θi −
1− Fi(θi)

fi(θi)
and Ki(θi) := θi +

Fi(θi)

fi(θi)
.
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are strictly increasing in θi for all i ∈ N . Throughout, we let E[·] :=
∫

Θ
[·]d(

∏
i∈N Fi(θi)). and

Eθ̃−i
[·] :=

∫
Θ−i

[·]d(
∏

j 6=i Fj(θj)) denote expectation operators based on the prior distribution,

where Θ :=
∏

i∈N Θi and Θ−i :=
∏

j 6=i Θj.

For a later analysis, it is convenient to augment each bidder’s type space to include the

“participation decision” as part of his possible type. Specifically, we let θ∅ denote “non-

participation” or “exit” option available to each bidder with the convention that θ∅ < θi,∀i ∈
N,∀θi ∈ Θi, and define Θi := {θ∅} ∪ Θi. We then let θ := (θ1, ..., θn) ∈ Θ :=

∏
i∈N Θi

denote a possible profile of types in these enriched type spaces. Since we shall consider

randomization in cartel members’ reports over their augmented type spaces, it is convenient

to consider arbitrary probability distribution, µC , over ΘC :=
∏

i∈C Θi for any C ⊂ N and to

use EµC [·] :=
∫

ΘC
[·]d(µC(θC)) as an expectation operator relative to µC .

We now describe arbitrary auction rules, and we do so in direct mechanisms. An auction

rule, M = (q, t), consists of an allocation rule, q = (q1, · · · , qn) : Θ → Q, where Q := {x ∈
[0, 1]n|

∑
i∈N xi ≤ 1} and a payment rule, t = (t1, ..., tn) : Θ → Rn, such that qi(θ∅, θ−i) =

ti(θ∅, θ−i) = 0,∀i, θ−i ∈ Θ−i. An auction rule determines, for each profile of bidders’ reports

in Θ, a vector of probabilities for the bidders to obtain the object and a vector of expected

payments they must pay, subject to the constraint that, if a bidder does not participate,

he does not receive the good and collects his reservation utility, normalized to zero. Any

equilibrium arising in any auction game can be described as an auction rule in this framework,

so we sometimes use an “outcome” interchangeably with an auction rule.

Fix an auction rule, M = (q, t). Buyer i’s interim payoff when his valuation is θi ∈ Θi but

reports θ̃i ∈ Θi is

uM
i (θ̃i, θi) := θiQi(θ̃i)− Ti(θ̃i),

where Qi(θi) := Eθ̃−i
[qi(θ)] and Ti(θi) := Eθ̃−i

[ti(θ)]. Given hidden information and the avail-

ability of the non-participation option, an auction rule must be incentive compatible and

individually rational to be consistent with equilibrium. We say an auction rule M is feasible

if

UM
i (θi) := uM

i (θi, θi) ≥ uM
i (θ̃i, θi), ∀i, θi ∈ Θi, θ̃i ∈ Θi. (IC∗)

Note (IC∗) subsumes both incentive compatibility and individual rationality, since it requires

UM
i (θi) ≥ uM

i (θ∅, θi) = 0. (IR)

Let M denote the set of all feasible auction rules. For later analysis, the following charac-

terization of feasible auction rules proves useful. Its proof, along with most of the others, are

relegated to the Appendix.
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Lemma 0. If M = (q, t) ∈M, then, for each θi ∈ Θi,

UM
i (θi) = E

[
Ki(θ̃i)qi(θ̃)1{θ̃i≤θi} + Ji(θ̃i)qi(θ̃)1{θ̃i≥θi} − ti(θ̃)

]
. (1)

Before proceeding, it is useful to consider a collusion-free environment. It is by now well

known that, in such an environment, an optimal auction rule, called second-best or noncollusive

optimal outcome, solves

[NC] max
M∈M

E

[∑
i∈N

ti(θ)

]
,

and its associated outcome is characterized as follows:

Theorem 0. (Myerson) An optimal mechanism that solves [NC] involves the allocation

rule given by ∀θ ∈ Θ,

q∗i (θ) =

{
1 if Ji(θi) > max{0, maxk 6=i Jk(θk)},
0 otherwise,

and yields revenue of

V ∗ := E

[∑
i∈N

Ji(θi)q
∗
i (θ)

]
to the seller.

We assume that E[q∗i (θ)] < 1 for each i ∈ N , or else the optimal mechanism reduces to

bargaining with a single buyer, so there would be no problem of collusion. Letting θ̂i :=

min{θi ∈ [θi, θ̄i]|Ji(θ) ≥ 0}, the optimal mechanism allocates the good to the bidder with

the highest virtual valuation Ji(θi) as long as θi ≥ θ̂i. In particular, the object is sold with

probability one if there is a bidder i such that Ji(θi) > 0.

3 A Model of Collusion

We here develop our model of collusion geared to the weak notion of collusion-proof auctions,

and later we introduce the strong notion by relaxing some of the assumptions. To this end, we

follow LM and CK and suppose that there are subsets of bidders, called cartels, that enforce

side contracts via uninformed representatives to influence the outcome of the auction game

being played. Formally, a cartel structure is an arbitrary partition C on N whose element

C ∈ C represents a cartel of bidders who “may” collude with one another. This framework
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encompasses a range of possibilities that include the all-inclusive cartel (i.e., C = {N}), that

allows for the presence of noncollusive bidders (i.e., some elements of C may be singleton)

and/or for multiple bidding cartels (i.e., C may include Cj, j = 1, ..., k with |Cj| ≥ 2).

The cartel structure C is a common knowledge for all bidders in N and for the seller. The

assumption that the seller knows the cartel structure, albeit not innocuous, may not be as

restrictive as it may appear. For instance, our analysis would still apply if some cartel may

not collude effectively. Also, the structure of potential bidding cartels (who is likely to collude

with whom) can be sometimes discerned from prior auction experiences and other industry

observables. Of course, none of these issues arise if there is only one cartel, as has been

assumed in all existing papers. In this sense, the current model generalizes all existing models

of collusion.

The time line is similar to that of LM and CK, except for one important difference: Cartels

are formed prior to the bidders’ participation into the mechanism.

� Time line:

• At date 0, each bidder learns his type, θi, drawn from Θi. The realized type is private

information of the bidder, unobservable to the seller as well as to other bidders.

• At date 1, the seller proposes an auction rule M ∈M.

• At date 2, the (uninformed) representative of each cartel C ∈ C simultaneously proposes

a collusive side contract (to be described in detail later). Each member of C ∈ C then

accepts or rejects the contract. If all bidders of C accept, then that cartel’s side contract

is enforced; or else, the members of C play the subsequent game non-cooperatively.

Neither the side contract proposed for a cartel C nor its members’ decision on accepting

that contract is observed by the bidders outside C (and by the seller).

• At date 3, each bidder, i ∈ N , chooses θ̃i ∈ Θi; i.e., he accepts or rejects M , and reports

from Θi if he accepts. (If the side contract of a cartel was accepted, then its members

report according to the side contract.)

• At date 4, if collusion by a cartel is active, then the outcome of their side contract arises.

If no collusion is active, then M results.

� Collusion Technology:

We assume that each cartel has at its disposal four instruments: (a) its members’ partic-

ipation decisions, (b) participating members’ communication with the seller (e.g., bids), (c)

reallocation of the good within the cartel, in case a member of that cartel receives the good,
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and (d) side payments that the cartel members can exchange in a budget-balanced fashion.

These four instruments together encompass all possible ways in which a cartel can coordinate

their members’ behavior.

To formally describe possible manipulations utilizing all these instruments, fix a possible

cartel C ∈ C, and an auction rule M = (q, t) ∈ M the seller may propose. We then suppose

that an uninformed representative of each cartel C, |C| ≥ 2 proposes a side contract to its

members, given that bidders outside C behave non-collusively (or equivalently their repre-

sentatives offer null contracts). The latter presumption is made since later we shall focus on

how non-collusive behavior can be supported as an equilibrium, which requires a unilateral

deviation by each cartel to be prevented. Instead of considering a possible side contract by

each cartel, it is convenient to think of a manipulation, the outcome that will emerge when

that side contract is enforced and all others, including noncollusive bidders and members of

different cartels, report truthfully.

Formally, an outcome, M̃ = (q̃, t̃) is a manipulation of M by cartel C, if there exists a

function, µC : ΘC → ∆ΘC , that maps from their types in ΘC into a probability distribution

over ΘC such that, ∀θ ∈ Θ, ∑
i∈C

q̃i(θ) = EµC(θC)[
∑
i∈C

qi(θ̃C , θN\C)], (RCM
C )

q̃i(θ) = EµC(θC)[qi(θ̃C , θN\C)],∀i ∈ N\C, (RCM
N\C)

E

[∑
i∈C

t̃i(θ)

]
= E

[∑
i∈C

EµC(θC)[ti(θ̃C , θN\C)]

]
, (BBM

C )

t̃i(θ) = EµC(θC)[ti(θ̃C , θN\C)].∀i ∈ N\C. (BBM
N\C)

These conditions are explained as follows. First, condition (RCM
C ) requires the final as-

signment of the good to be “reallocationally consistent” in the sense that the good is allocated

to any cartel member only if some member of that cartel obtains the good from the seller un-

der some manipulation of reports/participation decision. Condition (BBM
C ) allows the cartel

members to exchange side transfers in a budget-balanced fashion. Since budget balancing

is required at the ex ante level, we are allowing for the cartel to finance (from a competi-

tive capital market) across different realizations of its members’ type profiles.5 Conditions

(RCM
N\C) and (BBM

N\C) simply assume that bidders outside C are not colluding: there is no

reallocation and no exchange of side payments among all bidders outside C and between C

5Our results do not change, if budget balancing is required at the ex post level. Clearly, our collusion-proof
implementation result would be stronger with the ex ante version of budget balancing, explaining our choice.
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and N\C. This presumption would be without any loss if N\C were all noncollusive. Even

if N\C may involve some bidding cartels, the above conditions are still sufficient for there to

be an equilibrium with no collusion, since they ensure that the representative of each cartel

offers a null side contract when other cartels adopt null side contracts.

� Incentive Feasibility of Collusion

For collusive manipulation to work, the members of the cartel must have the incentive to

carry it out. We say that M̃ is feasible if it satisfies

U M̃
i (θi) ≥ uM̃

i (θ̃i, θi), ∀i ∈ C, θi ∈ Θi, θ̃i ∈ Θi, (IC∗
C)

and

U M̃
i (θi) ≥ UM

i (θi), ∀i ∈ C, θi ∈ Θi. (IRM
C )

These conditions are explained as follows. First of all, (IC∗
C) requires the outcome re-

sulting from collusion to be incentive compatible to all members of cartel. Since the cartel

members face asymmetric information about one another, this condition must hold, regardless

of the specifics of how the cartel is formed and how the members bargain over their collusive

arrangement. Next, (IRM
C ) requires that each member of the cartel must do as well with the

proposed manipulation as they would by vetoing that manipulation and acting noncoopera-

tively. Clearly, what each member will get in the latter event depends on the inferences made

by the members of the cartel about that member. Condition (IRM
C ) assumes that no new

inferences about the members’ types are made in such an event. This “passivity” of out-of-

equilibrium beliefs is an important element of LM’s weak collusion-proofness notion. Although

(IRM
C ) assumes passive out-of-equilibrium beliefs, it in fact accommodates all non-pessimistic

beliefs for our purpose. If a collusive proposal is made unattractive to a bidder with a passive

belief about what will happen when he refuses the proposal, it will be unattractive to him if

his beliefs were more optimistic about that event. In this sense, the real restriction arising

from (IRM
C ) is for out-of-equilibrium beliefs to be non-pessimistic. This restriction serves as

a reasonable discipline over belief formation.6

Lastly, note these conditions are imposed only for the members of the cartel, since the

manipulation constitutes its deviation unobserved by outsiders of that cartel. We turn next

6In fact, it is not too difficult to construct a non-collusive equilibrium, supported by an arbitrarily optimistic
belief. The seller can simply make available an option which would pay an arbitrarily large amount to a bidder
(say paid by a different bidder) if the bidders were to coordinate in the right way; the very optimistic belief
that such a coordination would occur in the event of rejecting a collusive offer can sustain a non-collusive
equilibrium. Clearly, such an equilibrium is not believable, and the “passivity” restriction can be seen to place
a discipline against such an equilibrium by limiting the degree of optimism entertainable by the potential
colluders when rejecting a collusive offer.

10



to the weak notion of collusion-proof auctions.

Definition WCP. An auction rule M ∈ M is weak collusion-proof (henceforth, WCP), if,

for each cartel C ∈ C with |C| ≥ 2, any feasible manipulation of M by C makes no member

of C strictly better off.

To explain this notion, suppose the seller offers an auction rule M . If M is WCP, then,

for each cartel C, there exists no feasible manipulation that would make some members of

C strictly better (without making the other members of C worse off), given that all other

cartels are inactive. Our WCP notion is the same as the WCP of LM, except that we allow

for randomization and reallocation possibilities in the collusive bidders and that we allow for

proper subsets of bidders to be collusive. It is in fact a natural generalization of their notion to

allow for these new features. It follows from LM that, if an auction rule is WCP, it will admit

an equilibrium in which the representatives of cartels propose no collusive manipulations —

or equivalently, they all propose null side contracts.7

Despite the restrictions, the WCP auctions are worth studying for several reasons. First,

WCP auctions offer a reasonable protection against collusion since it is often unrealistic for

cartel members to punish more severely than bidding noncooperatively. Second, the weak

notion provides a conservative test of when collusion imposes a real cost to the seller: If for

instance there is no WCP auction that would allow a seller to earn the second-best revenue,

then one can safely conclude that collusion matters, for the seller would not fare any better if

the bidders can collude more effectively. Finally, the restrictions involved in the WCP notion

are not crucial for the results obtained. We will later show that under some condition, the

main result can be strengthened to the strong notion of collusion-proofness.

4 WCP Implementation of the Second-Best Outcome

In this section, we characterize the properties of WCP auction rules (Lemma 1 and 2) and use

these properties to obtain a necessary condition for the second-best outcome to be WCP im-

plementable (Theorem 1). We then show that, for symmetric bidders, the necessary condition

is also sufficient for the WCP implementability of the second-best outcome.

7Our WCP requirement is equivalent to that the auction rule be “interim incentive efficient” according
to the terminology of Holmstrom and Myerson (1983). Crawford (1985) shows that this latter condition
is sufficient for a mechanism to be “attainable” in the sense of withstanding a collusive proposal when the
proposal is negotiated according to some modified Nash demand game. The WCP requirement is weaker than
“durability” required by Holmstrom and Myerson (1983), however.
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4.1 Properties of WCP Auction Rules

Fix a cartel C ∈ C, and an auction rule M = (q, t) that the seller proposes. It is useful

to have a few definitions. Let qC
i (θC) := Eθ̃N\C

[qi(θC , θ̃N\C)]. Let qC(θ) :=
∑

i∈C qi(θ) and

QC(θC) := Eθ̃N\C
[qC(θC , θ̃N\C)] denote the probability that the auction rule allocates to good

to a member of the cartel given the value profile of all bidders and that of the cartel members,

respectively. Let QC := [0, supθC∈ΘC
QC(θC)] be the set of all probabilities with which the

cartel can secure the good to its members under M . This set contains zero since all its

members can boycott the auction i.e., QC(θ∅, · · · , θ∅) = 0. This set is convex since the cartel

members can randomize between boycotting and reporting some profile θC ∈ ΘC . We then

obtain our first property of WCP auction rules.

Lemma 1. If M = (q, t) ∈ M is WCP, then for each C ∈ C there exists a convex function,

r : QC → R+ with r(0) = 0, such that

Eθ̃N\C

[∑
i∈C

ti(θC , θ̃N\C)

]
= r(QC(θC)),∀θC ∈ ΘC .

To see how this property restricts the auction rules, suppose all bidders belong to one cartel,

and suppose the seller wishes to implement a deterministic allocation (i.e., q(·) ∈ {0, 1}).
Lemma 1 implies that, for the auction to be weak collusion proof, it must charge a single price

if and only if the good is sold. More generally, the seller cannot collect any fee from a cartel

whenever its members do not obtain the good. This feature arises from the abilities of the

bidders to collude on their participation decisions; were they charged positive entry fees, they

could all simply refuse to participate. Similarly, the collusive bidders can never be charged

different prices for the same probability of obtaining the good; or else, they could manipulate

their reports (or bids) to pick the lowest price for a given probability of obtaining the good.

The surplus generated from such manipulation can be shared among all cartel members via

appropriate side transfers and reallocations so that (IC∗) and (IRM
C ) conditions are satisfied.

Finally, the sale price is (weakly) convex in the probability of the object being allocated to any

cartel member, since the cartel members can at least randomize between non-participation

and any probability of allocation attainable by some reports.

The next property is obtained for a class of allocation rules satisfying monotonicity : for all

C ∈ C, qC(·) is nondecreasing in θC and, for all C ∈ C and for all i ∈ C, qi(·) is nondecreasing

in θi and nonincreasing in θ−i. Let M0 ⊂ M denote the set of auction rules satisfying this

monotonicity. The monotonic allocation rules are reasonable, and would naturally arise from

the standard auctions such as first- and second-price auctions. Next, we define the average

12



price charged to the cartel per unit probability:

p(θC) :=


r(QC(θC))

QC(θC)
if QC(θC) > 0,

0 otherwise.

Lemma 2. If M = (q, t) ∈M0 is WCP, then ∀ C ∈ C, ∀ i ∈ C and for almost every θC ∈ ΘC,

(Ki(θi)− p(θC)) qC
i (θC) ≥ max

θ′i∈{θ∅}∪[θi,θi]
(Ki(θi)− p(θ′i, θC−i)) qC

i (θ′i, θC−i). (2)

This lemma characterizes the extent to which each cartel can “behave like a single agent.”

Specifically, condition (2) resembles an incentive compatibility constraint for a “single” agent

who may consume one of |C| alternative values. But this resemblance is not perfect. First,

that agent realizes “pseudo” value Ki(θi) rather than true value θi. Second, the bidder’s

constraint is required only in one direction, i.e., not to under-report or withdraw from the

auction. Third, the agent may not be able to shift his consumption among the alternative

uses. All together, these features serve to limit the extent to which the cartel can coordinate

their members’ behavior. For instance, the fact that pseudo values, rather than true values,

matter means that the cartel can be forced to sustain some ex post loss. Since Ki(θi) > θi, an

average price of p(θi) > θi need not violate the above constraint. The cartel’s limited ability to

coordinate their behavior arises from the fact that any collusive defection requires a consensus

from all types of bidders. Different types of bidders may have conflicting interests, say about

consumption of the good by any particular type θi. For instance, if θi < p(θC), then the cartel

wishes to cancel such consumption, but the highest type of bidder i would not agree as long

as Ki(θi) > p(θC).

Naturally, the necessary conditions for WCP implementation (given by Lemma 1 and 2)

constrain the set of circumstances in which the second-best outcome is WCP implementable.

We next characterize these circumstances. To this end, fix any bidder i ∈ C for some C ∈ C
with |C| ≥ 2. For each profile θN\C ∈ ΘN\C , let

φi(θN\C) := inf{θi ∈ Θi | Ji(θi) ≥ max{ max
j∈N\C

Jj(θj), 0}}

denote the lowest type of bidder i that can obtain the good with positive probability in the

second-best allocation.

Condition (SB): (i) If C = {N}, then

Ki(θ̂i)

(
E

[∑
i∈N

q∗i (θ)

])
≥ E

[∑
i∈N

Ji(θi)q
∗
i (θ)

]
,∀i ∈ N.

13



(ii) If C 6= {N}, then, for each C ∈ C with |C| ≥ 2,

E

[∑
i∈C

Ki(φi(θN\C))q∗i (θ)

]
≥ E

[∑
i∈C

Ji(θi)q
∗
i (θ)

]
.

This condition is explained as follows. The RHS of the inequalities represent the amounts

of surplus that should be extracted from the cartel to implement the second-best payoff for

the seller. As will be proven next, the LHS of the inequalities represent the highest payments

that are collusion-proof collectable from the cartel, given the second-best allocation q∗. Thus,

the inequalities are necessary for the second-best outcome to be WCP implementable.

Theorem 1. (Necessity) Condition (SB) is necessary for the second-best outcome to be

WCP implementable.

This theorem immediately identifies a class of situations for which the second-best outcome

is not WCP implementable.

Corollary 1. A second-best outcome is not WCP implementable if it assigns the good to

members of a cartel with probability one.

Proof: Without loss C = N , or else we can simply redefine N to coincide with C. We

show that Condition (SB)-(i) fails if the members of N receives the good with probability one.

Since
∑

i∈N q∗i (θ) = 1 for all θ, there must exist i such that Jk(θi) ≥ 0, so θ̂k = θk. Hence,

Kk(θ̂k) = θk = E[Jk(θk)] < E[
∑
i∈N

Ji(θj)q
∗
i (θ)],

where the strict inequality follows from the assumption (made in Section 2) that E[q∗k(θ)] < 1.

This shows that excluding some types of collusive bidders is crucial for WCP implemen-

tation of the second-best outcome, a theme that will be generalized later.

4.2 WCP Implementation of the Second-Best Outcome: Symmet-

ric Bidders

Here we show that Condition (SB) is also sufficient for the second-best outcome to be WCP

implementable when bidders are symmetric. Specifically, we construct an auction rule that

will WCP implement the second-best outcome, given (SB). Further, this sufficient condition
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will be seen to hold if either at least one bidder is noncollusive or the second-best mechanism

involves a nontrivial probability of no sale.

We begin with the symmetry assumption: Fi(·) =: F (·) for all i ∈ N , for some common

cdf F (·) which has a positive density f . The associated virtual valuations J and K are

defined analogously, and their monotonicity properties are maintained. Likewise, we let θ̂ :=

inf{θ|J(θ) ≥ 0}. Condition (SB) is now more succinctly described in this environment.

Define first θ
(1)
C := maxi∈C θi and θ

(1)
N\C := max{maxi∈N\C θi, θ̂}. (We adopt a convention

that θ
(1)
N\C := θ̂ when C = {N}.) Then, Condition (SB) simplifies to:

Condition (SB′): For each C with |C| ≥ 2, E
[
K(θ

(1)
N\C)|θ(1)

C > θ
(1)
N\C

]
≥ E

[
J(θ

(1)
C )|θ(1)

C > θ
(1)
N\C

]
.

As pointed out earlier, this condition requires a collusive bidder’s valuation to be sufficiently

high whenever the good is allocated to him. It turns out that this requirement is not very

onerous to satisfy. The condition holds if at least one buyer is noncollusive or there are more

than one bidding cartel, or if the cutoff threshold θ̂ is sufficiently high.

Lemma 3. Condition (SB′) holds if C 6= {N}, or if C = {N} and

K(θ̂) ≥ E
[
J(θ

(1)
N )|θ(1)

N > θ̂
]
. (3)

In case of the all-inclusive cartel (i.e., C = {N}), Condition (SB′), or equivalently (3), is

not trivial. For instance, if θ̂ = θ, then K(θ̂) = θ, so the condition fails. In other words, a

non-trivial exclusion is necessary to prevent collusion. Although not obvious at first glance, a

similar exclusion is used in the case C 6= {N} in that the good is sold to bidders outside that

cartel with positive probability.

We now construct an auction rule that WCP implements the second-best outcome when

Condition (SB′) holds. Suppose that a second price auction is held with a reserve price θ̂,

and consider the associated outcome M∗ = (q∗, t∗) defined over Θ. (Recall that the outcome

is well defined even when some bidders do not participate, a situation described by θ∅ being

chosen by these bidders.) We then construct a new auction rule M̂ = (q̂, t̂) defined over Θ.

The allocation rule q̂ is constructed so that q̂(·) = q∗(·). To construct the payment rule t̂, we

first determine the sale price against each cartel C ∈ C (with |C| ≥ 2). Let αC ∈ [0, 1] satisfy

E
[
αCK(θ

(1)
N\C) + (1− αC)J(θ

(1)
N\C)|θ(1)

C > θ
(1)
N\C

]
= E

[
J(θ

(1)
C )|θ(1)

C > θ
(1)
N\C

]
. (4)

Condition (SB′) allows such an αC to be well defined. The sale price against cartel C is then

set at HC(θ
(1)
N\C) := αCK(θ

(1)
N\C) + (1− αC)J(θ

(1)
N\C). This sale price is defined in terms of the

highest type of bidder outside C and is set above J(θ
(1)
N\C) just enough to extract J(θ

(1)
C ) on
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average from the highest valuation bidder in C. Let δC(θ) := HC(θ
(1)
N\C)

∑
i∈C q∗i (θ) denote

the expected sale price charged against cartel C.

We now describe the payment rule t̂. For each noncollusive bidder i (i.e., {i} ∈ C), we set

t̂i(θ) := t∗i (θ), ∀θ ∈ Θ. For each cartel C ∈ C, let C(θC) := {i ∈ C|θi 6= θ∅} be the set of its

members who participate in the auction, given θC . For each i ∈ C, if C(θC) = C, then we set

t̂i(θ) :=
1

|C|
δC(θ) + Eθ̃−i

[
t∗i (θi, θ̃−i)−

1

|C|
δC(θi, θ̃−i))

]
− 1

|C| − 1

∑
k∈C\{i}

Eθ̃−k

[
t∗k(θk, θ̃−k)−

1

|C|
δC(θk, θ̃−k)

]
(5)

and, if C(θC) ( C, then we set

t̂i(θ) :=

δC(θ) if i ∈ C(θC)

0 if i ∈ C\C(θC).
(6)

Two properties of the current construction are important. First, in case all bidders par-

ticipate, (5) implies Eθ̃−i
[t̂i(θi, θ̃−i)] = Eθ̃−i

[t∗i (θi, θ̃−i)], ∀i ∈ N , ∀θi ∈ Θi,
8 so that each bidder

has the same interim incentives as with M . This property means that the new auction rule

M̂ inherits the incentive and participation properties of the original auction M∗. Hence,

M̂ satisfies (IC∗) and implements V ∗. Second, it can be checked from (5) and (6) that∑
i∈C t̂i(θ) = δC(θ) = HC(θ

(1)
N\C)

∑
i∈C q∗i (θ) if every member of each cartel participates (or

else, each participating cartel member pays a high “punishment price” equal to δC(θ)). That

is, upon participating, each cartel C ∈ C is charged a single sale price, H(θ
(1)
N\C), depend-

ing only on non-cartel members’ types and payable only when the object is allocated to its

member. This property satisfies Lemma 1 and also ensures that the cartel cannot manipulate

the sale price charged against its members. These two properties deliver weak collusion-proof

implementation of the second-best outcome:

8To see this, note first, by (5) and symmetry,

E[δC(θ)] = E
[
J(θ(1)

C )1{θ
(1)
C >θ

(1)
N\C

}

]
= E

[∑
i∈C

t∗i (θ)

]
= |C|E [t∗i (θ)] ,∀i ∈ C, (7)

from which it follows that

Eθ̃−i
[t̂i(θi, θ̃−i)] = Eθ̃−i

[t∗i (θi, θ̃−i)]−
1

|C| − 1

∑
k∈C\{i}

Eθ̃

[
t∗k(θ̃)− 1

|C|
δC(θ̃)

]
= Eθ̃−i

[t∗i (θi, θ̃−i)],

where the last equality follows from (7).
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Theorem 2. (Sufficiency) Given Condition (SB′), the auction rule M̂ is WCP and

achieves the second-best revenue.

Combining Lemma 3 with Theorem 2 produces one of the main results of this paper.

Corollary 2. The second-best outcome is WCP implementable if C 6= {N}, or if C = {N}
but (3) holds.

In words, the second-best outcome is weak collusion-proof implementable if a cartel is not

all-inclusive, which will be the case if either there exists at least one noncollusive bidder or

there are multiple bidding cartels. In these latter cases, the seller can leverage the presence of

the bidders outside a cartel to extract sufficient rents from the cartel. If entire bidders form

a bidding cartel, then no such leverage exists, but the seller can still use the threat of no sale

to accomplish the same objective as long as that threat is sufficiently credible in the sense of

(3).

The following examples illustrate two different scenarios.

Example 1. (C = {{1, 2}}) Suppose there are two bidders each with valuation drawn uni-

formly from [0, 1]. According to Theorem 0, the second-best outcome allocates the object ef-

ficiently for valuation exceeding θ̂ = 1
2
, and yields revenue of 5

12
. This also satisfies (3),

so the second-best is WCP implementable. The WCP auction rule charges a sale price of

r∗ := E[J(θ
(1)
N )|θ(1)

N > θ̂] = 5/9 to the bidders, regardless of who win and what their bids are.

Without collusion, each bidder receives the interim payoff of

U M̂(θ) =

{
0 if θ ∈ [0, 1

2
)

1
2
θ2 − 1

8
if θ ∈ [1

2
, 1].

Since the cartel is charged a sale price of 5/9, it suffers an ex post loss whenever the highest

valuation is in the interval [1
2
, 5

9
]. Why can they not simply boycott the auction in this situa-

tion? Indeed, their joint surplus will increase by doing so. The problem, however, is that the

increased surplus cannot be allocated to benefit all types; some types will be strictly worse off

and thus object to that move. To illustrate, suppose indeed that the bidders boycott auction

whenever no bidder has valuation exceeding 5/9, and, otherwise, the high-valuation bidder con-

sumes the object. Under this collusive arrangement, labeled M̃ , each bidder’s interim payoff

is9

U M̃(θ) =

{
32

2187
if θ ∈ [0, 5

9
)

1
2
θ2 − 611

4374
if θ ∈ [5

9
, 1].

9This payoff can be obtained by applying the transfer rule in (29) with n = 2, r = 5/9, ρi = 0, and
qi(θi, θ−i) being equal to 1 if θi > max{θ−i, 5/9} and 0 otherwise.

17



6

-

U M̂(·)

U M̃(·)

θ

Interim
payoff

Figure 1: Comparison of interim payoffs from M̂ and M̃

As can be seen from Figure 1, a bidder benefits from this collusion when his valuation is less

than 0.528 but is strictly worse off if his valuation is higher. Hence, a collusive arrangement

M̃ is not feasible. (The same is true for any other feasible manipulations.) Even though

the net expected surplus may rise with some collusive manipulation, incentive compatibility

facing the collusive bidders limits the way surplus can be allocated across types to make them

uniformly better off. In this sense, our WCP auction exploits the informational asymmetry

facing the collusive bidders.

Example 2. (C = {{1, 2}, {3}}) Consider the example from Section 2, where there are two

collusive bidders and a noncollusive bidder, each with valuation drawn from [1, 2]. Here,

the presence of a noncollusive bidder is crucial for WCP implementability of the second-

best outcome. (If all three bidders belong to one grand cartel, the second-best is not WCP

implementable, for the distribution fails (3).) Our WCP auction charges the sale price of

H{1,2}(θ3) = 2θ3 − 5
4

to the cartel {1, 2}, In fact, the non-collusive can be induced to reveal

its type as a dominant strategy. The cartel cannot manipulate the sale price, for it is tied

to the non-collusive bidder’s strategy. Further, their ability to collude on participation does

not help. Since the allocation is efficient, when a collusive bidder, say with valuation θ wins,

the cartel ends up paying θ − 1
4

in expected value, which leaves the expected surplus of 1
4

to

the cartel.10 Hence, the cartel has no incentive to boycott the auction regardless of θ. Other

10This can be seen by the fact that

E[t1(θ̃) + t2(θ̃)|θ̃3 < max{θ̃1, θ̃2} = θ] = E[H{1,2}(θ̃3)|θ̃3 < θ] =
∫ θ

1

(
2θ̃3 − 5

4

θ − 1

)
dθ̃3 = θ − 1

4
.
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possible incentive for misrepresenting the cartel’s types is also thwarted by the lack of consensus

in the interests among the cartel members in a way much like Example 1.

4.3 WCP Implementation of the Second-Best Outcome: Asymmet-

ric Bidders

We now turn to the case of asymmetric bidders. In this case, the optimal noncollusive auction,

as characterized in Theorem 0, requires bidders to be treated differently based on their ex ante

distribution of types. This presents an extra challenge for the WCP implementation since,

as shown in Lemma 1, the same price is charged no matter which member of the cartel

receives the good. This does not mean, however, that the collusive bidders cannot be treated

differently, for different interests of the heterogeneous types can be exploited to make (IRM
N )

difficult to satisfy. Indeed, we will show that the second-best outcome is WCP implementable

at least with respect to the all-inclusive cartel (i.e., C = {N}), under a condition that is not

much stronger than Condition (SB).

Consider now a strict inequality version of (SB)-(i):

Condition (SB∗): Ki(θ̂i) > r∗ :=
E[

P
i∈N Ji(θi)q

∗
i (θ)]

E[
P

i∈N q∗i (θ)]
,∀i ∈ N.

Theorem 3. Assume C = {N} and Condition (SB∗) holds. Suppose also that (Ji(·) −
r∗)fi(·) is increasing in the interval [θi, J

−1
i (r∗)] for all i ∈ N . Then, there exists an auction

rule which is WCP and achieves the second-best outcome.

5 Optimal WCP Auctions

What happens if the second-best outcome is not collusion-proof implementable? What will

the optimal WCP auction look like in such a case? While a complete answer to this latter

question is unavailable, we provide two observations that will help answer that question. First,

we show that any optimal WCP auction in a general monotonic class involves “exclusion” — a

positive probability that the object is not sold to any collusive bidder. Second, we characterize

the optimal WCP auction completely in the linear class for the case of symmetric bidders.

5.1 An Exclusion Principle

Corollary 1 shows exclusion of collusive bidders is necessary for a second-best outcome to be

WCP implementable. We generalize this result to an optimal WCP auction in the monotonic
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class. That is, we show below that the optimal auction rule in the monotonic class must entail

some exclusion of collusive bidders. To gain some idea behind this result, suppose to the

contrary that optimal WCP auction sells the object to some members of any given cartel C.

Lemma 1 implies that the seller can only charge a sale price to collusive bidders, regardless

of their types. Meanwhile, Lemma 2 says that this price cannot be too high relative to the

pseudo value, Ki(θi), of the collusive bidder who consumes the good. Combined together,

these lemmas imply that the seller must either charge a low sale price, or else she should

exclude types with low pseudo values from consuming the good.

Theorem 4 (Exclusion Principle). Assume that there are more than one bidder i ∈ C with

θi = θ := maxj∈C θj. Then, the optimal WCP mechanism in M0 requires that the object not

be sold to any member of C with a positive probability.

Proof: Let M = (q, t) denote the optimal WCP mechanism. Suppose to the contrary

that
∑

i∈C qi(θ) = 1 for all θ ∈ Θ, which implies by Lemma 1 that
∑

i∈C ti(θ) = r for some r.

Then, Lemma 2 requires that

r ≤ max
i∈C

Ki(θi) = θ.

Thus, the revenue cannot exceed θ. We now generate a contradiction by constructing a

WCP mechanism which raises a higher revenue than θ: Sell the object at a fixed price r̃,

which is slightly greater than θ, if and only if at least one member of C has a value higher

than r̃. This take-it-or-leave offer is clearly WCP and generates a revenue equal to R(r̃) :=

r̃(1−
∏

i∈C Fi(r̃)). And R(r̃) > R(θ) = θ for r̃ slightly above θ since

d

dr̃
R(r̃)

∣∣∣
r̃=θ

= (1−
∏
i∈C

Fi(θ))− θ
∑
i∈C

fi(θ)
∏
j 6=i

Fj(θ) = 1 > 0,

where the last equality holds because for each i ∈ C, there exists at least one bidder j 6= i for

whom Fj(θ) = 0.

An optimal auction excludes some low valuation bidders even in the absence of collusion.

Yet, exclusion never arises if there is some buyer i whose valuation is always high so that

Ji(θ) ≥ 0. Collusion tilts the tradeoff toward more exclusion, since the seller can only charge

a single sale price, whereas absent collusion bidding competition generates higher payment

from high valuation types beyond the reserve price. Consequently, an optimal collusion-proof

auction always excludes some types of collusive bidders.
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5.2 Optimal Linear WCP Auctions for Symmetric Bidders

Here, we search for an optimal WCP auction rule when Condition (SB) fails with symmetric

bidders. This condition can only fail when all bidders are collusive (recall Lemma 3 or equiv-

alently Corollary 1), so we focus on that case and assume C = {N}. Further, we restrict our

search to the class of linear auction rules where the aggregate payment schedule is linear in

the probability of sale (to any bidder):
∑

i∈N ti(θ) = r ·Q(θ), for some nonnegative constant

r.11

With a linear auction rule, the seller offers a uniform price against the cartel. This restric-

tion appears to entail very little loss. Recall from Lemma 1 that the seller can only charge

a single price against the cartel for each probability of sale, and that the sale price must be

convex in the probability of sale. The linearity restriction simply eliminates the strictly convex

portion of the sale price. The convex portion would matter only if the cartel is assigned the

object with probability between zero and one at price discount, but this latter feature seems

unlikely to be appealing to the seller (although we have not ruled out this possibility). In

fact, most of the plausible auction rules allocate the object deterministically as functions of

bidders’ types. Any such auction rules can be implemented by linear auction rules.12

Given the linearity restriction, the constraint in Lemma 2 implies

(K(θi)− r)qi(θ) ≥ 0,∀i ∈ N,∀θ ∈ Θ. (8)

Consider the following revenue maximization program:

[C] max
(r,q)

E

[
r
∑
i∈N

qi(θ)

]

subject to ∑
i∈N

Ui(θi) = E

[∑
i∈N

(J(θi)− r)qi(θ)

]
≥ 0 (IC∗

1)

and

E

[∑
i∈N

min{K(θi)− r, 0}qi(θ)

]
≥ 0. (K)

The equality in (IC∗
1) follows from Lemma 0, which utilizes bidders’ incentive constraints.

Hence, (IC∗
1) follows from (IC∗), which is necessary for any feasible auction rule. In fact,

11Alternatively, we can restrict attention to auction rules that allocate the object efficiently among the
collusive bidders. The analysis based on this restriction is available from the authors.

12As will become clear from the subsequent analysis, a solution to [C] below can be obtained even with an
additional constraint

∑
qi(θ) ∈ {0, 1}.
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without (K), the above maximization problem simply yields the second-best outcome. The

constraint (K) follows from the coalitional incentive constraint in (8) (which in turn follows

from Lemma 2). Since the program [C] only imposes necessary conditions for weak collusion-

proofness, its solution gives an upper bound for the revenue attainable by any linear WCP

auction. We show next that this upper bound is attainable by a WCP auction.

Theorem 5. Assume C = {N} and bidders are symmetric. Then, there exists an optimal

linear WCP auction rule, which implements the solution of [C]. If Condition (SB) fails, then

the optimal linear auction rule involves a sales price, r0, that solves either

max
r∈R+

r(1− F n(K−1(r))) (9)

or

E[J(θ
(1)
N )|θ(1)

N > K−1(r)] = r, (10)

and an allocation rule q̂(·) that satisfies

q̂i(θ) =

{
1 if θi > max{maxj∈N\{i} θj, θ̂0}
0 otherwise,

(11)

where θ̂0 := K−1(r0).

The features of optimal WCP auctions are illustrated by the next example.

Example 3. Assume that there are two bidders whose types are uniformly distributed on

interval [m, m + 1]. Then, J(θ) = 2θ− (m + 1), K(θ) = 2θ−m, and θ̂ = max{m+1
2

, m}. The

exclusion threshold is then given by

θ̂0 =


m+1

2
if m ≤ 7−

√
33

2

m +
√

33−5
4

if 7−
√

33
2

< m ≤ m̂,
5m+

√
m2+12
6

if m > m̂,

for some m̂ > 7−
√

33
2

.13 Observe that the optimal WCP auction rule implements the second-

best if and only if m ≤ 7−
√

33
2

. For m > 7−
√

33
2

, θ̂0 > θ̂, so it involves more exclusion than the

second-best outcome. Regardless of m, θ̂0 > m, so the optimal WCP auction always involves

exclusion. This is in sharp contrasts to the second-best outcome which does not involve any

exclusion if m ≥ 1.

13More precisely, m̂ is the level of m such that (9) and (10) are satisfied simultaneously, which is given as a
root of the following equation:

(5m +
√

m2 + 12)(2m2 − 9m− 48) + 6(−2m3 + 9m2 + 46m + 18) = 0.
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Remark 1. Pavlov (2006) finds the outcome presented in Theorem 5 to be optimal in a more

restricted class of WCP auction rules, namely, those that are linear and symmetric. (Recall

the symmetry restriction is not invoked in the current paper.) In fact, he shows that there

are asymmetric or nonlinear auction rules that are WCP and yield higher revenue than the

optimal auction in the restricted class. However, such auction rules violate our Lemma 1 and

thus are not WCP in our model. This difference arises from the fact that we allow for a

reallocational ability by the cartel, which is not allowed in Pavlov (2006), at least for the main

analysis.

6 Strong Collusion-Proof Implementation

Thus far, we have focused on weak collusion-proof implementation. Weak collusion-proof

auctions protect a seller from a wide range of manipulations collusive bidders may employ. At

the same time, it involves some restrictions. First, it rules out collusion supported by non-

pessimistic beliefs on the part of members of a cartel about what may happen when they refuse

to collude. Although such pessimistic beliefs may not be very plausible, the restriction on

beliefs is nonetheless unsatisfactory. Second, the concept of weak collusion-proofness presumes

that a cartel is organized by a third party who is uninformed of the members’ types. Clearly,

such an assumption simplifies the modeling of the collusive behavior, but has no clear empirical

justification. We show, however, that these restrictions are not crucial for the main result of

the paper: Given an additional condition, the second-best outcome can be implemented in a

way robust to the specific beliefs entertained off the equilibrium path and to the particular

way in which a cartel is formed and its proposal is made.

To begin, we define a strong collusion-proof auction. To that end, fix any arbitrary indirect

auction rule, A = (B, ξ, τ), where B = (B1, ..., Bn) is the profile of the message spaces, Bi

for bidder i, and (ξ, τ) : B → Q × Rn is the outcome function mapping from messages

to an allocation and payments. As before, we assume that Bi includes the option of non-

participation by i and the outcome function maps a null outcome for the bidder invoking that

option. Next, consider an extensive form game in which, for a cartel C ∈ C, each member of C

(which may include a third party maximizing joint payoffs of C) may propose a side contract

which maps from ΘC to a probability distribution over
∏

i∈C Bi and which is reallocationally

consistent (in the sense the side contract allocates the good to a member of a cartel only when

some member of the cartel obtains the good from the seller) and budget balanced, among those

members of C who do not invoke θ∅. Notice the messages used in the side contract contain

the nonparticipation option θ∅ by each member, meaning that the terms of side contract can
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vary depending on who refuse and who accept the contract. In other words, like Dequiedt

(2007), we allow the remaining members of a cartel to commit themselves to punish a member

when the latter refuses to participate in collusion. If a side contract has been proposed, the

members of the cartel then simultaneously decide whether to reject all side contracts or accept

one of them, and the messages in B are chosen according to the agreed-upon side contract,14

the seller determines the outcome based on the message according to the auction rule, and

the good is reallocated and side transfers are exchanged according to the agreed-upon side

contracts. Let EA be the set of all Bayesian Nash equilibria in undominated strategies. The

strong collusion-proof auctions are then defined as follows.

Definition SCP. Expected revenue V is strong collusion-proof (henceforth, SCP) imple-

mentable if there exists an indirect auction rule, A = (B, ξ, τ), such that EA is nonempty

and that the seller receives expected revenue of V in every equilibrium of EA.

It is worth emphasizing that SCP implementation restricts neither cartel members’ out-

of-equilibrium beliefs nor, as noted above, their ability to punish a defector. In fact, an

SCP auction implementing V would guarantee the seller the revenue in every Bayesian Nash

equilibrium, let alone every Perfect Bayesian equilibrium. More important, an SCP auction

(or precisely an auction SCP implementing a target level of revenue) is robust to who proposes

the collusive proposal. In these respects, the current SCP notion is stronger than any existing

notions proposed by the existing authors.

Consider the case of ex ante symmetric bidders. Assume further that there exists only one

cartel C ∈ C with |C| > 1. In this case, we show that the second-best revenue V ∗ is SCP

implementable, given (SB′) and an additional condition. We construct the auction rule that

SCP implements the desired outcome. That auction rule, labeled A = (B, ξ, τ), builds on the

WCP auction, M̂ . Recall that M̂ provides a dominant strategy incentive for each noncollusive

bidder to participate and report truthfully, a feature we retain in A.

We augment the WCP auction M̂ by adding a message, rz, for each cartel member, which

is interpreted as a statement: “I reject M̂ but would like to buy the item with an eagerness of

z,” where z is a positive integer of his choosing. Let Bi := Θi ∪{rz, z = 1, 2, · · · } if i ∈ C and

Bi := Θi otherwise. We then define the outcome function (ξ, τ) such that it coincides with

M̂ if no bidder in C announces rz, but if some bidder in C announces rz, then the outcome

function is constructed as follows. Consider the following condition:

Condition (R): For each C ∈ C, there exists some θ′ ∈ [θ̂, θ̄] satisfying

U M̂(θ̄) ≤ F n−|C|(θ′)
(
θ̄ − E

[
HC(θ

(1)
N\C)

∣∣∣ θ(1)
N\C ≤ θ′

])
. (12)

14That is, a bidder’s subsequent bidding is not bound by any side contract that he refused.
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Given Condition (R), the outcome function (ξ, τ) of A depends on whether (a) the inequality

in (12) holds strictly for all θ′ ∈ [θ̂, θ̄] or (b) there exists some θr ∈ [θ̂, θ̄] satisfying

U M̂(θ̄) = F n−|C|(θr)
(
θ̄ − E

[
HC(θ

(1)
N\C)

∣∣∣ θ(1)
N\C ≤ θr

])
. (13)

In both cases, if there is a collusive bidder who announces rz, then we pick the bidder who

announces rz with the highest z (with a tie broken randomly among bidders with the same

z). In case (a), the bidder receives the object with probability 1 at a fixed price T ∗
i (θ̄). In

case (b), the bidder receives the object at price HC(θ
(1)
N\C) if θ

(1)
N\C ≤ θr, or else the bidder is

not awarded the object and he pays nothing. Last, no other bidders receive the object or pay

any amount to the seller.

In words, the auction rule A gives an option for a collusive bidder with the highest valuation

to secure her non-collusive payoff by announcing rz with the highest integer z. This extra

option serves to limit the cartel’s ability to punish a defector, which in turn constrains the set

of side contracts sustainable in equilibrium. At the same time, the option itself may become

an instrument of collusion if it proves too profitable. Condition (R) ensures that this is not

the case.

Theorem 6. Suppose that there is a single cartel C ⊂ N . Then, given Conditions (SB′) and

(R), the second-best revenue V ∗ is SCP implementable.

How restrictive is Condition (R)? If the cartel is all-inclusive (i.e., C = N), then Condition

(R) involves no restriction, for it is always satisfied. To see this, observe the condition in (12)

with θ′ = θ̄ becomes

T ∗
i (θ̄) ≥ HN(θ̂).

This inequality holds since

T ∗
i (θ̄) > E

[
T ∗

i (θi)

Q∗
i (θi)

Q∗
i (θi)

E [Q∗
i (θi)]

]
=

E [T ∗
i (θi)]

E [Q∗
i (θi)]

=
E [J(θi)Q

∗
i (θi)]

E [Q∗
i (θi)]

=
E
[∑

i∈N J(θi)q
∗
i (θ)

]
E
[∑

i∈N q∗i (θ)
] = HN(θ̂),

where the inequality holds since
T ∗

i (·)
Q∗

i (·) is increasing (since
T ∗

i (·)
Q∗

i (·) corresponds to the equilibrium

bidding function in the symmetric first-price auction), and the last equality follows from (4).

If C 6= N , then Condition (R) need not always hold. Nevertheless, the condition is satisfied

for a reasonable class of distributions, including the uniform distribution.15

15For instance, in the Example 2, (12) holds since

max
θ∈[1,2]

Fn−|C|(θ)
(
θ̄ − E

[
HC(θ(1)

N\C)
∣∣∣ θ(1)

N\C ≤ θ
])

= max
θ∈[1,2]

(
−θ2 +

13
4

θ − 9
4

)
=

25
64

>
1
3

= UM̂ (θ̄).
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Remark 2. That Condition (R) is often not very restrictive suggests that the particular notion

of collusion-proofness does not play a significant role. In particular, the second-best outcome

is SCP implementable whenever it is WCP implementable if the cartel is all-inclusive or if

an additional reasonable condition holds. This suggests that the seemingly pessimistic result

of Dequiedt (2007) is not attributable to the cartel’s ability to punish a defector, but rather to

the binary type structure of his model. In fact, with the binary type, our weak collusion-proof

notion would have led to the same result as his. By our Exclusion Principle, a WCP auction

must always exclude the low type, but this means that the seller can never do better than selling

the good at the price equal to the high valuation. Theorem 6 suggests that, given non-binary

types, the seller can typically do strictly better than this even when the cartel can commit to

punish the defector (as has been assumed in our SCP notion).

7 Conclusion

We have studied optimal collusion-proof auctions when a group of bidders can collude not only

on their messages (e.g., “bids”), but also on their participation decisions. Despite this strong

collusive power, we have shown that the asymmetric information facing the collusive bidders

can be exploited to significantly weaken their collusive power, by eliminating the scope of

collusive arrangements that could make all collusive bidders uniformly better off regardless of

their types. We show that the second-best outcome is achievable if a cartel is not all-inclusive

(which will be the case either if there is a noncollusive bidder or if there are multiple bidding

cartels), or if the outcome involves a nontrivial probability of the object not being allocated

to any bidder. More generally, we have shown that the optimal collusion-proof auction rule

involves a positive probability of the object not being allocated to a collusive bidder.

Our results have two broad implications. First, unlike the prevailing impression based

on the existing literature, the presence of bidder collusion need not mean that the seller can

do no better than textbook monopoly pricing. Our seller can do as well as if there is no

collusion in a broad set of circumstances, and do generally much better than simple monopoly

pricing. Second, an auction rule different from standard may be more desirable when bidder

collusion is a serious issue. We have identified an auction with a group-based sale price as

being unsusceptible to collusion.

It is legitimate to ask whether our collusion-proof auction rule is used in practice, but

the answer is not immediately clear. Our collusion-proof auction may be implemented in

different ways, some of which may not even resemble an auction. For instance, our auction

may be implemented by a seller who negotiates with a group of organized bidders for a single
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sale price. Indeed, it is quite common for a procurer of a service or a good to negotiate

with a prime contractor acting as a representative of a group of contractors. Whether such

a collective negotiation approach serves as a response to possible collusion among contractors

is an interesting, yet unresolved, question.

It is of course quite possible that our collusion-proof auction has no real world correspon-

dence. To the extent that this is true, there may be a couple of reasons. One may be simply

that collusion is not a serious enough problem in many scenarios, at least serious enough to

depart from a standard auction. Alternatively, the reason may be attributable to two re-

strictive features of our auction design. First, our collusion-proof auction involves Bayesian

implementation, which does rely on bidders’ common knowledge of priors, i.e. the assump-

tion that bidders know the distribution of other bidders’ types, know that they know the

distribution, and so on and so forth. It is unlikely for bidders to possess such a knowledge,

especially when they lack the opportunity to develop such a knowledge from repeated inter-

actions. Relaxing the common knowledge of priors by strengthening the solution concept, say

to dominant strategies, seems to be an important next step in the research of collusion-proof

auctions. The implication of such an extension is not a priori obvious, however, since it affects

the contracting problem at both ends, i.e., for both the auction designer and for the colluding

bidders. Collusion may indeed become easier to prevent if dominant-strategy incentives are

very difficult to provide in a budget-balanced fashion among the colluders. Second, we have

assumed that the seller has accurate information about the cartel structure; i.e., which bidders

belong to what cartel. While this assumption is not unrealistic in many situations, it would be

better if the auction design need not require specific knowledge about the cartel structure. In

a sense, an important lesson from the current paper may be the highlighting of these features

as further challenges to overcome in collusion-proof auction design.

Appendix: Proofs

Proof of Lemma 0. It suffices to show that (IC∗) implies the following: for all i ∈ N and

all θ̃i ∈ Θi,

UM
i (θi) = E

[
Ki(θ̃i)Qi(θ̃i)1{θ̃i≤θi} + Ji(θ̃i)Qi(θ̃i)1{θ̃i≥θi} − Ti(θ̃i)

]
. (14)

Note first that a well-known necessary condition for (IC∗) is: for all i ∈ N and all θ̃i, θi ∈
Θi,

UM
i (θi)− UM

i (θ̃i) =

∫ θi

θ̃i

Qi(a)da. (15)
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We show that (15) implies (14). Since UM
i (θ̃i) = θ̃iQi(θ̃i)− Ti(θ̃i), (15) becomes

UM
i (θi) = θ̃iQi(θ̃i)− Ti(θ̃i) +

∫ θi

θ̃i

Qi(a)da.

Taking expectation on both sides regarding θ̃i yields

UM
i (θi) = E[θ̃iQi(θ̃i)− Ti(θ̃i)] +

∫ θi

θi

∫ θi

θ̃i

Qi(a)dadFi(θ̃i)

= E[θ̃iQi(θ̃i)− Ti(θ̃i)] +

∫ θi

θi

∫ θi

θ̃i

Qi(a)dadFi(θ̃i) +

∫ θ

θi

∫ θi

θ̃i

Qi(a)dadFi(θ̃i)

= E[θ̃iQi(θ̃i)− Ti(θ̃i)] +

∫ θi

θi

Qi(θ̃i)Fi(θ̃i)dθ̃i −
∫ θ

θi

Qi(θ̃i)(1− Fi(θ̃i))dθ̃i

= E
[
Ki(θ̃i)Qi(θ̃i)1{θ̃i≤θi} + Ji(θ̃i)Qi(θ̃i)1{θ̃i≥θi} − Ti(θ̃i)

]
,

where the third equality follows from the integration by parts.

Proof of Lemma 1. To begin with, define TC(θC) := Eθ̃N\C
[
∑

i∈C ti(θC , θ̃N\C)] and Qs
C :=

{Q ∈ QC |Q = QC(θC) for some θC ∈ ΘC}. Then, let us define r : QC → R+ as the greatest

convex function such that for all Q ∈ Qs
C ,

r(Q) ≤ inf{TC(θC)|QC(θC) = Q}.

We show that r(QC(θC)) = TC(θC) for almost every θC . Suppose not. Then, it must be that

for some ε > 0,

E [r(QC(θC))] + ε < E [TC(θC)] . (16)

Also, by the definition of r(·), it is possible to find µC : ΘC → ∆ΘC satisfying that for all θC ,

EµC(θC)

[
TC(θ̃C)

]
≤ r(Q(θC)) + ε and EµC(θC)[QC(θ̃C)] = QC(θC). (17)

We now show that M cannot be WCP with respect to C by constructing a weakly feasible

manipulation M̃ = (q̃, t̃) of M by cartel C with which some bidder is better off than with M .

Let the cartel manipulate its type reports using µC(·), whereafter, the object is reallocated

to bidder i with probability wi(θC) :=
qC
i (θC)

QC(θC)
so that

∑
i∈C wi(θC) = 1, satisfying (RCM

C ).

Note that the interim allocation for each collusive bidder i ∈ C is preserved since

q̃C
i (θC) = ωi(θC)Eθ̃N\C

[
EµC(θC)[qC(θ̃C , θ̃N\C)]

]
= ωi(θC)EµC(θC)[QC(θ̃C)] = ωi(θC)QC(θC) = qC

i (θC), (18)
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where the second equality follows from changing the order of expectations, the third from

(17), and the last from the definition of ωi(·).
Next, the cartel manipulates the transfer rule as follows: Letting tµi (θ) := EµC(θC)[ti(θ̃C , θN\C)],

set t̃j(θ) = tµj (θ) for each j ∈ N\C, and for each i ∈ C,

t̃i(θ) = tµi (θ) + Eθ̃−i

[
ti(θi, θ̃−i)− tµi (θi, θ̃−i)

]
− 1

|C| − 1

∑
j∈C\{i}

Eθ̃−j

[
tj(θj, θ̃−j)− tµj (θj, θ̃−j)

]
+ σi,

where
∑

i∈C σi = 0. Note that
∑

i∈C t̃i(θ) =
∑

i∈C tµi (θ), which satisfies (BBM
C ) while (BBM

N\C)

is obviously satisfied. Also,

Eθ̃−i

[
t̃i(θi, θ̃−i)

]
= Eθ̃i

[
t(θi, θ̃−i)

]
− κi, (19)

where

κi :=
1

|C| − 1

∑
j∈C\{i}

E
[
tj(θ)− tµj (θ)

]
− σi.

Then, one can choose σ′is so that κi ≥ 0,∀i ∈ C, since

∑
i∈C

κi = E

[∑
i∈C

(ti(θ)− tµi (µ))

]
= E

[
TC(θC)− EµC(θC)[TC(θ̃C)]

]
> 0, (20)

where the inequality follows from (16) and (17). So, (IC∗) and (IRC
N) are satisfied for collusive

bidders, due to (18), (19), and κi ≥ 0,∀i ∈ C, which means that M̃ is a weakly feasible

manipulation of M . Also, some collusive bidder is better off than in M since κj > 0 for some

j ∈ C.

Proof of Lemma 2. To begin, we adopt the convention that θ∅ < θi for all i ∈ N . Observe

that QC(·) and qC
i (·) inherit the monotonicity of qC(·) and qi(·), respectively, and hence are

a.e. continuous. Also, since r(·) is convex with r(0) = 0, p(·) is nondecreasing and hence a.e.

continuous also. Suppose to the contrary that (2) does not hold for almost every type profile.

Then, we can find some bidder k ∈ C and a positive measure set Θ̂C−k ⊂ ΘC−k such that for

each θC−k ∈ Θ̂C−k, there exist θk ∈ Θk and θ′k ∈ Θ satisfying

(Kk(θk)− p(θk, θC−k))q
C
i (θk, θC−k) < (Kk(θk)− p(θ′k, θC−k))q

C
i (θ′k, θC−k).

Then, the a.e. continuity of qC
i (·) and p(·) guarantees that for each θC−k ∈ Θ̂C−k, we can find

two types θ̂k(θC−k) ∈ Θ and
ˆ̂
θk(θC−k) > θ̂k(θC−k) such that for all θk ∈ (θ̂k(θC−k),

ˆ̂
θk(θC−k)],

(Kk(θk)− p(θk, θC−k))q
C
i (θk, θC−k) < (Kk(θk)− p(θ̂k(θC−k), θC−k))q

C
i (θ̂k(θC−k), θC−k). (21)
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We now define

Θ̂C := {(θk, θC−k) ∈ Θ|θC−k ∈ Θ̂C−k and θk ∈ (θ̂k(θC−k),
ˆ̂
θk(θC−k)]},

q̂C
k (θC−k) := qC

k (θ̂k(θC−k), θC−k), and p̂(θ−k) := p(θ̂k(θC−k), θC−k). Note that (21) holds for all

θC ∈ Θ̂C .

In order to draw a contradiction, we construct a weakly feasible manipulation of M ,

M̃ = (q̃, t̃), which makes bidder k better off.

Consider the following report manipulation, denoted µC : ΘC → ∆ΘC , and reallocation

scheme by the cartel: if θC /∈ Θ̂C , then report truthfully and do not perform any reallocation

while if θC ∈ Θ̂C , then (i) report truthfully with probability
P

i∈C\{k} qC
i (θC)

QC(θC)
and, once the

object is assigned, reallocate it to bidder i ∈ C\{k} with probability
qC
i (θ)P

i∈C\{k} qC
i (θC)

, (ii) report

(θ̂k(θC−k), θC−k) (or (θ∅, · · · , θ∅) in case θ̂k(θC−k) = θ∅) with probability
q̂C
k (θC−k)

QC(θ̂k(θC−k)),θC−k)
and,

once the object is assigned, reallocate it to bidder k with probability 1, and (iii) choose

(θ∅, · · · , θ∅) (or nonparticipation) with the remaining probability.16 This manipulation will

result in the following allocation probabilities: for bidder i ∈ C\{k},

q̃C
i (θC) = QC(θC)

∑
i∈C\{k} qC

i (θC)

QC(θC)

qC
i (θC)∑

i∈C−k qC
i (θC)

= qC
i (θC) if θC ∈ Θ̂C ,

and simply q̃C
i (θC) = qC

i (θC) if θC /∈ Θ̂C . Likewise, for bidder k, if θC /∈ Θ̂C , then q̃C
k (θC) =

qC
k (θC), and if θC ∈ Θ̂C , then

q̃C
k (θC) = QC(θ̂k(θC−k), θC−k)

q̂C
k (θC−k)

QC(θ̂k(θC−k), θC−k)
= q̂C

k (θC−k). (22)

It can be easily verified that q̃C
k (·, θC−k) is nondecreasing for every θC−k.

17 Thus, the interim

allocation Q̃i(θi) = Eθ̃C−i
[q̃C

i (θi, θ̃C−i)] is also nondecreasing for each i ∈ C.

16It is important to make sure that the probability of reporting truthfully or (θ̂(θC−k), θC−k) does not exceed
1, for which it suffices to verify that q̂C

k (θC−k)

QC(θ̂k(θC−k),θC−k)
≤ qC

k (θC)
QC(θC) . This holds trivially if θ̂k(θC−k) = θ∅. If

θ̂k(θC−k) 6= θ∅, it holds since

q̂C
k (θC−k)

QC(θ̂k(θC−k), θC−k)
= 1−

∑
i∈C\{k} qC

i (θ̂k(θC−k), θC−k)

QC(θ̂k(θC−k), θC−k)
≤ 1−

∑
i∈C\{k} qC

i (θC)

QC(θC)
=

qC
k (θC)

QC(θC)
,

where the inequality holds since QC(θ̂k(θC−k), θC−k) ≤ QC(θk, θC−k) and qC
i (θ̂k(θC−k), θC−k) ≥ qC

i (θk, θC−k)
for all i 6= k, by the monotonicity of QC(·) and qC

i (·).
17To see this, consider arbitrary θk and θ′k with θ′k > θk, and θC−k: (i) if (θk, θC−k), (θ′k, θC−k) ∈ Θ̂C , then

q̃C
k (θk, θC−k) = q̃C

k (θ′k, θC−k) = q̂C
k (θC−k), (ii) if (θk, θC−k) ∈ Θ̂C and (θ′k, θC−k) /∈ Θ̂C , then θ̂k(θC−k) < θk ≤

ˆ̂
θk(θC−k) < θ′k and thus q̃C

k (θk, θC−k) = qC
k (θ̂k(θC−k), θC−k) ≤ qC

k (θ′k, θC−k) = q̃C
k (θ′k, θC−k). And other cases

can be dealt with similarly.
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After the manipulation, the cartel’s aggregate payment becomes

Eθ̃N\C

[
EµC(θC)[

∑
i∈C

ti(θ̃C , θ̃N\C)]

]

=

 r(QC(θC))

∑
i∈C\{k} qC

i (θC)

QC(θC)
+ r(QC(θ̂k(θC−k), θC−k))

q̂C
k (θC−k)

Q(θ̂k(θC−k), θC−k)
if θC ∈ Θ̂C

r(QC(θC)) otherwise,

which yields

E

[
EµC(θC)[

∑
i∈C

ti(θ̃C , θN\C)]

]

= E [r(QC(θC))] + EθC∈Θ̂C

[
r(Q(θ̂k(θC−k), θC−k))

q̂C
k (θC−k)

QC(θ̂k(θC−k), θC−k)
− r(QC(θC))

qC
k (θC)

QC(θC)

]

= E

[∑
i∈C

ti(θ)

]
+ EθC∈Θ̂C

[
p̂(θC−k)q̂

C
k (θC−k)− p(θC)qC

k (θC)
]

(23)

Next, t̃(·) is constructed as follows. For each j ∈ N\C, set t̃j(θ) = EµC(θC)[tj(θ̃C , θN\C)].

For each i ∈ C, we set

t̃i(θ) = EµC(θC)[ti(θ̃C , θN\C)] + Yi(θi)−
1

|C| − 1

∑
j∈C\{i}

Yj(θj) + ρi,

where

Yi(θi) := θiQ̃i(θi)−
∫ θi

θi

Q̃i(a)da− Eθ−i
[EµC(θC)[ti(θ̃C , θN\C)]],

and

ρi :=
1

|C| − 1
Eθ−i

 ∑
j∈C\{i}

Yj(θj)

− UM
i (θi) for i ∈ C\{k}, and ρk = −

∑
i∈C\{k}

ρi.

By construction, then t̃ satisfies (BBM
C ) and (BBM

N\C).

We now complete the proof by showing that M̃ is a weakly feasible manipulation and

makes bidder k better off. To this end, observe that for an arbitrary θk ∈ Θk,

U M̃
k (θk) +

∑
i∈C\{k}

U M̃
i (θi)

= E

(Kk(θ̃k)q̃k(θ̃)
)

1{θ̃k<θk} +
(
Jk(θ̃k)q̃k(θ̃)

)
1{θ̃k>θk} +

∑
i∈N\{k}

Ji(θ̃i)qi(θ̃)−
∑
i∈C

t̃i(θ̃)


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= E

(Kk(θ̃k)qk(θ̃)
)

1{θ̃k<θk} +
(
Jk(θ̃k)qk(θ̃)

)
1{θ̃k>θk} +

∑
i∈N\{k}

Ji(θ̃i)qi(θ̃)−
∑
i∈C

ti(θ̃)


+Eθ̃C∈Θ̂C

[
Kk(θ̃k)(q̃

C
k (θ̃C)− qC

k (θ̃C))1{θ̃k<θk} + Jk(θ̃k)(q̃
C
k (θ̃C)− qC

k (θ̃C))1{θ̃k>θk}

−
(
p̂(θ̃C−k)q̂

C
k (θ̃C−k)− p(θ̃C)qC

k (θ̃C)
)]

= UM
k (θk) +

∑
i∈C\{k}

UM
i (θi)

+Eθ̃C∈Θ̂C

[(
(Kk(θ̃k)− p̂(θ̃C−k))q̂

C
k (θ̃C−k)− (Kk(θ̃k)− pk(θ̃C))qC

k (θ̃C)
)

1{θ̃k<θk}

+
(
(Jk(θ̃k)− p̂(θ̃C−k))q̂

C
k (θ̃C−k)− (Jk(θ̃k)− pk(θ̃C))qC

k (θ̃C)
)

1{θ̃k>θk}

]
> UM

k (θk) +
∑

i∈C\{k}

UM
i (θi). (24)

The first equality follows from Lemma 0, the second from (23), the third from the rearrange-

ment and (22), and the inequality from (21) and the fact that for all θ̃C ∈ Θ̂C ,

Jk(θ̃k)(q̂
C
k (θ̃C−k)− qC

k (θ̃C)) ≥ Kk(θ̃k)(q̂
C
k (θ̃C−k)− qC

k (θ̃C)),

since q̂C
k (θ̃C−k) ≤ qC

k (θ̃C) and Jk(θ̃k) < Kk(θ̃k).

From the construction of t̃(·), one can easily verify that U M̃
i (θi) = UM

i (θi), ∀i ∈ C\{k}.
Then, (24) implies U M̃

k (θk) > UM
k (θk) for all θk ∈ Θk or bidder k is better off. The construction

of t̃(·) and monotonicity of Q̃i(·),∀i ∈ C guarantee that M̃ satisfies (IC∗) for all collusive

bidders. The proof will be complete if (IRM
C ) holds for all i ∈ C\{k}:

U M̃
i (θi) = U M̃

i (θi) +

∫ θi

θi

Q̃i(θ̃)dθ̃ = UM
i (θi) +

∫ θi

θi

Qi(θ̃)dθ̃ = UM
i (θi),∀θi ∈ Θi

since U M̃
i (θi) = UM

i (θi) and Q̃i(·) = Qi(·), ∀i ∈ C\{k}.

Proof of Theorem 1. Suppose that an auction rule M = (q, t) ∈M WCP implements the

second-best outcome. Then, q(·) = q∗(·) and Ui(θi) = 0 for all i ∈ N , which implies by Lemma

0 that for any C ⊂ N ,

E

[∑
i∈C

ti(θ)

]
= E

[∑
i∈C

Ji(θi)q
∗
i (θi)

]
. (25)

By Lemma 1, there exists a convex function r(·) that represents the total payment for the

cartel.
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We first consider the case C = {N}. Since q∗N(θ) = 0 or 1 for all θ ∈ Θ, Lemma 1 implies

that p(θ) = r∗ whenever q∗N(θ) = 1. We first prove θ̂i > θi for all i ∈ N . Suppose not. Then,

there exists k such that Jk(θk) ≥ max{maxi∈N\{k} Ji(θi), 0}. It follows that q∗k(θ1, · · · , θn) > 0,

so p(θ1, · · · , θn) = r∗. Since r∗ ≥ V ∗ > θi = Ki(θi), we have a contradiction to (2).

We next consider the case C 6= {N}. Fix any C with |C| ≥ 2. If no such C exists,

there is no collusion, so we are done. For each bidder i ∈ C and his type θi ∈ Θi, let

Xi(θi) := Pr{θC−i ∈ ΘC−i | Ji(θi) > maxk∈C\{i} Jk(θk)} be the probability that i has the

highest virtual value among the collusive bidders, and let Yi(θi) := Pr{θN\C ∈ ΘN\C | Ji(θi) >

max{maxk∈N\C Jk(θk), 0}}. Letting pi(θi) := r(Yi(θi))
Yi(θi)

for each i ∈ C, Lemma 2 implies that,

∀θi ≥ θ̂i

(Ki(θi)− pi(θi)) Yi(θi) ≥ max{0, max
θ′i∈[θ̂i,θi]

(Ki(θi)− pi(θ
′
i)) Yi(θ

′
i)}.

By the envelope theorem argument, ∀θi ≥ θ̂i,

(Ki(θi)− pi(θi))Yi(θi) ≥ (Ki(θ̂i)− pi(θ̂i))Yi(θ̂i) +

∫ θi

θ̂i

K ′
i(a)Yi(a)da ≥

∫ θi

θ̂i

K ′
i(a)Yi(a)da

or

pi(θi)Yi(θi) ≤ Ki(θi)Yi(θi)−
∫ θi

θ̂i

K ′
i(a)Yi(a)da.

Thus, we have

E

[∑
i∈C

ti(θ)

]
= E

[∑
i∈C

r(Yi(θi))Xi(θi)

]

= E

[∑
i∈C

pi(θi)Yi(θi)Xi(θi)

]

≤ E

[∑
i∈C

(
Ki(θi)Yi(θi)−

∫ θi

θ̂i

K ′
i(a)Yi(a)da

)
Xi(θi)

]
. (26)

Letting Zi(θi) =
∫ θ̄i

θi
Xi(s)dFi(s),

E
[(

Ki(θi)Yi(θi)−
∫ θi

θ̂i

K ′
i(a)Yi(a)da

)
Xi(θi)

]
=

∫ θ̄i

θ̂i

Ki(θi)Yi(θi)Xi(θi)dFi(θi)−
∫ θ̄i

θ̂i

∫ θi

θ̂i

K ′
i(a)Yi(a)daXi(θi)dFi(θi)

=

∫ θ̄i

θ̂i

Ki(θi)Xi(θi)Yi(θi)dFi(θi)−
∫ θ̄i

θ̂i

K ′
i(θi)Yi(θi)Zi(θi)dθi
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=

∫ θ̄i

θ̂i

Ki(θi)Xi(θi)Yi(θi)dFi(θi)−Ki(θi)Yi(θi)Zi(θi)
∣∣θ̄i

θ̂i

+

∫ θ̄i

θ̂i

Ki(θi) (Y ′
i (θi)Zi(θi) + Yi(θi)Z

′
i(θi)) dθi

= Ki(θ̂i)Yi(θ̂i)Zi(θ̂i) +

∫ θ̄i

θ̂i

Ki(θi)Y
′
i (θi)Zi(θi)dθi

= E
[
Ki(φi(θN\C))q∗i (θ)

]
.

The second and fourth equalities follow from integration by parts. To verify the fifth equality,

note that Yi(θ̂i) = Pr{φi(θN\C) = θ̂i}, Yi(s) = Pr{φi(θN\C) ≤ s} for each s > θ̂i, and

Zi(s) = E[q∗i (θ)|φi(θN\C) = s]. Combine this derivation with (25) and (26) to obtain (ii) of

Condition (SB).

Proof of Lemma 3. First, we prove that Condition (SB′) holds for any C with 2 ≤ |C| < n.

To this end, observe that

E
[
K(θ

(1)
N\C)1{θ(1)

C >θ
(1)
N\C

}

]
= K(θ̂)(1− F |C|(θ̂))FN−|C|(θ̂) +

∫ θ̄

θ̂

(
θ +

F (θ)

f(θ)

)
(1− F |C|(θ))dFN−|C|(θ)

= K(θ̂)(1− F |C|(θ̂))FN−|C|(θ̂) +

∫ θ̄

θ̂

θ(1− F |C|(θ))dFN−|C|(θ)

+

∫ θ̄

θ̂

(N − |C|)(1− F |C|(θ))FN−|C|(θ)dθ. (27)

Observe also that

E
[
J(θ

(1)
C )1{θ(1)

C >θ
(1)
N\C

}

]
=

∫ θ̄

θ̂

(
θ − 1− F (θ)

f(θ)

)
FN−|C|(θ)dF |C|(θ)

= −(1− F |C|(θ))θFN−|C|(θ)
∣∣∣θ̄
θ̂
+

∫ θ̄

θ̂

(1− F |C|(θ))d
(
θFN−|C|(θ)

)
−
∫ θ̄

θ̂

|C|(1− F (θ))FN−1(θ)dθ

= θ̂(1− F |C|(θ̂))FN−|C|(θ̂) +

∫ θ̄

θ̂

(1− F |C|(θ))FN−|C|(θ)dθ

+

∫ θ̄

θ̂

θ(1− F |C|(θ))dFN−|C|(θ)−
∫ θ̄

θ̂

|C|(1− F (θ))FN−1(θ)dθ,

where the second equality follows from integration by parts. Subtracting this expression from

(27) yields

E

[∑
i∈C

(
Ki(φi(θN\C))− Ji(θi)

)
q∗i (θ)

]
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= E
[(

K(θ
(1)
N\C)− J(θ

(1)
C )
)

1{θ(1)
C >θ

(1)
N\C

}

]
= (K(θ̂)− θ̂)(1− F |C|(θ̂))FN−|C|(θ̂)

+

∫ θ̄

θ̂

[
(N − |C| − 1)(1− F |C|(θ))FN−|C|(θ) + |C|(1− F (θ))FN−1(θ)

]
dθ > 0,

satisfying Condition (SB).

In case C = N , (3) is just a restatement of Condition (SB) with θ
(1)
N\C = θ̂.

Proof of Theorem 2. Since M̂ implements V ∗, it suffices to prove that M̂ is WCP. To this

end, consider any C ∈ C with |C| ≥ 2. Suppose all bidders outside C report truthfully, but

cartel C contemplates a manipulation of M̂ , M̃ = (q̃, t̃), that satisfies (IC∗
C) and (IRM̂

C ).

Then, there exists a function µC : ΘC 7→ ∆ΘC such that (RM̂
C ), (RM̂

N\C), (BBM̂
C ) and (BBM̂

N\C)

hold. Since the same sale price is charged against a cartel no matter how many of its members

participate, it cannot gain from non-participation of its members. Hence, without loss, we

assume that µC places no weight on Θ\Θ.

We first prove that q̃(θ) = q∗(θ) for almost every θ ∈ Θ. To this end, suppose this is not

the case. Then,

αC(
∑
i∈C

U M̃
i (θ̄)) + (1− αC)(

∑
i∈C

U M̃
i (θ))

= E

[∑
i∈C

HC(θi)q̃i(θ)−
∑
i∈C

t̃i(θ)

]

= E

[∑
i∈C

HC(θi)q̃i(θ)−
∑
i∈C

EµC(θC)[t̂i(θ̃C , θN\C)]

]

≤ E

[∑
i∈C

HC(θi)q̃i(θ)− EµC(θC)[δC(θ̃C , θN\C)

]

= E

[∑
i∈C

HC(θi)q̃i(θ)−HC(θ
(1)
N\C)EµC(θC)[

∑
i∈C

q∗i (θ̃C , θN\C)]

]

= E

[∑
i∈C

[HC(θi)−HC(θ
(1)
N\C)]q̃i(θ)

]

< E

[∑
i∈C

[HC(θi)−HC(θ
(1)
N\C)]q∗i (θ)

]
(28)

= αC(
∑
i∈C

U M̂
i (θ̄)) + (1− αC)(

∑
i∈C

U M̂
i (θ)).

35



The first equality follows from Lemma 0, the second from equation (BBM̂
C ), the third from

the definition of δC(·), the fourth from (RM̂
C ), and the last equality from the above string of

equalities repeated in the reverse order. The weak inequality follows from the construction

of t̂i(·) for i ∈ C as in (5) and (6). Lastly, the strict inequality follows from the definition of

αC and the strict monotonicity of HC(·). To see this, we compare the LHS and RHS of the

inequality (28) at the ex-post level: (i) if θk > max{maxi∈N\{k} θi, θ̂} for some k ∈ C, then

q∗k(θ) = 1 6= q̃k(θ) implies that

LHS =
∑
i∈C

(HC(θi)−HC(θ
(1)
N\C))q̃i(θi) < HC(θk)−HC(θ

(1)
N\C) = RHS,

(ii) if θk > max{maxi∈N\{k} θi, θ̂} for some k ∈ N\C, then any manipulated allocation different

from q∗(·) implies q̃k(θ) < 1 and q̃k′(θ) > 0 for some k′ ∈ C,18 and thus

LHS =
∑
i∈C

(HC(θi)−HC(θ
(1)
N\C))q̃i(θi) =

∑
i∈C

(HC(θi)−HC(θk))q̃i(θi) < 0 = RHS,

(iii) if maxi∈N θi < θ̂, then q̃(θ) 6= q∗(θ) = 0 implies that the LHS is negative while the RHS is

zero. In sum, the LHS of (28) is always less than the RHS, which means that M̃ worsens the

(interim) payoff of either the highest type or the lowest type of at least one collusive bidder.

This contradicts that M̃ satisfies (IRM̂
C ). We have thus proven that q̃(θ) = q∗(θ) for almost

every θ.

It follows from this result that the gross surplus realized within C from M̃ is the same as

from M̂ , and, combined with (4), that the cartel pays the same expected payments with M̃ as

with M̂ . Hence, the net total expected payoff accruing to C from M̃ is the same as from M̂ .

Together with (IRM̂
C ), this implies that no bidder of C is strictly better off from manipulation

M̃ . Since this is true for all feasible manipulation of M̂ , we conclude that M̂ is WCP.

For the remainder of proofs, we will often use the following transfer rule: Given an alloca-

tion rule qi(·) and a sale price r, if all bidders participate, then for each i ∈ N

ti(θ) :=
1

n
r
∑
j∈N

qj(θ) +

(
Ti(θi)−

1

n
rEθ̃−i

[∑
j∈N

qj(θi, θ̃−i)

])

− 1

n− 1

∑
k∈N\{i}

(
Tk(θk)−

1

n
rEθ̃−k

[∑
j∈N

qj(θk, θ̃−k)

])
+ ρi, (29)

18This follows from the fact that noncollusive bidders always report truthfully so collusive bidders can change
the allocation only by announcing that one of them has at least θk > θ̂, and getting themselves allocated the
object.
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where

Ti(θi) := θiEθ̃−i

[
qi(θi, θ̃−i)

]
−
∫ θi

θi

Eθ̃−i

[
qi(a, θ̃−i)

]
da

and ρi ∈ R with
∑

i∈N ρi = 0. If some bidder does not participate, then the payment of r is

equally shared among those who participate while others make no payments. Note from this

and (29) that
∑

i∈N ti(θ) = r
∑

i∈N qi(θ), ∀θ ∈ Θ, implying that bidders pay a sale price r as

long as at least one bidder participates. Note also that if all bidders participate, then

Eθ̃−i

[
ti(θi, θ̃−i)

]
= Ti(θi) + ci,∀i,∀θi,

for some constant ci, implying that the incentive compatibility is satisfied as long as the

interim allocation probability is nondecreasing. The (IR) constraint will be checked later

wherever required.

Proof of Theorem 3. Construct a transfer rule t̂(·) by substituting q∗(·) and r∗ into (29). It

is straightforward that one can choose ρi’s to let t̂(·) satisfy (IR) condition. Thus, M̂ = (q∗, t̂)

satisfies (IC∗) and implements the second-best outcome without collusion.

To prove that M̂ is WCP consists of several steps.

Step 1. Suppose that a feasible manipulation, M = (q, t), of M̂ (by N) satisfies UM
i (θi) >

U M̂
i (θi) for some i ∈ N . Then, there exists another feasible manipulation M̃ = (q̃, t̃) that

satisfies

U M̃
i (θi) = U M̂

i (θi),∀i ∈ N, and E

[∑
i∈N

U M̃
i (θi)

]
> E

[∑
i∈N

U M̂
i (θi)

]
. (30)

Proof. Available in the Supplementary Material.

Step 2. For any feasible manipulation M̃ = (q̃, t̃) of M̂ that satisfies U M̃
i (θi) = U M̂

i (θi),∀i ∈
N , we have ∫ J−1

i (r∗)

θi

(Ji(θi)− r∗)(Q̃i(θi)−Q∗
i (θi))fi(θi)dθi ≤ 0,∀i ∈ N. (31)

The inequality holds strictly unless Q̃i(θi) = Q∗
i (θi),∀θi ≤ J−1

i (r∗).

Proof. It follows from the assumption on M̃ that for all i ∈ N and all θi ∈ Θi,

Xi(θi) :=

∫ θi

θi

[Q̃i(a)−Q∗
i (a)]da = U M̃

i (θi)− U M̃
i (θi)− [U M̂

i (θi)− U M̂
i (θi)]
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= U M̃
i (θi)− U M̂

i (θi) ≥ 0.

Then, the integration by parts yields∫ J−1
i (r∗)

θi

(Ji(θi)− r∗)(Q̃i(θi)−Q∗
i (θi))fi(θi)dθi

= (Ji(θi)− r∗)fi(θi)Xi(θi)
∣∣∣J−1

i (r∗)

θi

−
∫ J−1

i (r∗)

θi

Xi(θi)d [(Ji(θi)− r∗)fi(θi)]

= −
∫ J−1

i (r∗)

θi

Xi(θi)d [(Ji(θi)− r∗)fi(θi)] ≤ 0,

since (Ji(·)−r∗)fi(·) is increasing. The inequality is strict unless Xi(θi) = 0 for all θi ≤ J−1
i (r∗),

that is Q̃i(θi) = Q∗
i (θi) for all θi ≤ J−1

i (r∗).

To state the next step, we define Θ∗ := {θ ∈ Θ|maxi∈N Ji(θi) ≥ r∗}.

Step 3. For any feasible manipulation M̃ = (q̃, t̃) of M̂ by N that satisfies U M̃
i (θi) =

U M̂
i (θi),∀i ∈ N , we have Q̃i(θi) = Q̂∗

i (θi), ∀i ∈ N , ∀θi ∈ Θi.

Proof. Consider another allocation rule, q̄(·), with q̄i(θ) = q̃i(θ) if θi ≥ J−1
i (r∗) and q̄i(θ) =

q∗i (θ) otherwise, and let Q̄i(θi) := Eθ−i
[q̄(θi, θ−i)], for each i ∈ N . (Whether Q̄i(·) is monotonic

or whether q̄i(·) is implementable is irrelevant for the subsequent argument.) Then, it holds

that ∑
i∈N

∫ θi

J−1
i (r∗)

(Ji(θi)− r∗)(Q̃i(θi)−Q∗
i (θi))fi(θi)dθi

=
∑
i∈N

∫ θi

θi

(Ji(θi)− r∗)(Q̄i(θi)−Q∗
i (θi))fi(θi)dθi

= E

[∑
i∈N

(Ji(θi)− r∗)(q̄i(θ)− q∗i (θ))

]

= Eθ∈Θ∗

[∑
i∈N

(Ji(θi)− r∗)(q̄i(θ)− q∗i (θ))

]

= Eθ∈Θ∗

[∑
i∈N

(Ji(θi)− r∗)q̄i(θ)

]
− Eθ∈Θ∗

[
max
i∈N

Ji(θi)− r∗
]
≤ 0, (32)

where the inequality follows from the definition of q∗(·) and becomes strict unless q̃(θ) = q∗(θ)

for almost all θ ∈ Θ∗. Thus, we have

0 ≤
∑
i∈N

[Ũi(θi)− Ûi(θi)]−
∑
i∈N

∫ θi

J−1
i (r∗)

(Ji(θi)− r∗)(Q̃i(θi)−Q∗
i (θi))fi(θi)dθi
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=
∑
i∈N

∫ J−1
i (r∗)

θi

(Ji(θi)− r∗)(Q̃i(θi)−Q∗
i (θi))fi(θi)dθi.

In order not to contradict Step 2, this inequality and the inequality (31) both must hold as

equality, which in turn implies that the inequality (32) also must hold as equality. Then, (31)

and (32) can hold as equality only if Q̃i(θi) = Q∗
i (θi),∀θi ≤ J−1

i (r∗), and q̃(θ) = q∗(θ), for

almost all θ ∈ Θ∗, which yields the desired result.

Step 4. M̂ is WCP.

Proof. Consider any feasible manipulation M = (q, t). We claim that UM
i (θi) = U M̂

i (θi),∀i ∈
N . Suppose not. By Step 1, we can find another feasible manipulation M̃ = (q̃, t̃) satisfying

(30). Then, by Step 3,

U M̃
i (θi) = U M̃

i (θi) +

∫ θi

θi

Q̃i(a)da = U M̂
i (θi) +

∫ θi

θi

Q∗
i (a)da = U M̂

i (θi),

which contradicts the inequality in (30). Thus, it must be that UM
i (θi) = U M̂

i (θi),∀i ∈ N .

Applying Step 3 again, we have Q̃i(·) = Q∗
i (·) for all i ∈ N , implying that M yields the same

interim payoffs as M̂ to the bidders, which means that M̂ is WCP.

Proof of Theorem 5. Suppose that a pair, r0 and q̂(·), solves [C]. Construct the transfer

rule t̂(·) by substituting r0 and q̂(·) into (29). We show that an auction rule M̂ = (q̂, t̂)

implements the solution outcome of [C] and is WCP. To ensure that M̂ implements the

solution of [C] absent collusion, we only need to check (IR) constraint. For this, note that

due to the fact
∑

i∈N t̂i(θ) = r0

∑
i∈N q̂i(θ) and (IC∗

1), we have

∑
i∈N

U M̂
i (θi) = E

[∑
i∈N

Ji(θi)q̂i(θ)− r0

∑
i∈N

q̂i(θ)

]
≥ 0.

Thus, one can choose ρi’s so that each bidder’s (IR) constraint is satisfied.

We next prove that M̂ is WCP. Consider any feasible manipulation M̃ = (q̃, t̃) of M̂ .

Then, we have

∑
i∈N

U M̃
i (θ̄) = E

[∑
i∈N

K(θi)q̃i(θ)−
∑
i∈N

t̃i(θ)

]

= E

[∑
i∈N

(K(θi)− r0)q̃i(θ)]

]
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≤ E

[∑
i∈N

(K(θi)− r0)q̂i(θ)

]
=
∑
i∈N

U M̂
i (θ̄),

where the inequality follows from the definition of q̂(·) and becomes strict unless q̃(·) = q̂(·).
Thus, (IRM̂

N ) requires q̃(·) = q̂(·), so

E

[∑
i∈N

t̃i(θ)

]
= E

[
r0

∑
i∈N

q̃i(θ)

]
= E

[
r0

∑
i∈N

q̂i(θ)

]
= E

[∑
i∈N

t̂i(θ)

]
,

which, along with (IRM̂
N ), implies that U M̃

i (·) = U M̂
i (·), ∀i. We thus conclude that M̂ is WCP.

We now show that the solution of [C] is characterized by (9), (10), and (11), assuming

that Condition (SB) does not hold. We first show that the solution involves the allocation

rule of the form described in (11), whatever the value of r0 is. Let λR and λK denote the

Lagrangian (nonnegative) multipliers for the constraints (IC∗
1) and (K), respectively. Then,

the Lagrangian for the problem [C] is written as

E

[∑
i∈N

(
r + λR(J(θi)− r) + λK min{K(θi)− r, 0}

)
qi(θ)

]
.

Since the maximand is symmetric across bidders and linearly increasing with each qi, the

optimal allocation should follow the efficient cutoff rule: Namely, there exists a threshold

value θ̄ such that the rule allocates the object to a bidder whose type is highest and above

θ̄. Next observe the constraint (K) must be binding at the solution; or else, the solution

corresponds to the second-best outcome. This yields a contradiction, since the solution is

WCP implementable and the second-best outcome cannot be WCP implementable without

Condition (SB). Therefore, (K) is binding, from which it follows that θ̄ = K−1(r0).

The optimal sale price r0 depends on whether (IC∗
1) is binding or not. If (IC∗

1) is not

binding, then given the efficient cutoff rule as in (11), r0 must satisfy (9). Meanwhile, (IC∗
1)

is slack only if

E[J(θ
(1)
N )|θ(1)

N > K−1(r0)] > r0.

If this inequality does not hold at the level solving (9), then (IC∗
1) must be binding, so r0

must satisfy (10).

Proof of Theorem 6. Recall first that the original auction M∗ is the second-price auction.

Since the auction A has the same allocation/payment rule as M∗ for bidders outside C,

it is weakly dominant for them to participate in A and report their true types. Fix any

Bayesian Nash equilibrium in EA. Letting M̃ = (q̃, t̃) denote the mechanism resulting from
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the equilibrium play of bidders, we show that M̃ must yield V ∗ to the seller. First of all, M̃

must satisfy (IC∗) since in the equilibrium, each bidder is forming a correct belief about what

types propose or accept/reject a collusive side contract, and thereafter playing sequentially

rational strategy.19 We now establish that both M̂ and M̃ must yield the same interim payoffs

for all collusive bidders. Let us first consider case (a). Then, since (12) holds strictly for all

θ′,

T ∗
i (θ̄) > E

[
HC(θ

(1)
N\C)

]
. (33)

Define

Θ̆C := {θC ∈ ΘC | ∃i ∈ C with type θi that announces rz}.20

Then, for all θC ∈ ΘC ,

E

[∑
i∈C

t̃i(θ)

]
= E

[
HC(θ

(1)
N\C)

(∑
i∈C

q̃i(θ)

)
1{θC /∈Θ̆C} + T ∗

i (θ̄)1{θC∈Θ̆C}

]

≥ E

[
HC(θ

(1)
N\C)

(∑
i∈C

q̃i(θ)

)
1{θC /∈Θ̆C} + HC(θ

(1)
N\C)1{θC∈Θ̆C}

]

≥ E

[
HC(θ

(1)
N\C)

∑
i∈C

q̃i(θ)

]
, (34)

where the first inequality follows from (33). Thus,

αC(
∑
i∈C

U M̃
i (θ̄)) + (1− αC)(

∑
i∈C

U M̃
i (θ)) = E

[∑
i∈C

HC(θi)q̃i(θ)−
∑
i∈C

t̃i(θ)

]

≤ E

[∑
i∈C

[HC(θi)−HC(θ
(1)
N\C)]q̃i(θ)

]

≤ E

[∑
i∈C

[HC(θi)−HC(θ
(1)
N\C)]q∗i (θ)

]
= αC(

∑
i∈C

U M̂
i (θ̄)) + (1− αC)(

∑
i∈C

U M̂
i (θ)),

where the first and last equalities follow from Lemma 0, the first inequality follows from (34),

and the second follows from the definition of q∗(·). Indeed, both inequalities must hold as

19Since θ∅ ∈ Bi for each i ∈ C, every type of bidder i can secure at least zero (or individual rational) payoff
whenever participating in A so that M̃ must satisfy (IR) condition.

20A mixed strategy which randomizes between rz and some other messages can be accommodated without
changing the subsequent result.
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equality since (i) U M̃
i (θ) ≥ 0 = U M̂

i (θ) and (ii) U M̃
i (θ̄) ≥ U M̂

i (θ̄) for all i ∈ C. First, (i) is

immediate from the fact that M̃ satisfies (IC∗). To show (ii), suppose to the contrary that

U M̃
i (θ̄) < U M̂

i (θ̄) for some i ∈ C. Then, bidder i has a profitable deviation to announce

rz with a sufficiently high z, since it will yield him an (interim) payoff arbitrarily close to

θ̄ − T ∗
i (θ̄) = U M̂

i (θ̄), a contradiction. Now, both inequalities hold with equalities only if Θ̆C

is a measure zero set and q̃i(·) = q∗i (·), which implies that the interim payoffs in M̂ and M̃

can only differ by constants. That (i) and (ii) hold with equalities in turn implies that those

constants have to be zero. Consequently, M̂ and M̃ must yield the same interim payoffs for

all parties, which implies that M̃ must yields the seller her second-best payoff V ∗.

The proof is similar for the case (b), upon two observations. First, adding the message rz

does not give the cartel any new opportunity to manipulate M̂ since announcing rz results

in the same outcome as each collusive bidder announcing θr. Second, since (13) holds, the

highest type of any bidder i ∈ C can announce rz (with sufficiently large z) to obtain at least

its noncollusive payoff U M̂
i (θ̄).

Last, we prove for the case (a) that EA is non-empty. (A similar proof follows for the

case (b).) To this end, we show that there exists a weak perfect Bayesian, and thus Bayesian

Nash, equilibrium in which each cartel member proposes no side contract. If no one proposes

a side contract, then each collusive bidder i with type θi plays M̂ and obtains his equilibrium

payoff U M̂
i (θi). If a side contract is proposed, then each collusive bidder i responds as follows:

“Report θ∅ if θi < T ∗
i (θ) or else report rzi

for some integer zi > 1.” This response is supported

by the out-of-equilibrium belief of bidder i that each bidder j 6= i in C reports rz′ for some

z′ < zi if θj > T ∗
j (θ), and θ∅ otherwise.

We now show that this strategy profile constitutes a weak perfect Bayesian equilibrium.

First of all, a deviation by some collusive bidder or third party to a side contract will trigger

the response as above and yield each collusive bidder i with θi at most max{θi − T ∗
i (θ), 0},

which is no greater than U M̂
i (θi), his equilibrium payoff. Second, once a side contract has

been proposed (out of equilibrium), it is optimal for a collusive bidder i with type θi > T ∗
i (θ)

to report rzi
and obtain θi − T ∗

i (θ) > 0, given his belief that every other collusive bidder will

report either rz′ or θ∅. Also, bidder i with θi < T ∗
i (θ) optimally reports θ∅ to obtain zero

payoff since (i) reporting some rz instead is clearly suboptimal and (ii) reporting some type

from Θi yields either zero payoff (in case some other collusive bidder reports rz) or at most

θi − δC(θ) < 0 (in case every other collusive bidder reports θ∅), and thus is suboptimal too.
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