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Optimal Strategies for Automated Traders in a
Producer-Consumer Futures Market

M.S. RADJEF∗and F. LAIB†

May 8, 2008

Abstract

The aim of this work is to show how automated traders can operate a fu-
tures market. First, we established some hypothesises on the properties of the
’correct’ price pattern which translates accurately the underlying moves in the
supply/demand balance and the nominal price, then mathematical measures
were derived allowing to estimate the efficiency of a given trading strategy. As
a starting step, we applied our approach to a simplified market setup where
only two automated traders, a producer and a consumer, can trade. They
receive a stream of forecasts on supply and demand levels and they should
react instantaneously by adjusting these forecasts, then issuing sale and buy
orders. Later, we suggested a parameterized trading strategy for the two au-
tomatons. Finally, we obtained by simulation the optimal parameters of this
strategy in some particular cases.

1 Introuction

The futures market is a major part of nowadays commercial Exchanges, it is the
place where futures contracts are traded. A futures contract is a binding agreement
between a seller and a buyer, it is related to a specific commodity1, like crude oil,
gold, metals, grains, oilseeds, etc. A specific feature of a futures transaction is
that the price of the commodity is fixed at the present time, whereas the effective
delivery of the merchandize, from the seller to the buyer, will occur in a future date,
which could be several months or years later [4]. The majority of raw commodities
producers, processors, consumers, and merchants buy and/or sell futures contracts
in order to hedge their price risk, i.e. protect themselves against unforseen sharp
price variations. Speculators are also investing heavily in these markets for profit
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1There could also be futures contracts on financial instruments like stocks, indexes, foreign
currencies, etc.
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taking, at the same time they create the necessary liquidity that allows to these
markets to operate efficiently [8, 18]. A detailed mathematical description of the
futures market’s platform was provided in [14], the market mechanism was explained
as well as the evolution of traders’ positions. However, the current study focuses on
a futures market with only two players: a producer and a consumer. The purpose
is to show how automated traders can operate this market.

So far, automated trading was limited to computerizing Exchanges’ platforms
which once were operated by human pit brokers receiving orders, by telephone or
other means, from external human traders, then proceed to their execution in an
open outcry market. This automatization process has met a great success with the
advent of electronic platforms, consequently pit brokerage is progressively disap-
pearing [2, 19]. However, human traders, representing the interest of commercial
companies (producers, farmers, refiners, consumers, etc.) are still operating. They
constantly asses the market supply and demand balance alongside with their spe-
cific needs, then translate their judgments into sale or buy orders [4]. The current
investigation is an attempt to expand the automatization process into a new border
by eliminating human traders in the decision making process. Instead of humans,
we designed automated traders who analyze the market fundamentals (supply and
demand) and send buy and sale orders to the Exchange.

A large part of studies found in the literature of financial markets deal with
the issue of price formation from the downstream perspective, analyzing time se-
ries of the observed phenomena, like price, volume, open interest, etc., to establish
market properties and make predictions [5, 7]. However, the most successful ap-
proaches in the community of traders are technical analysis [11] and fundamental
analysis [6]. Economists have struggled to suggest authentic methods for trading
like Shelton [17] who, based on game theory tools, designed a trading strategy where
a player (a trader) is facing Nature (the market) and attempts to take the right de-
cisions depending on the trader’s appetite for risk and the mood of the market.
Studies inspired from physics principles, like statistical mechanics phase transitions,
were also conducted to examine the links between investors behavior and price for-
mation [10].

On the other hand, upstream approaches are becoming frequent, their essence is
to build the price time series from the interaction of independent artificial agents
equipped with specific features; these agents play the role of traders in real markets.
The Santa Fe Stock Market Simulator [9] is a typical computer model of the stock
market allowing to carry out simulations and tests the effects of different scenarios on
the behavior of the price [12]. A genetic approach developed in [1] helped to clarify
the link between fundamental trading and technical trading and showed how bubbles
occur. Preist [13] has suggested an agent-based technic for trading commodities via
the Internet; a set of agents, representing the participants, enter into negotiation in
a series of double auctions in order to determine the market price. The purpose of
this class of approaches is to examine the effect of individual trader’s features on
the price behavior and showing how phenomena like bubbles and crashes occur.

Our investigation can be categorized as an upstream approach, but our goal
differs from the one pursued by this class of approaches. Indeed, our purpose is
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more practical than theoretical, it consists to the creation of automated traders able
to negotiate the price of futures contracts in a futures market. For this reason, a
discussion over the price’s role in the market is necessary. We started by establishing
some hypothesises on the properties of the ’correct’, or benchmark, price pattern.
Then we formulated the corresponding mathematical criteria allowing to measure
the relative distance between the benchmark pattern and a given price pattern
provided by any trading strategy, this measures also the performance of this strategy.
Later, we suggested a framework of an artificial futures market composed only by an
automated seller and an automated buyer representing the interests of a producer
and a consumer respectively. The automatons are fed with a regular stream of
forecasts on the supply and demand levels over a trading horizon of m periods.
They react by adjusting the forecasts then issuing sale and buy orders from which
the price is formed. To run the model, we suggested a parameterized trading strategy
based on the gap supply-demand function and price bands built around the nominal
price. Finally, we used simulation to search for the optimal parameters of the trading
strategy by maximizing an aggregate performance function.

Some economic circles may feel septic, or even show their opposition to an auto-
matic pricing approach, because it could appear to them that automation is thwart-
ing the free market concept and liberal economy in general. They might also argue
that producers will likely become unmotivated in case of a regulated market where
everything is done automatically, leading to an absence of opportunities. Hence,
what could be the benefits of an automatic pricing approach? A clear advantage
of this approach is bringing a new contribution to the era of computerization and
automation by freeing humans from the tedious task of pricing, and also providing a
laboratory tool to scientists and economists, allowing them to carry on simulations
and analyze the effects of various trading hypothesises.

However, the utmost benefit of this approach could be the additional rationality
it brings in the price fixation process. Indeed, major financial crashes and speculative
bubbles [16] were caused by irrational behavior of human traders: mimic, panic,
greed and fears, etc. These are the main challenges facing human traders. It is likely
that by replacing human traders by automated ones, their would be less financial
crisis since automated traders will be pursuing rational strategies taking into account
the real status of the market. The resulting rationality could be an economic factor
for stability provided that these automatons will be able to generate a price pattern
playing its role as a market regulator, i.e. continuously balancing supply and demand
levels.

The next section is a discussion over the price’s role in the market and its im-
portant link to the supply and demand balance. This will lead to formulating some
hypothesises on the ’correct’ price pattern, then deriving analytical criteria measur-
ing the performance of a given trading strategy. In the third section, we describe
the setup of the futures market for the producer-consumer case. The forth section
presents an example of a trading strategy for the automated traders. Illustrative
tabular and graphical results are outlined in the last section.
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2 Measuring performance of a trading strategy

The price plays at least two important roles in any market. First, it serves as
a reporting tool of the prevailing market’s state, e.g. a rising price could be a
sign of a deficit (demand exceeding supply), an vice versa. Secondly, the price
allows to adjust the supply and demand balance. The price could be seen as a
barometer, measuring the pressure of the market, then taking the right decision to
equilibrate the market by regulating supply and demand levels. In fact, if supply
exceeds demand then the market is in a surplus status, implying a price decline,
which in turn will be perceived as a buying opportunity by consumers, consequently
consumption is encouraged to grow. In parallel, this price decline should be a signal
towards the producers to reduce their output, or momentarily halt it at all, in order
to erase the surplus status; consequently, this price decline has allowed to solve
the prevailing surplus problem. Similarly, in a deficit market, the contrary of what
was described heretofore should occur: the price should increase in order to reduce
consumption and encourage production. If production capacity is insufficient then
investors will be attempted to invest more to raise their production capacity.

2.1 Some hypothesis on the correct price pattern

What should be the properties of the ’correct’ price pattern? This is a debatable
subject. However, the strategies of the automated traders will be derived directly
from this debate. Nevertheless, it is commonly agreed that supply and demand bal-
ance is the main driver of the price. Herein are some hypothesises on the properties
that should have an ideal price pattern.

Definition 2.1 (Nominal price). To produce one unit of a given product, say C,
we need to use ck units of the input Ck which costs pk(tj−1) at instant tj−1, with
k = 1, . . . , K and j = 1, . . . , m; thus, including a profit margin ratio r, the nominal
(or rational) price of product C at instant tj should be

p∗(tj) = (1 + r)
K∑

k=1

ck pk(tj−1). (1)

Assumption 2.1 (Nominal price). We assume that, at any instant tj belonging
to the time horizon, the nominal (or rational) price, p∗(tj), of the product of interest
is known. This nominal price could vary from time to time due to price variations
emanating from other markets, impacting on its production cost.

Let S = {S(tj)}j=0,m be a set of supply forecasts, and D = {D(tj)}j=0,m a set
of demand forecasts related to the periods t0, t1, . . . , tm. We set γ as the trading
strategy used by the two automatons. The price series2 p = {p(tj)}j=1,m is obtained
by p = f1(γ, S, D) and the traded quantities series q = {q(tj)}j=1,m is obtained by
q = f2(γ, S, D), where the functions f1 and f2 summarize the market functioning
mechanism (see sections 3 and 4 for full details).

2Note that transactions start at instant t1, instead of t0 as it was the case with S and D.
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Hypothesis 2.1 (S&D determines the trend of the actual price). The price
pattern should inversely follow the balance of supply and demand (S&D) pattern,
i.e. if the S&D balance declines then the price should increase, and vice-versa. In a
mathematical form, this can be described by

S&D(tj) < S&D(tj−1) ⇒ p(tj) > p(tj−1),

S&D(tj) > S&D(tj−1) ⇒ p(tj) < p(tj−1).

If no change happens on the S&D levels between instants tj−1 and tj, then their
shouldn’t be any change in the price as well, that is

S&D(tj) = S&D(tj−1) ⇒ p(tj) ' p(tj−1).

Hypothesis 2.2 (The price is driving S&D’s next move). A significant in-
crease in the price would encourage investment, therefore increasing the supply level,
at the same time consumption will be reduced (due to the higher price), and vice-
versa. This could be formulated as follows

p(tj) > p(tj−1) ⇒ S&D(tj+1) > S&D(tj)

p(tj) < p(tj−1) ⇒ S&D(tj+1) < S&D(tj)

p(tj) = p(tj−1) ⇒ S&D(tj+1) ' S&D(tj)

Hypothesis 2.3 (Nominal price determines the level of the actual price).
In case of a surplus, the market price should fall below the nominal price in order
to discourage production and encourage consumption, that is

S(tj) > D(tj) ⇒ p(tj) < p∗(tj).

Inversely, in case of a deficit, the market price should be above the nominal price in
order to encourage production and ration consumption, that is

S(tj) < D(tj) ⇒ p(tj) > p∗(tj).

If at any time tj, the supply level is equal to the demand level, then the market
price, p(tj), should be equal to the nominal price, p∗(tj), that is

S(tj) ' D(tj) ⇒ p(tj) ' p∗(tj).

Hypothesis 2.4 (S&D volatility transferred to the price). The volatility of
S&D should induce an equivalent volatility in the price pattern, that is in any subset
of time {tk, . . . , tk+h} ⊂ {t1, . . . , tm}, the following is satisfied

σ
S&D

(tk, tk+h) ' σp(tk, tk+h),

where σ
S&D

(tk, tk+h) and σp(tk, tk+h) are the standard deviations of the S&D and
price respectively over the period (tk, tk+h), with h ∈ N and h < m.
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Hypothesis 2.5 (Liquid market). A good price pattern is the one where transac-
tions take place almost at each period, that is the traded quantity, q(tj), at instant
tj should be positive most of the time, j = 1, . . . , m.

Hypothesis 2.6 (Homogenous volumes). The volatility of the traded quantities,
q(tj), should be kept to a minimum, that is in any subset of time {tk, . . . , tk+h} ⊂
{t1, . . . , tm},

σq(tk, tk+h) ' 0,

where σq(tk, tk+h) is the standard deviation of the variable q over the period (tk, tk+h),
with h ∈ N and h < m.

2.2 Measuring strategy performances

We suggest herein a set of practical criteria allowing to quantify the efficiency of
the trading strategy γ in respect to hypothesises 2.1-2.6. The principle of these
criteria is to add up the number of times each hypothesis was satisfied over the
periods t1, . . . , tm, then build a ratio indicating the degree of satisfaction of each
hypothesis.

First we define the gap function, G, which is simply the difference between supply
and demand:

G(tj) = S(tj)−D(tj), (2)

with j = 0, 1, . . . , m. The gap function G will be the analytical measure of the S&D
balance evoked earlier.

In order to measure the efficiency of the trading strategy γ in respect to hypoth-
esis 2.1, we use the following criterion

z1(γ,S,D) =
1

m

m∑
j=1

1[ sign(G(tj)−G(tj−1)) = −sign(p(tj)−p(tj−1)) ], (3)

where 1[·] is the condition function [15], z1 is a ratio taking its values in the range
[0, 1] and measuring the efficiency of our strategy relatively to hypothesis 2.1 : if z1 is
close to 0 then the strategy has a very weak performance relatively to this hypothesis;
inversely, if z1 is close to 1 then this strategy fully respects this hypothesis. In the

6



same spirit, we suggest the following criteria for hypothesises 2.2-2.6,

z2(γ,S,D) =
1

m− 1

m−1∑
j=1

1[ sign(G(tj+1)−G(tj)) = sign(p(tj)−p(tj−1)) ], (4)

z3(γ,S,D) =
1

m

m∑
j=1

1[ sign(G(tj)) = −sign(p(tj)−p∗(tj)) ], (5)

z4(γ,S,D) =
1

m− h

m−h∑
k=1

1[|σ
G

(tk, tk+h)−σp(tk, tk+h)|≤ε], (6)

z5(γ,S,D) =
1

m
1[q(tj)>0], (7)

z6(γ,S,D) =
1

m− h

m−h∑
k=1

1[σq(tk, tk+h)≤ε], (8)

where 0 < ε � 1. We may favor one criterion over another, this is done by associ-
ating different weights w1, . . . , w6 to these criteria, with 0 ≤ wk ≤ 1, k = 1, . . . , 6,
and

∑6
k=1 wk = 1. The average performance of the trading strategy γ is

z̄(γ,S,D) =
6∑

k=1

wk zk. (9)

Now, assuming that two sets of representative samples of supplies and demands,
S = {S(1), . . . ,S(K)} and D = {D(1), . . . ,D(K)}, are available, and the strategy γ
was parameterized by a parameter α ∈ A, then for a specific α0 ∈ A, the average
performance of strategy γ over the sets of samples S and D, is

z(γ(α0), S, D) =
1

K

K∑
k=1

z̄(γ(α0),S
(k),D(k)). (10)

Therefore, the optimal parameter for this strategy over S and D, is

α∗ = arg max
α∈A

z(γ(α), S, D). (11)

3 The producer-consumer market setup

We suggest herein a simple model for a futures market made up with one producer
and one consumer only. An automated seller is designed to hedge the production
of the producer, and an automated buyer is designed to hedge the needs of the
consumer. The trading process starts at period t1 and carry on until the final time
tm. An initial period, t0, is added to the model to initialize some variables like
S, D, etc., though no trade takes place at t0. At each period tj, j = 1 . . . m,
forecasts of supply, S(tj), and demand, D(tj), are sent to the automated traders,
as well as other information like the nominal price, p∗(tj), of this period. As such,
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these automated traders are designed to react to the flow of forecasts, then generate
automatically their actual decisions u1(tj) and u2(tj) respectively. Based on these
decisions, a transaction may occur at a price p(tj) with a traded quantity q(tj) of
futures contracts.

The actual production of the producer will be ready at the final time tm, and
only at this time the exact amount of supply, S(tm), will be known; prior to this
period, only forecasts were available, that is S(tj), j = 0, . . . , m− 1 were forecasts
of the supply level that will occur actually at period tm. The same applies on the
demand side, i.e. D(tj), j = 0, . . . , m − 1 are just forecasts of the actual demand
that will be known exactly at the final period tm.

--r
tjtj tj + ε tj + 2ε tj + 3ε tj + 4ε

r
tj+1tj+1

"!
# 
Forecasts

S-

D-

p∗-
-

- Aut. Seller

-

u13

Aut. Buyer

-

u23 &%
'$
Adjusting
Forecasts

Sa-

Da-

-

- Aut. Seller

-

(u11, u12)

Aut. Buyer

-

(u21, u22)

PPPP
����Trans? -(p, q)

Figure 1: Unfolding of events within period tj

To understand the unfolding of events in period tj, one may assume that this
period was split into tiny subintervals as shown in figure 1. First, the forecasted
supply and demand S(tj) and D(tj) are received at instant tj + ε, then at instant
tj+2ε both traders announce their adjustment factors, u13(tj) and u23(tj), allowing to
compute the adjusted forecasts of supply and demand Sa(tj) and Da(tj). At instant
tj + 3ε, both traders send their sale and buy orders in the form of (u11(tj), u12(tj))
and (u21(tj), u22(tj)) respectively, then at instant tj +4ε a transaction, (p(tj), q(tj)),
may occur. In the following, we will consider period tj as a whole entity, but one
should bear in mind that events unfold inside this period as described herein.

The decision of the automated seller in period tj has the following form

u1(tj) = (u11(tj) , u12(tj) , u13(tj)) , (12)

where u11(tj) is the ask-price and u12(tj) is the ask-quantity. In practice, we add a
minus sign ’-’ to the ask-quantity in order to make a distinction between buy and
sale orders; also, doing so, will put the current notations in line with those used
in [14]. The third component, u13(tj) ∈ [−1, +1], is an adjustment factor, that is
a ratio by which the seller intends to increase, or decrease, his supply in regards to
the last available price. Consequently, the adjusted forecast of supply will be

Sa(tj) = S(tj) (1 + u13(tj)) . (13)

For instance, if the price, p(tj−1), of the prior period is under the nominal price,
p∗(tj−1), the producer may decide to cut supplies by 15%. Inversely, if the price is
high, he may decide to hire an additional production capacity to boost his supplies,
therefore he will announce an increase, say 10%, of forecasted supplies.
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On the other hand, the order of the automated buyer has the following form

u2(tj) = (u21(tj) , u22(tj) , u23(tj)) , (14)

where u21(tj) is the bid-price, u22(tj) is the bid-quantity, u23(tj) ∈ [−1, +1] is the
adjustment factor on the demand side. For instance, if the price is so high, the
consumer may decide to cut his consumption by 10%. Consequently, the adjusted
forecast of demand will be

Da(tj) = D(tj) (1 + u23(tj)) . (15)

A transaction will occur if the two conditions:

i) : u12(tj) 6= 0 and u22(tj) 6= 0,

ii) : u21(tj) ≥ u11(tj),

are satisfied at the same time. In such event, the transactional price will be

p(tj) =
u11(tj) + u21(tj)

2
, (16)

and the transactional quantity will be

q(tj) = min{|u12(tj)| , u22(tj)}. (17)

If condition i), or ii), or both, is/are not satisfied then no transaction will occur in
period tj, i.e. tj is a non-transactional time, and we set conventionally in this case

p(tj) = p(tj−1) and q(tj) = 0. (18)

For the moment, we assume that the automated seller will launch only sale
orders, therefore he is not allowed to buy back something that he had sold before.
Equally, the automated buyer is authorized to issue only buy orders.

On the other hand, each trader i = 1, 2, is characterized by two components:
his position yi(tj) and the average price, xi(tj), of this position at instant tj, j =
0, . . . , m (see [14]). In this study, the average price, xi(tj), is not relevant. The
position yi(tj), of trader i = 1, 2, is the number of contracts he had sold or bought
since the beginning of the trade until instant tj. At the starting time, we have

yi(t0) = 0, i = 1, 2.

At instant tj, j = 1, . . . , m, these positions should be updated:

y1(tj) = y1(tj−1)− q(tj), (19)

y2(tj) = y2(tj−1) + q(tj). (20)
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4 Example of a trading strategy

Suggesting an automatic trading strategy, γ = (γ1, γ2), consists to build mathemat-
ical formula allowing to compute the decisions u1(tj) and u2(tj) of the automatons
at each period tj, j = 1, . . . , m, from the sets of available information [3], I1(tj) and
I2(tj), for both automatons, i.e

u1(tj) = γ1(I1) and u2(tj) = γ1(I2). (21)

We assume that our market is a transparent one, that is all automatons have
access to all the information available since t0 until tj. In this event, I1(tj) = I2(tj) =
I(tj), where

I(tj) = I(tj−1) ∪ {S(tj), D(tj), p
∗(tj),u1(tj),u2(tj)}, (22)

for j = 1, . . . , m, with I(t0) = {S(t0), D(t0), p
∗(t0)}.

In addition, we assume that strategy γ1 of the seller is parameterized by param-
eters α11, α12, α13 and α14. Similarly, strategy γ2 of the buyer is assumed to be
parameterized by parameters α21, α22, α23 and α24. In section 5, optimal values of
these parameters will be computed by simulation in some particular cases.

4.1 Computing the adjusting factors u13 and u23

As a way to compute the adjusting factors u13(tj) and u23(tj) of the automated seller
and the buyer respectively, we suggest an approach based on a system of price bands
and frequencies.

- Time

6
Price

p∗

(1 + α11)p∗

(1 + 2α11)p∗

(1 + 3α11)p∗

(1− α11)p∗

(1− 2α11)p∗

(1− 3α11)p∗

Band k = 1
Band k = 2
Band k = 3

Band k = −1
Band k = −2
Band k = −3

k = 0�

1 3 5 7 9 11 13 15 17 19

r r r r r r r r r r r r
r
r r r
r r r

Figure 2: Seller’s price bands around the nominal price

For the seller, we draw bands of width α11p
∗ around the nominal price3 p∗, with

0 < α11 ≤ 1. If at any time tj, the frequency of the price in any band has exceeded
a specific value α12, then an adjustment value, u13(tj) 6= 0, is generated, otherwise
u13(tj) = 0.

3On figure 2, the line of p∗ is horizontal, i.e. it was assumed in this case that the nominal price
was constant over the periods t1, . . . , tm. However, in the general case, the line of the nominal
price is a step-wise line, therefore the system of bands should be displaced accordingly each time
p∗ increases or decreases.
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First, we initialize the number of times, n1,k(t0), the price has been in the kth

band of the seller:

n1,k(t0) = 0, k = 0,∓1,∓2, . . . (23)

The band k = 0 is a particular one as its width is not α11p
∗, but it is formed only

by the line of the nominal price as illustrated in figure 2. Then, each time the price
access into the kth band, the counter n1, k should be incremented.

In the beginning of period tj, i.e. at instant tj + ε (see figure 1), we compute the
relative change of the price p(tj−1) compared to the nominal price p∗(tj−1):

r(tj−1) =
p(tj−1)− p∗(tj−1)

p∗(tj−1)
. (24)

After that, we determine the band, k1, in which the price p(tj−1) has been in the
period tj−1 by solving the following

k1(tj) = sign(r(tj−1))× arg
k∈N+

{
k − 1 <

|r(tj−1)|
α11

≤ k

}
, (25)

with j = 1, . . . , m. We readily note that if r(tj−1) = 0 then k1(tj) = 0.
Once k1 of period tj is determined, we increment the corresponding band’s

counter by setting n1,k1(tj) = n1,k1(tj−1) + 1; the other bands will not be incre-
mented, that is n1,k(tj) = n1,k(tj−1) for k 6= k1.

Now, we compute the frequency, f1,k1 , of the price in the band k1 at instant tj
by setting

f1,k1(tj) =
n1,k1(tj)

m
. (26)

If this frequency has exceeded α12 then the automated seller should react by setting
u13(tj) = α13 k1(tj) f1,k1(tj), otherwise u13(tj) = 0. We can write this in a single
relation by setting

u13(tj) = α13 k1(tj) f1,k1(tj) 1[f1,k1
(tj)≥α12]. (27)

For instance, in figure 2, the number of trading periods is m = 19 . The price
has been 5 times in the band k = 1, hence its frequency at time tj = 19 is f1,1(19) =
5/19; whereas at instant tj = 7, the frequency of the price in the band k = 2 was
f1,2(7) = 1/19.

In a similar way, the adjusting factor, u23, of the buyer will be computed by

u23(tj) = α23 k2(tj) f2,k2(tj) 1[f2,k2
(tj)≥α22], (28)

where

n2,k(t0) = 0, k = 0,∓1,∓2, . . . (29)

k2(tj) = sign(r(tj−1))× arg
k∈N+

{
k − 1 <

|r(tj−1)|
α21

≤ k

}
, (30)

n2,k2(tj) = n2,k2(tj−1) + 1, n2,k(tj) = n2,k(tj−1) for k 6= k2, (31)

f2,k2(tj) =
n2,k2(tj)

m
. (32)
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After u13 and u23 were calculated by (27) and (28), the adjusted forecasts of
supply and demand, Sa and Da, can be computed using (13) and (15) respectively.

4.2 Computing the adjusted forecast of the gap function

At this stage, the gap function (2) should be adapted to take into account the
adjusted forecasts of supply and demand, Sa and Da, hence the adjusted forecast of
the gap will be computed by

Ga(tj) = Sa(tj)−Da(tj). (33)

This function is susceptible to convey the new balance of the supply and demand.
Furthermore, the relative change in the adjusted gap function

δGa(tj) =
Ga(tj)−Ga(tj−1)

|Ga(tj−1)|
, j = 1, . . . , m, (34)

measures the evolution of the balance of supply and demand between instants tj−1

and tj. By intuition, we reckon that this change in the supply and demand would
yield to an equivalent change in the price, this is described by the following relation

δ̃p(tj) = −λ δGa(tj), (35)

where λ is a scale factor and δ̃ p(tj) should reflect the evolution of the price between
tj−1 and tj,

δ̃p(tj) =
p̃(tj)− p(tj−1)

p(tj−1)
, j = 1, . . . , m, (36)

where p̃(tj) is the projected price for period tj. From the latter we obtain

p̃(tj) = p(tj−1) [1− λ δGa(tj)] . (37)

In addition, most Exchanges fixe limits on price moves from one session to the
next one in order to avoid large swings of the price in a short period of time which
may disrupt the market functioning. For instance, a typical Exchange may impose
that a price move from one session to the next one should not exceed 10% of the
last price either side, or a ratio of 0.1. For this purpose, we add a second parameter,
β, which is the ratio imposed by the Exchange to limit price moves, therefore the
actual relative change in the gap, δGa(tj), that will be used later is defined by

δβGa(tj) =


δGa(tj), if − β < δGa(tj) < β,

−β, if δGa(tj) ≤ −β,

+β, if δGa(tj) ≥ +β.

(38)
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4.3 Computing the bid and ask prices and quantities u11,
u12, u21, u22

This strategy relies on two simple ideas to generate respectively the price levels and
the offered quantities. First, dealing with the price levels, this strategy suggests
to react instantaneously to the variations of the supply and demand through the
rate of change in the adjusted gap function Ga(tj). Practically, it suggests that the
ask-price and bid-price of both automated traders are generated using relation (37)
where parameter λ will be replaced by α14 for the seller and α24 for the buyer:

u11(tj) = p(tj−1) [1− α14 δβGa(tj)] , (39)

u21(tj) = p(tj−1) [1− α24 δβGa(tj)] . (40)

Secondly, at each period tj, the quantity to sell (resp. to purchase) is obtained
by dividing the forecasted remaining quantity by the number of remaining periods.
In a mathematical form, the ask-quantity is given by

u12(tj) =
Sa(tj) + y1(tj−1)

m− j + 1
, (41)

and the bid-quantity is

u22(tj) =
Da(tj)− y2(tj−1)

m− j + 1
. (42)

Remark 4.1. The volatility of the forecasts from a period to period are likely to
cause the values of u12 and/or u22, proposed by this strategy, to be equal to zero,
consequently causing an absence of a transaction in this period.

5 Numerical results

A Matlab code was written for the approach described in this study. This code
can be used for different purposes. It generates samples of supply and demand
forecasts following various probability distributions. Using the trading strategy,
bands and frequencies, described earlier, the code determines the price pattern and
traded quantities between the automated seller and buyer, then it measures the
performances of this strategy in respect to the criteria suggested above. As inputs,
the code is fed with profiles of the supply and demand forecasts phenomena, SP
and DP , the nominal price p∗, and the spaces of parameters, A and B, from which
the optimum parameters should be picked up.

The supply profile SP (resp. demand profile DP ) is a set of information char-
acterizing the forecasts of supply (resp. demand) phenomenon. For instance,
SP = {Normal; 50, 000; 2} stands for the supply forecasts follow a Normal dis-
tribution with a mean µS = 50, 000 and standard deviation σS = 2; and DP =
{Uniform; 80, 000; 90, 000} stands for the demand forecasts follow a Uniform dis-
tribution in the interval [80, 000 ; 90, 000]. If the phenomenon does not belong to the
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Figure 3: Graphical results provided by the Matlab code

set of known probability distributions, then the profile can be a tabular distribution
(x1; Probability(x1)), (x2; Probability(x2)), . . . .

The set A = {αil ∈ Ail, i = 1, 2 and l = 1, 2, 3, 4} is the space of search of opti-
mal parameters, with Ail is the set from which the optimal parameter α∗

il belongs
to. The optimal parameter β∗ belongs to B.

Firstly, this code was used, with given inputs, to generate figure 3. As it can
be seen on this figure, the futures price curve (figure 3c) follows closely the moves
of supply and demand (figure 3a) and takes into account the underlying nominal
price value. The performance of our trading strategy is displayed in figure 3f. The
strategy has performed well in respect to all hypothesises of the correct price pattern,
except hypothesis 2.4 which was weak with z4 = 0.0111, that is the price was not
as volatile as the S&D in this case; therefore, we need to find a new combination of
αij and β which is maximizing z4, without altering other criteria, or even increasing
them.

The second application of the Matlab code was to construct table 1 where the
supply and demand profiles were assumed to be SP = {Normal; 5, 000; 1} and
SD = {Normal; 5, 001; 1} respectively. Since the producer-consumer setup de-
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k α1 α2 α3 α4 β z1 z2 z3 z4 z5 z6 z̄
1 0.10 0.05 0.2 0.02 0.15 0.639 0.506 0.618 0 1.000 0.901 0.610
2 0.10 0.05 0.2 0.02 1.00 0.724 0.504 0.652 0.075 1.000 0.901 0.643
3 0.10 0.05 0.2 0.20 0.15 0.637 0.507 0.623 0.096 1.000 0.901 0.627
4 0.10 0.05 0.2 0.20 1.00 0.815 0.507 0.592 0.015 1.000 0.901 0.638
5 0.10 0.05 4.0 0.02 0.15 0.837 0.525 0.606 0 1.000 0.901 0.645
6 0.10 0.05 4.0 0.02 1.00 0.933 0.505 0.608 0.014 1.000 0.901 0.660
7 0.10 0.05 4.0 0.20 0.15 0.880 0.512 0.582 0.042 1.000 0.901 0.653
8 0.10 0.05 4.0 0.20 1.00 0.797 0.515 0.591 0 1.000 0.901 0.634
9 0.10 0.20 0.2 0.02 0.15 0.908 0.515 0.740 0 1.000 0.901 0.677

10 0.10 0.20 0.2 0.02 1.00 0.958 0.519 0.759 0.031 1.000 0.901 0.695
11 0.10 0.20 0.2 0.20 0.15 0.850 0.507 0.747 0.051 1.000 0.901 0.676
12 0.10 0.20 0.2 0.20 1.00 0.966 0.515 0.832 0.001 1.000 0.901 0.702
13 0.10 0.20 4.0 0.02 0.15 0.947 0.517 0.707 0 1.000 0.901 0.678

...
...

...
...

31 0.50 0.20 4.0 0.20 0.15 0.903 0.515 0.711 0.010 1.000 0.901 0.673
32 0.50 0.20 4.0 0.20 1.00 0.878 0.513 0.689 0.001 1.000 0.901 0.664

Table 1: Average performances of specified parameters

scribed in this approach is a symmetric case (the two automatons have the same
constraints and the same information), we have decided to perform our simulation
on the particular case where both traders have the same parameters, i.e. αil = αl

with l = 1, 2, 3, 4. This is done so in order to reduce the number of parameters αil

to be optimized. Also, we assumed that the weight factors, wl, were all the same,
i.e. wl = 1/6, for l = 1, . . . , 6. The completed table 1 shows that over the space
of search parameters used in this application, the highest average performance oc-
curs in line 12, with z̄ = 0.702, i.e. this trading strategy has a 70.2% maximum
performance; line 12 lists also the optimal combination of parameters αl, β and the
corresponding performances, z1, . . . , z6, of each criterion.

σS σD α∗
1 α∗

2 α∗
3 α∗

4 β∗ z̄∗

0.5 0.3 0.10 0.20 0.20 0.02 1.00 0.730
0.5 1.0 0.10 0.20 0.20 0.20 1.00 0.715
0.5 6.0 0.10 0.20 0.20 0.20 1.00 0.672
1.0 0.3 0.10 0.20 0.20 0.20 1.00 0.714
1.0 1.0 0.10 0.20 0.20 0.20 1.00 0.702
1.0 6.0 0.10 0.20 4.00 0.20 1.00 0.663
5.0 0.3 0.10 0.20 0.20 0.20 1.00 0.662
5.0 1.0 0.10 0.20 0.20 0.20 1.00 0.662
5.0 6.0 0.10 0.20 0.20 0.20 1.00 0.607

Table 2: Optimal parameters and performances of different S&D profiles
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The third application of our code was computing optimal parameters and the cor-
responding maxima weighed performances for different supply and demand profiles;
this is set out in table 2. In practice, such a table could help a designer of automa-
tons to select the adequate parameters depending on the environment in which the
automatons should intervene. For instance, if over a period of ten years of observa-
tion, it was shown that, for a particular commodity, supply forecasts follow a normal
distribution with a standard deviation σS = 0.5, and the observed demand forecasts
do the same with σD = 0.3, then to design automatons that should react properly
to the forecasts in such an environment, and generate a correct price pattern, the
designer should tune them with the following optimal combination of parameters
(α∗

1; α∗
2; α∗

3; α∗
4; β∗) = (0.10; 0.20; 0.20; 0.02; 1.00) leading to an optimal maximum

weighed performance of 73.0%.

6 Conclusion and perspectives

We suggested herein a technical approach allowing to operate an artificial futures
market with automated traders. The proposed producer-consumer setup retains the
most essential features of real futures markets: it permits fixation of price ahead of
the effective delivery of the merchandize, and more importantly this framework as-
sumes uncertainty in the levels of supply and demand, and aggregates their updates
easily. On the other hand, the obtained numerical results were appealing: the fu-
tures price follows closely the prevailing supply-demand balance and the underlying
nominal price.

Automated trading remains an open research field necessitating new contribu-
tions in several directions. Looking forward, our approach needs to be generalized to
the case of many producers and consumers, and even speculators should be involved
to create more liquidity; the ultimate objective should be designing an efficient fu-
tures market structure operated entirely by automatons. In this optic, the main
hypothesises of the correct price pattern need to be enriched by taking into account
other market subtleties. In addition, the parametrization can be conducted in a
different manner. For instance, it would be interesting to see what happens if the
purchased quantities u12 and u22 were parameterized also. However, one should keep
in mind that the number of parameters should be kept to a minimum in order to
obtain an optimal solution in a reasonable time. Simulation can be bypassed by
establishing the underlying mathematical model of the approach presented herein,
then searching the optimal solution using numerical methods.
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