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Using Genetics Based Machine Learning to

�nd Strategies for Product Placement in a

dynamic Market

Thomas Fent

October ����

Abstract

In this paper we discuss the necessity of models including complex

adaptive systems in order to eliminate the shortcomings of neoclassical

models based on equilibrium theory� A simulation model containing

arti�cial adaptive agents is used to explore the dynamics of a market

of highly replaceable products� A population consisting of two classes

of agents is implemented to observe if methods provided by modern

computational intelligence can help �nding a meaningful strategy for

product placement� During several simulation runs it turned out that

the agents using CI�methods outperformed their competitors�

� Introduction

Many methods used in today�s business administration are based on micro�
economic theory� Therefore� neoclassic approaches assuming that there exists
a stable equilibrium play a major role� Such approaches typically assume

�� perfect information about the analysed problem and its structure�

�� diminishing returns� and

�� only perfectly rational individuals�

However� in reality the individuals lack complete information and di	erent
participants interpret the same information in a di	erent way�

Many of these models are very elegant from a mathematical point of
view� They may be appropriate for describing an agricultural or manufac�
turing economy� but they are not at all suitable for a market determined by
innovation� change� and uncertainty� A typical neoclassical model is based
on simple assumptions about the individuals� behaviour� The bene
ts ob�
tained by such models are the mathematical proofs con
rming the results�
The shortcomings� however� are that the behaviour of the interacting agents

�
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is restricted to the simple assumptions� If the assumptions exclude impor�
tant aspects of the real world� then the answers delivered by the model are
irrelevant� In order to �at least partially� overcome those shortcomings we
will make use of computer simulations based on assumptions that are too
complex to be included into a neoclassical anlytical model� This gives us the
chance to consider aspects of learning and adaption�

��� Shortcomings of equilibrium�based

models

The world in which we live is not static� nor does it converge to a stable�
state equilibrium at all� If it were� it would be almost imposible for a new
entrepreneur to succeed in a market segement that is already covered by
big suppliers with decades of experience� Innovation and growth cannot be
explained as internal e	ects of an equilibrium�based model but just as a result
of random exogenous shocks �see Beinhocker� �

���

Bloomberg News for instance showed that it is possible for a newcomer
to outperform established competitors within a few years� What they did
was reinventing existing services and providing additional features which
were experienced as additional values by the customers� Such changes� which
take place in many lines of todays business� usually do not occur within a
mathematical framework based on equilibrium theory� Neither can such a
framework describe the appearance of deregulation� profound technological
change� industry convergence� globalisation� and increasing returns� The lat�
ter phenomena for instance occur in internet business or telecommunication
services� which ensures that even the second of the above assumptions must
be altered�

To choose a certain strategy of any kind� the situation has to be analysed

rst� Based on some observations one might choose an appropriate strategy
and� 
nally� a decision �an action� is derived as an outcome of the chosen
strategy� Whenever an individual takes a decision based on information col�
lected one time step ago� the decision can only be optimal with respect to the
environment as it was one time step before� If� in the sequel� the individual
sticks to the strategy that was good with respect to the formerly observed
situation� the di	erence between the assumptions and reality becomes bigger
and bigger�

��� Complex adaptive systems

A dynamic market makes it di�cult for the participants to maintain their
competitiveness and survive in the long�run� Companies with a lot of ex�
perience in their main business units might feel motivated to rely on their
strategies that have proven to be successful in the past� To survive dramatic
shifts of customers� tastes or sudden technological changes� a company must
be as good or even better at evolving as the environment� If the company is



��� Complex adaptive systems �

not capable of performing the required level of evolution� then the market
will do it by the entry and exit of 
rms� Therefore� companies that want to
remain successful within a dynamic environment have to keep on observing�
analysing� learning� and adopting continously� This process is illustrated in

gure ��
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Figure �� The process of adaption

Moreover� they must be prepared to face a big variety of situations and
adopt their behaviour even when the system is in a state that has never been
experienced before� Hence� a big bundle of optional strategies might be a
valuable tool in a modern economy� A market built up by many individuals
of that kind can be seen as a complex adaptive system �CAS�� The main
characteristics of CASs are�

open and dynamic� Only a closed system without external �exogenous�
in�uences can tend to a stable�state equilibrium and persist there� In
a CAS the individuals are always aware of unpredictable changes and
adapt their behaviour whenever such shifts are encountered�

interacting agents� Decisions taken by one agent have an impact on the
environment of all the agents and� in turn� they all have to adjust their
strategy to the new situation� Thus� when one agent� due to evolution�
changes her�his main strategy� this does not only e	ect the environment
but also the evolution of the other agents� This causes the inherent dy�
namics of a CAS which makes it so unlikely to arrive to a steady�state�
A typical example are the huge changes of stock prices� In a typical
classical model they can only be explained by external perturbations�
while in fact they are just a result of the investors� manners of trade�
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emergence and self�organisation� There is no central planner deciding
what and when to happen� but there are many intelligent individu�
als taking their own decisions� Only the whole bundle of actions and
reactions can determine the behaviour of the system�

Practical examples of CASs are cities �not located in a dictatorial country��
ecosystems� the internet� economies� and 
rms with a fractal structure�

Another reason why microeconomics cannot always describe an economy
is the shortcoming of human reasoning� In many situations humans are just
overtaxed when they have to analyse all the information they have� trans�
form it to knowledge� think of all the connections that might exist� and

nally� take the right decision taking into consideration several con�icting
objectives� Therefore� most individuals use their experience� They compare
the current situation with things that happend in the past� and guess which
of their rules created previously 
ts best to the new problem� This even qual�
i
es such models to explain why two individuals facing the same pattern of
information behave di	erently due to their di	erent experience� In a classical
microeconomic model such e	ects are very di�cult to give reason for�

Human beings often use induction instead of deduction� and that�s ex�
actly what agents in CASs are doing� Both� the real�world individuals and
the agents in CASs try to recognize patterns and develop and apply inductive
rules of thumb� This even works in case of incomplete or changing informa�
tion� Most of the time not even all the available information is actully taken
into consideration� Real�world individuals have di	erent reasons to change
their behaviour� such as mistakes� curiosity� or external perturbations� Typi�
cal arti
cial agents use variation� elimination� and imitation to update their
rule�base�

Two examples of methods which can be used to simulate such an adaptive
company are classi�er systems �CS� and genetic algorithms �GA�� which will
be described in the sections ��� and �� respectively� CSs have the ability to
pursue several paths simultanously� which is a prerequisite to prosper in a
CAS� On the other hand� GAs enable our arti
cial agents to discard unsuc�
cessful rules� recombine the successful ones� and make some random changes
to create rules that might be helpful in completely new situations� Brenner
��

�� claimed that evolutionary algorithms cannot descibe the change of
an individuals behaviour due to dissatisfaction about the achieved results�
Nevertheless� in this work it will be shown that a synthesis of CSs and GAs
can do that�

In section � we formulate a model of product placement in a market with
several competing vendors supplying highly replaceable products� The needs
of the consumers cannot be observed directly but only the sales of all the
suppliers� Therefore� the process of adaption has to be capable of detecting
indirect connections� Finally� in section � we summarize the results obtained
by our simulations� draw some conclusions� and outline a couple of promising
possible extensions of the present work�



��� Classi�er systems �

��� Classi�er systems

To model a connection between input and output signals consisting of vectors
of integer �or binary� entries we use classi
er systems �CS�� CS were 
rst
introduced by �Holland� �
��� as a tool for pattern recognition� They can be
seen as a vehicle to use GAs in studies of machine learning �Holland� �

���

The rule base

The main part of a CS is the rule base consisting of the condition part and
the action part �see Fig� ��� The conditions within one particular row plus the
action in the same line represent a rule� which can also be called a classi
er�
The conditions may contain integer �binary� entries plus the so called don�t
care symbols �� Thus� in the most simple implementation only the three
symbols �� �� and � are permitted� On the other hand� the entries of the
message list and the action part are restricted to integer �binary� values�
The message list represents the information the individual receives� already
encoded in a way appropriate for further computation� First� the information
in the message list has to be compared with the conditions� Whenever there
exists a message that is equal to a condition� except those bits where a �
occurs� then the condition is considered to be ful
lled� A whole rule is ful
lled�
when all it�s conditions are ful
lled� Thus in the example in 
gure � the 
rst�
the third� and the fourth rule are ful
lled�

message list

� � �
� � �
� � �
� � �
� � �

rule base

condition part

cond� � cond� �

� � �
� � �
� � �
� � �
� � �

� � �
� � �
� � �
� � �
� � �

action part

� � �
� � �
� � �
� � �
� � �

Figure �� The message list and rule base of a classi
er system

Choosing an action

Now all the ful
lled rules become candidates to post an action� If� like in
the previous example� more than one rule is ful
lled� one of them has to
be selected randomly� Usually the strength of the rule� wich depends on the
success of this rule in the past� and the strictivity are used to weigth the rules�
The strictivity is a measure of the frequency of the don�t care symbols� A
very general rule� i�e� a rule containing many �� certainly has a higher chance
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to get selected� because it will be ful
lled more often� To compensate this� it
is neccesary to favour the more speci
c rules� Moreover� we can assume that
a more speci
c rule might yield a better solution to a particular situation�
Another reason to favour those rules containing only a few ��

The chosen action may be posted directly to the environment� or it may
be used as an internal message� and brought back to the message list� Thus�
it will be considered as an input in the next time step� In 
gure � the core
part of the classi
er system� which has already been shown in detail in 
gure
�� is placed into a dashed box� The arrow pointing from the right edge of
the rule base to the message list illustrates the stream of internal messages�
To distinguish between internal messages and output signals� one bit of the
action part has to be reserved to determine the type of the signal�
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Figure �� A classi
er system

Now� how can the classi
er system get connected to the environment� In
general it is assumed that there exists an input interface� which translates the
information available in the environment into signals that can be interpreted
by the classi
er systems� Thus� the signals generated by the input interface
must be vectors with a 
xed length� containing only integer �binary� entries�
These signals are collected in the message list� and proceeded as described
in the above paragraphs�
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In case the action is posted to the environment� it has to be translated by
the output interface� For instance� if a CS is used to play chess� the output
interface translates each possible vector into a particular move� Whatever
kind the chosen actions are� it in�uences the environment� and may yield a
good or bad situation for the individual represented by the CS�

Apportionment of credit

Now we need a mechanism to evaluate all the situations that can occur in
the environment� This may be a problem sometimes� If again we think about
a CS trained to play chess there are three possible outcomes� a win� a loss�
and a draw� Although it seems to make sense to rate them with �� ��� and
� � or to use any equivalent scale � there arises the problem� that only at
the end of the game the result is known� If the value of the result of the
game gets assigned to all the rules activated during the game� it may happen
that extremely good rules get assigned a bad value and vice versa� Moreover�
even when there is a possibility to evaluate the state at every time step� in a
CS with internal messages there is still the problem of assigning meaningful
values to those rules that caused internal messages� A possible solution is
provided by the bucket brigade algorithm �see Goldberg� �
�
� p� ��� 	��

Learning better rules

A CS creates new classi
ers �rules� by running a genetic algorithm � or any
other suitable learning algorithm � on the present population of classi
ers� To
avoid an extremely volatile behaviour of the system� the incoming messages
have to be processesed through the classi
er system several times before the
genetic algorithm may be invoked� In the following the variable rp is used to
denote the number of repetions� and it will be assigned the values �� ��� and
���

� A model of product placement

To launch a new product the marketing department has to decide about
the kind of customer attributes they would like to meet� In a heterogenous
market with di	erent customers� tastes and several competitors� taking the
decision about product placement is rather complex�

Customers usually choose that product which best 
ts their desire� as
indicated for instance by �Kotler et al�� �

�� p� �� �They therefore want to

choose products that provide the most satisfaction for their money�� To make
sure that one particular customer buys� a producer could decide to customize
his�her o	er according to the wishes of that customer� However� this might
lead to a product that no one else would like to buy� Certainly this is not
a very favourable situation for a supplier� except in case this one customer
has such a great purchasing power that indeed designing a product for one
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particular individual can still yield a good pro
t� Some practical examples
for this situation are custom�made suits� paper�making machines� or power
stations�

To avoid dependence on one customer the producer could decide to place
her�his product such that the distance to most customers� requirement pro�

les is as small as possible� Again� this might not always be the optimal
strategy� If all the competitors already try to launch such a mass product
that represents the average of all the customers� wishes then o	ering another
average product might not lead to great success�

Thus� for deciding what kind of product to supply one has to be aware of
the customers� desires and the competitors� products as well� An interesting
example of a simulation capable of analysing a market with very di	erent
agents can be found in �Polani and Uthmann� �


�� However� in this paper
we will analyze how adaptive agents� who use classi
er systems to take the
decision and learn by using genetic algorithms� would place their products
in a dynamic and heterogenous market�

In our model we assume that there might be m customers and n suppli�
ers in a market of highly replaceable products�� The products are assumed
to have only two di	erent attributes �this assumption is made to facilitate
visualization� and each attribute can take �� di	erent values� Thus� the con�
sumers and the vendors both have ��� alternatives� A typical situation with
m � n � � �i�e� there are � customers who can choose one out of � di	erent
products� is illustrated in 
gure � � where the o�symbols denote the suppliers
and the x�symbols the customers�

�

�

x

x

x

x

x

o

o

o

o

o

Figure �� A typical market situation

The market mechanism

After all the customers have declared their wishes and all the suppliers have
made their o	ers� the customers choose those products with the smallest

�
In most markest it holds that m� n�






euclidian distance between the ideal product and the actual o	ers� In case of
two or more products with the same distance one of them is chosen randomly�
If we denote �xi the i�th customers wish and �yj the j�th vendors o	er� then
the decision ai of the i�th customer might be

ai � arg min
j�f����ng

n
k�xi � �yjk�

o
� ���

To keep the model simple we make the following assumptions�

�� All the customers have the same purchasing power�

�� All the producers have the same internal cost structur�

�� Whenever a product is chosen the vendor receives a 
xed pro
t p�

�� Each product in the set f�� � � � � ���g� causes the same costs�

�� All the producers are capable to manufacture each possible product in
f�� � � � � ���g��

Thus� �j the pro
t of supplier j within one particular time period equals
p times the number of customers who decided to buy the product o	ered by
the supplier j� i�e� �j � p�fijai � jg�

The buying agents

At the initial state of our simulation the preferences of the customers are
placed randomly somewhere in the twodimensional set� Then� their movement
follows a random�walk with small steps� Both components may be increased
or decreased by one� Thus� the demand side of the market is not completely
static� but changes slightly� If the changes were too big� it would not make
sense for the suppliers to build decision rules based on their experience�

In mathematical terms we can say that the demand side is represented
by a ��m matrix

D �

�
x�
�

x�
�

� � � xm
�

x�
�

x�
�

� � � xm
�

�
�

The initial state D� is a � � m matrix with all the components uniformly
distributed on the set f�� � � � � ���g� The state Dt at any time t can be given
as

Dt � Dt�� ��Dt� ���

where �Dt is a ��m matrix with all its components uniformly distributed
on the set f��� �� �g�
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The selling agents

Like before we use a uniform random distribution to de
ne the initial o	ers
of all the suppliers� and collect the data in the �� n matrix

S �

�
y�
�

y�
�

� � � yn
�

y�
�

y�
�

� � � yn
�

�
�

We will observe two classes of agents at the supply side of our arti
cial
market�

First class agents

The 
rst class of selling agents are using classi
er systems like described in
chapter �� We use CSs with a condition part containing at least three and at
most 
ve conditions� In the following we use the variable ncond to refer to the
number of conditions� The incoming messages are the data about the o	ered
products of all the sellers in the last period plus an additional bit which
contains �j� the recent success of the o	ers� Thus� Mt the list of incoming
messages at time t becomes

Mt �

�
BB�

y�
��t��

y�
��t��

��

t��

���
���

���
yn
��t��

yn
��t��

�n
t��

�
CCA � ���

Certainly it does not make sense to make a decision based on the information
about only one competitor� Therefore� in this model the rules contain several
condition parts and� hence� only those rules are ful
lled that are activated
by several suppliers�

The genetic algorithm

Genetic algorithms �GA� basically have been created to optimise technical
systems� Later on� it turned out that they might also be of interest in model�
ing human behaviour� This is due to the strong analogy between the genetic
operators and human learning by trying� experiencing� and imitating� This
makes them a powerful tool to simulate social interaction� The main contents
of GAs are

� selection�

� replication�

� recombination� and

� mutation�

Certainly� it does make a big di	erence for the individual if the evolution of
the system as a whole is caused by biological like selection �i�e� elimination of
unsuccessful individuals� or by learning� In opposite to GAs� general learning
processes are usually described by
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� variation�

� satisfaction� and

� imitation�

A nice distinction between learning and evolution is given for instance by
�Brenner� �

��� However� here the GAs are used to force evolution and
improvement within the individuals rule�bases rather than within the pop�
ulation of agents itself� The share of those rules that performed well in the
past increases� while shares of rules that led to an outcome below the aver�
age decreases� Thus� only rules can be eliminated� but not the individual as
a whole� Therefore the changes in the population of agents takes place due
to learning e	ects rather than selection among individuals�

In general a GA works on a population of strings with a 
xed length� Also
a particular 
tness value has to be assigned to each string of the population�
The strings can be binary �i�e� only containing � and ��� integer� or real
valued� Nevertheless� the whole population of strings must be of the same
type�

In our model we use the GA to update the rule bases of the 
rst class
agents� Therefore� the population contains row vectors of length �nc because
we consider two attributes of the products plus the pro
t in the last period
of ncond di	erent suppliers�

Depending on the kind of data to be used the genetic operators di	er
sligthly� In the following we will have a closer look to the three main steps
of genetic algorithms� A more comprehensive description can be found in
�Goldberg� �
�
� or �Holland et al�� �

���

Selection

The selection operator has a very high in�uence on the dynamics of the
population� It is used to determine which individuals� o	springs may occur
in the next generation� and which get discarded� In the present model we
used a ranking procedure� First� the rules have to be ordered according to
their 
tness values� Then� those rules belonging to the best ��� are selected�
and the others discarded� Finally� those rules belonging to the best ��� are
written into the list a second time� This increases the chance of the very
successful rules to remain in the rule base of the next time step�

Crossover

After selecting the rules we produce o	springs by either copying the rows of
the present rule�base into the new one� or by combining two rules� First we
build pairs of rules randomly� After that with a probability of � � ��� we
create new rules by combining the strings� otherwise both strings remain�



�� � SIMULATION RESULTS AND CONCLUSIONS

Mutation

At the beginning of the iteration process it is very important to avoid striving
to a local optimum� Therefore� a mutation operator is used to place random
numbers somewhere into the population� This happens with a probability
of �� which we assigned the values �� ������ and ������ In order to control
the strictivity of the rule�base we use another mutation operator� which only
writes don�t care symbols ��� into the condition part of the rules� This is
done with a probability of dp�

Second class agents

The second class of selling agents are the simpler ones� They just make small
random movements like the buying agents in the previous section� The pur�
pose of these agents is just to 
nd out if the agents using classi
er systems
are indeed capable to 
nd intelligent strategies� i�e� to outperform the second�
class agents�

If we have n�� the number of 
rst�class agents� and n� � n�n�� the number
of second�class agents� then the �� n� matrix �S� with all its components
uniformly distributed on ��� �� � determines the movements of the second�
class agents� The decisions of the agents in class i are collected in the �� ni

matrix Si� which leads us to

St �
�
S�

t � S
�

t

�
�
�
S�

t � S
�

t��
��S�

t

�
� ���

This in turn is the transpose of the 
rst two columns of the matrix M in
equation ��� for the next time step t � ��

� Simulation Results and conclusions

A typical result is shown in 
gure �� We used setups with m � �� customers�
n� � � 
rst class selling agents� and n� � � second class selling agents�
Assuming p � �� i�e� each sale is worth one monetary unit� the total sales in
the market add to P � mp � ���

The plot in the 
rst row on the left�hand side compares the average pro
ts
of the 
rst� and second class agents� At the begining of the simulation the
market shares di	er only slightly� but in the sequel the share of the intelligent
agents increases� Finally� after �� generations� the 
rst class agents occupy
the whole market� and their average pro
t becomes P�n� � ��� This shows
that the learning process induced by the GA succeeded in producing useful
rules� Moreover� we can conclude� that a decision need not to be based on
all the information available� In the present simulation illustrated in 
gure
� the CSs contain � conditions� Thus� the decisions taken by the 
rst class
agents are based only on information about � di	erent suppliers�

On the right�hand side we see the frequency of don�t care symbols ���
in the CSs of the 
rst class agents� At the initial state only about ��� of
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Figure �� simulation results

the entries in the condition parts were �� but later on their share increased
signi
cantly until it stabilized slightly above �� �� Thus� we can conclude
that the very general rules were the more successful ones� and thus survived
the selection process�

The graph in the second row shows how often it happend that some of
the 
rst class agents had no rule ful
lled� In that case their decision had to
be taken randomly� This curve always remains between � and �� This means
that at most ��� of the agents using CSs did not receive an appropriate
input and� thus� had to guess what to do�

In total we ran ��� experiments� In table � all those parameters are listed�
whose value was 
xed in all the simulations�

In table � all those parameters are listed� which got assigned di	erent
values� In some of the experiments the general mutation operator also could
produce �� thus leading to the expressions f��� in the table�

In all the experiments the intelligent agents �i�e� those using classi
er
systems rather than random walk� outperformed their competitors� In fur�
ther research we would like to examine what happens if di	erent types of
intelligent agents compete in the market� First of all we think about dif�
ferent parameter settings for the kind of agents described in the present
paper� Moreover� one might also think about implementing completely dif�
ferent strategies� For instance� it may yield interesting results to let one agent
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� crossover probability ���
m number customers ��
n number of suppliers ��
n� number of �st class agents �
n� number of �nd class agents �
P cumulated pro
t ��
p pro
t obtained when selling to one customer �
srate survival rate used by the selection operator ���
T number of iterations ��

Table �� 
xed parameters

	 factor of 
tness updates ���� ���
dp probability of � used by the mutation operator �� ������ f���� ����� � f���
� mutation probability �� ������ �����
ncond number of conditions in the CSs �� �� �
psize size of the populations of rules in the CSs ��� ��� ���
rp number of repetitions before invoking the GA �� ��� ��

Table �� variable parameters

just imitate the decision of the most successful supplier in the previous time
step� Another interesting extension could be achieved by having some supe�
rior agents who can even observe the customers� wishes directly� Up to now
we assumed� that this information is not available� Thus� the suppliers just
could guess the consumers� preferences by observing their buying habits�
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